Homework 2

Instructor: Hedibert Freitas Lopes
Course: STP 598 Advanced Bayesian Statistical Learning (Class \# 31199)
Semester: Spring 2022
Due date: 1:30pm, February 28th, 2022.

1 Risk analysis

Recall that the risk of an estimator $\hat{\theta}$ is given by

$$
R(\theta, \hat{\theta})=E_{\theta}[L(\theta, \hat{\theta})]=\int L(\theta, \hat{\theta}) p(x \mid \theta) d x
$$

while the maximum risk is $\bar{R}(\hat{\theta})=\sup _{\theta} R(\theta, \hat{\theta})$, and the Bayes risk is

$$
r(\pi, \hat{\theta})=\int_{\Theta} R(\theta, \hat{\theta}) \pi(\theta) d \theta
$$

where π is a prior for θ. Assume that the loss function is squared error, so the risk is just the mean squared error (MSE):

$$
R(\theta, \hat{\theta})=E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]=E_{\theta}\left[\left(\hat{\theta}-E_{\theta}(\hat{\theta})\right)^{2}+\left(E_{\theta}(\hat{\theta})-\theta\right)^{2}\right]=V_{\theta}(\hat{\theta})+\operatorname{bias}_{\theta}^{2}(\hat{\theta}) .
$$

Now, let X_{1}, \ldots, X_{n} be, conditionally on θ, independent $\operatorname{Bernoulli}(\theta)$, for $\theta \in(0,1)$. Consider squared error loss and two estimators of θ :

$$
\hat{\theta}_{1}=\frac{X_{1}+\cdots+X_{n}}{n} \quad \text { and } \quad \hat{\theta}_{2}=\frac{X_{1}+\cdots+X_{n}+\alpha}{\alpha+\beta+n}
$$

where α and β are positive constants.
a) Show that

$$
R\left(\theta, \hat{\theta}_{1}\right)=\frac{\theta(1-\theta)}{n}
$$

b) Show that

$$
R\left(\theta, \hat{\theta}_{2}\right)=\frac{n \theta(1-\theta)}{(\alpha+\beta+n)^{2}}+\left(\frac{n \theta+\alpha}{\alpha+\beta+n}-\theta\right)^{2}
$$

For c), d) and e), assume that $\alpha=\beta=\sqrt{n / 4}$.
c) Graphically show that neither estimator uniformly dominates the other. Try $n=1,10,50$ to see how the risk functions behave as n increases.
d) Show that the maximum risks are

$$
\bar{R}\left(\hat{\theta}_{1}\right)=\frac{1}{4 n} \quad \text { and } \quad \bar{R}\left(\hat{\theta}_{2}\right)=\frac{n}{4(n+\sqrt{n})^{2}},
$$

so, based on the maximum risk, $\hat{\theta}_{2}$ is a better estimator. However, when n is large, $R\left(\hat{\theta}_{1}\right)$ has smaller risk except for a small region in the parameter space near $\theta=1 / 2$, where the risk of $\hat{\theta}_{1}$ is maximum.
e) Show that the Bayes risks are

$$
r\left(\pi, \hat{\theta}_{1}\right)=\frac{1}{6 n} \quad \text { and } \quad r\left(\pi, \hat{\theta}_{2}\right)=\frac{n}{4(n+\sqrt{n})^{2}},
$$

when π is the uniform prior in the interval $(0,1)$. For large n (larger than or equal to 20), $\hat{\theta}_{1}$ is a better estimator. This corroborates with the graphical inspection obtained in c).

2 Stein's Paradox

Suppose that $X \sim N(\theta, 1)$ and consider estimating θ with squared error loss. We know that $\hat{\theta}(X)=X$ is admissible. Now consider estimating two, unrelated quantities $\theta=\left(\theta_{1}, \theta_{2}\right)$ and supposed that $X_{1} \sim N\left(\theta_{1}, 1\right)$ and $X_{2} \sim N\left(\theta_{2}, 1\right)$ independently, with loss

$$
L(\theta, \hat{\theta})=\left(\theta_{1}-\hat{\theta}_{1}\right)^{2}+\left(\theta_{2}-\hat{\theta}_{2}\right)^{2}
$$

Not surprisingly, $\hat{\theta}(X)=X$ is again admissible where $X=\left(X_{1}, X_{2}\right)$. Now consider the generalization to k normal means. Let $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right), X=\left(X_{1}, \ldots, X_{k}\right)$ with $X_{i} \sim N\left(\theta_{i}, 1\right)$ (independent) and loss

$$
L(\theta, \hat{\theta})=\left(\theta_{1}-\hat{\theta}_{1}\right)^{2}+\cdots+\left(\theta_{k}-\hat{\theta}_{k}\right)^{2} .
$$

Stein astounded everyone when he proved that if $k \geq 3$, then $\hat{\theta}(X)=X$ is inadmissible. It can be shown that the James-Stein estimator

$$
\hat{\theta}^{S}=\left(\hat{\theta}_{1}^{S}, \ldots, \hat{\theta}_{k}^{S}\right)
$$

has smaller risk, where

$$
\hat{\theta}_{i}^{S}(X)=\left(1-\frac{k-2}{X_{1}^{2}+\cdots+X_{k}^{2}}\right)^{+} X_{i}
$$

where $(z)^{+}=\max \{0, z\}$. This estimator shrinks the X_{i} 's towards 0 . The message is that, when estimating many parameters, there is great value in shrinking the estimates.
Computer Experiment: Compare the risk of the MLE and the James-Stein estimator by simulation. Try various values of k and various vectors θ. Summarize your results.

