Homework 1

Instructor: Hedibert Freitas Lopes
Course: STP 598 Advanced Bayesian Statistical Learning (Class \# 31199)
Semester: Spring 2022
Due date: 1:30pm, February 14th, 2022.

Bernoulli model. In class we talked about the Bernoulli model where, conditionally on $\theta, x_{1}, \ldots, x_{n}$ are i.i.d. $\operatorname{Bernoulli}(\theta)$, for $0 \leq \theta \leq 1$, such that $p\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{1-x_{i}}$, for $x_{i}=0,1$ and $i=1, \ldots, n$. Let $s_{n}=\sum_{i=1}^{n} x_{i}$ be the number of successes out of n trials. It is relatively easy to show that $s_{n} \mid \theta \sim \operatorname{Binomial}(n, \theta)$, i.e.

$$
\operatorname{Pr}\left(s_{n} \mid \theta\right)=\frac{n!}{k!\left(n-s_{n}\right)!} \theta^{s_{n}}(1-\theta)^{n-s_{n}}, \text { for } s_{n}=0,1,2, \ldots, n
$$

and that $s_{n}=\sum_{i=1}^{n} x_{i}$ is a sufficient statistics for θ. Obviously, the likelihood function is

$$
L\left(\theta \mid n, s_{n}\right) \propto \theta^{s_{n}}(1-\theta)^{n-s_{n}},
$$

which resembles the kernel of a Beta distribution with parametes $s_{n}+1$ and $n-s_{n}+1$. Let us now consider three prior specifications:

- Prior A: $\theta \sim \operatorname{Uniform}(0,1)$ (this is actually Prior B with $a=b=1$),
- Prior B: $\theta \sim \operatorname{Beta}(a, b)$ (below we will assume the values $a=4$ and $b=2$),
- Prior C: $\log (\theta /(1-\theta)) \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ (below we will use $\mu=0$ and $\sigma^{2}=3$).

It is easy to show that $p(\theta \mid A)=1, p(\theta \mid B)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}$, and that

$$
p(\theta \mid C)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\log \left(\frac{\theta}{1-\theta}\right)-\mu\right]^{2}\right\} \frac{1}{\theta(1-\theta)}
$$

When working on the following questions, you should assume that $n=10$ Bernoulli trials lead to $s_{10}=7$ successes.
a) Derive $p\left(\theta \mid s_{n}, A\right)$, which is a Beta distribution (just like the prior). This should be fairly easy!
b) Derive $p\left(\theta \mid s_{n}, B\right)$, which is also a Beta distribution. This should also be easy!
c) Derive $\operatorname{Pr}\left(s_{n} \mid A\right)$ and $\operatorname{Pr}\left(s_{n} \mid B\right)$. These quantities are known scalars that represents the predictive densities of the observed data under the Bernoulli model and Prior A or Prior B, respectively. Since both Prior A and Prior conjugate with the likelihood function, the easiest way to compute both predictive densities is

$$
\operatorname{Pr}\left(s_{n} \mid A\right)=\frac{\operatorname{Pr}\left(s_{n} \mid \theta\right) p(\theta \mid A)}{p\left(\theta \mid s_{n}, A\right)} \quad \text { and } \quad \operatorname{Pr}\left(s_{n} \mid B\right)=\frac{\operatorname{Pr}\left(s_{n} \mid \theta\right) p(\theta \mid B)}{p\left(\theta \mid s_{n}, B\right)}
$$

d) Derive $\operatorname{Pr}\left(s_{n} \mid C\right)$ first and then $p\left(\theta \mid s_{n}, C\right)$. These are the complicated ones, as far as computation is concerned, since the prior density and likelihood function fail to conjugate. Therefore, you will need to approximate the denominator of

$$
p\left(\theta \mid s_{n}, C\right)=\frac{\left.p\left(s_{n} \mid \theta\right)\right) p(\theta \mid C)}{\int_{0}^{1} p\left(s_{n} \mid \theta\right) p(\theta \mid C) d \theta}=\frac{\left.p\left(s_{n} \mid \theta\right)\right) p(\theta \mid C)}{\operatorname{Pr}\left(s_{n} \mid C\right)}
$$

Approximate $\operatorname{Pr}\left(s_{n} \mid C\right)$ by a simple fine grid for the interval $(0,1)$. In a couple of classes, we will show that a simple Monte Carlo integration is equally easy and more suitable when the dimension of θ is greater than 2 or 3).
e) Compute $E\left(\theta \mid s_{n}, A\right)$ and $V\left(\theta \mid s_{n}, A\right)$. Repeat for Priors B and C.
f) Graphically compare the three priors and posteriors.

