Instructor: Hedibert Freitas Lopes Course: STP 598 - Time Series (Class # 12767) Semester: Spring 2022 Due date: 12pm, February 14th, 2022.

1. Moving average filter

(a) Generate n = 100 observations from the autoregression

$$x_t = -0.9x_{t-1} + \omega_t$$

with ω_t following a Gaussian white noise with standard deviation $\sigma_{\omega} = 1$ and $x_0 = 0$. Next, apply the moving average filter

$$v_t = (x_t + x_{t-1} + x_{t-2} + x_{t-3})/4$$

to x_t , the data you generated. Now plot x_t as a line and superimpose v_t as a dashed line. Comment on the behavior of x_t and how applying the moving average filter changes that behavior.

- (b) Repeat (a) but with $x_t = cos(2\pi t)$.
- (c) Repeat (b) but with added N(0, 1) noise, $x_t = cos(2\pi t) + \omega_t$.
- (d) Compare and contrast (a)-(c).

2. Trend-stationarity

Consider the time series

$$x_t = \beta_1 + \beta_2 t + \omega_t,$$

where β_1 and β_2 are known constants and ω_t is a white noise process with variance σ_{ω}^2 .

- (a) Determine whether x_t is stationary.
- (b) Show that the process $y_t = x_t x_{t-1}$ is stationary.
- (c) Show that the mean of the moving average

$$v_t = \frac{1}{2q+1} \sum_{j=-q}^{q} x_{t-j}$$

is $\beta_1 + \beta_2 t$, and give a simplified expression for the autocovariance function.

3. Random walk with drift model

Consider the random walk with drift model

$$x_t = \delta + x_{t-1} + \omega_t,$$

for $t = 1, 2, \ldots$, with $x_0 = 0$, where ω_t is white noise with variance σ_{ω}^2 .

- (a) Show that the model can be written as $x_t = \delta t + \sum_{k=1}^t \omega_k$.
- (b) Find the autocovariance function of x_t .
- (c) Argue that x_t is not stationary.
- (d) Suggest a transformation to make the series stationary, and prove that the transformed series is stationary. (Hint: See Problem 2(b))

4. Moving-average process

Suppose that the simple return of a monthly bond index follows the MA(1) model

$$x_t = \omega_t + 0.2\omega_{t-1},$$

where ω_t is a white noise process with standard deviation $\sigma_{\omega} = 0.025$. Assume that $\omega_{100} = 0.01$. Compute the 1-step- and 2-step-ahead forecasts of the return at the forecast origin t = 100. What are the standard deviations of the associated forecast errors? Also compute the lag-1 and lag-2 autocorrelations of the return series.

5. Autoregressive process

Suppose that the daily log return of a security follows the model

$$x_t = 0.01 + 0.2x_{t-2} + \omega_t$$

where ω_t is a Gaussian white noise series with mean zero and variance $\sigma_{\omega}^2 = 0.02$. What are the mean and variance of the return series x_t ? Compute the lag-1 and lag-2 autocorrelations of x_t . Assume that $x_{100} = -0.01$, and $x_{99} = 0.02$. Compute the 1- and 2-step-ahead forecasts of the return series at the forecast origin t = 100. What are the associated standard deviations of the forecast errors?