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Introduction

Introduction

Model uncertainty is a well-known challenge in many areas such as
engineering signal processing, neuroscience and financial econometrics.

Specially when the main goal is to produce sequential forecasts to
decision-making problems.

For many applications, we don’t know exactly the:

main predictors to choose for each period t;

time-variation in coefficients and volatilities;

degree of time-variation of coefficients over time.
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Introduction

Introduction

Recent literature has used the notion of Bayesian model selection/average
among different models.

Univariate Case: Raftery, Kárnỳ, and Ettler (2010), Koop and Korobilis
(2012), Dangl and Halling (2012), Catania, Grassi, and Ravazzolo (2019)
and Levy and Lopes (2020).

Multivariate Case: Koop and Korobilis (2013), Koop and Korobilis
(2014) and Beckmann, Koop, Korobilis, and Schüssler (2020).
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Introduction

Advances in the literature

Both methods propose analytical solutions:

Wishart DLM (W-DLM): Two restrictions: it forces all the time series
in the system to share the same vector of predictors, and second,
variances and covariances are modeled in the same structure and
must time-varying jointly.

Dynamic Dependency Network Models (DDNM): Each time series can
feature its own set of predictor variables and allow for separate
degrees of time-variation for variances and covariances.
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Introduction

Advances in the literature

Dynamic Dependency Network Models (DDNM): Zhao, Xie, and West
(2016), West (2020), Fisher, Pettenuzzo, Carvalho, et al. (2020) and
Lavine, Lindon, West, et al. (2020).

DDNM defines multivariate dynamic models via coupling of sets of
customized univariate DLMs (Decouple/Recouple).

The structure is related to the popular Cholesky-style Multivariate SV
(Primiceri, 2005; Lopes et al., 2018).

Cholesky-style models: depend on series orderings!
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Econometric Framework

Econometric Framework

Consider yt as a m-dimensional vector with time series yj ,t and consider
the following dynamic system:

(Im − Γt) yt =

 x′1,t−1β1t
...

x′m,t−1βmt

+ νt, νt | Ωt ∼ N (0,Ωt) , (1)

xj ,t−1 is a p-dimensional vector of predictors;

βjt are time-varying coefficients;

Ωt = diag
(
σ21t , . . . , σ

2
mt

)
;

All contemporaneous relations come from the m × m matrix Γt .
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Econometric Framework

Cholesky decomposition

Following the DDNM of Zhao et al. (2016), we focus on the particular case
where Γt is lower triangular with zeroes in and above the main diagonal:

Γt =


0 0 . . . 0 0

γ21,t 0 . . . 0 0
...

...
. . .

...
...

γm1,t γm2,t . . . γm,m−1,t 0

 (2)

This lower diagonal structure has already appeared in the econometric
literature (Lopes et al., 2018, Shirota, Omori, Lopes, and Piao, 2017,
Carvalho, Lopes and McCulloch 2018, Primiceri, 2005 and others) and
started to become known as a Cholesky-style framework.
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Econometric Framework

Econometric Framework

Equation (1) can be rewritten in the reduced form as

yt = At

 x′1,t−1β1t
...

x′m,t−1βmt

+ ut ut | Σt ∼ N (0,Σt) (3)

where At = (Im − Γt)
−1 and ut = Atνt.

The modified Cholesky decomposition clearly appears in
Σt = AtΩtA

′
t which is now a full variance-covariance matrix.

Given the parental triangular structure of Γt in (2), the equations will
be conditionally independent.

The model can be viewed as a set of m conditionally independent
univariate DLMs.
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Econometric Framework

m univariate DLMs

The set of m univariate models can be represented as m univariate
recursive dynamic regressions, for j = 1, . . . ,m:

yjt = x′j ,t−1βjt + y′<j ,tγ<j ,t + νjt , νjt ∼ N
(
0, σ2jt

)
, (4)

and dynamic coefficients evolving according to random walks:(
βjt

γ<j ,t

)
=

(
βj ,t−1
γ<j ,t−1

)
+ ωjt ωjt ∼ N (0,Wjt) . (5)
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Econometric Framework

m univariate DLMs

By defining the full dynamic state and regression vectors as

θjt =

(
βjt

γ<j ,t

)
and Fjt =

(
xj ,t−1
y<j ,t

)
,

we recover the traditional univariate DLM formulation as in West and
Harrison (1997), namely

yjt = F′jtθjt + νjt , νjt ∼ N
(
0, σ2jt

)
,

θjt = θj ,t−1 + ωjt , ωjt ∼ N (0,Wjt) ,

for j = 1, . . . ,m, where again the evolution of βjt and γjt evolve over time
as a simple random-walk.
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Econometric Framework

Conjugate Analysis

Posterior at t − 1. Following West and Harrison (1997), Chapter 4, at
time t − 1 and for each time series j , the joint posterior distribution of
θjt−1 and σjt−1 at time t − 1 is a multivariate Normal-Gamma:

θj ,t−1, σ
−1
jt−1 | Dt−1 ∼ NG (mj ,t−1,Cj ,t−1, nj ,t−1, nj ,t−1sj ,t−1) . (6)

Through the random walk evolution and conjugacy, we can derive the joint
prior distribution of θjt and σjt for time t as:

θjt , σ
−1
jt | Dt−1 ∼ NG (ajt ,Rjt , rjt , rjtsj ,t−1) (7)

where rjt = κjnj ,t−1, ajt = mj ,t−1 and Rjt = Cj ,t−1/δj . Here, we use
0 < δj ≤ 1 and 0 < κj ≤ 1 as discount factors to induce time-variation in
the evolution of parameters.
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Econometric Framework

Conjugate Analysis

1-step ahead forecast at t − 1. The (prior) predictive distribution of yjt
is a Student’s t distribution with rjt degrees of freedom:

yjt | y<j ,t ,Dt−1 ∼ Trjt (fjt , qjt) ,

with fjt = F′jtajt and qjt = sj ,t−1 + F′jtRjtFjt .

Conjugate analysis for forward filters and one-step ahead forecasting.

Closed-form solution for predictive densities for each equation j .

Conditional on parents, the joint predictive density for yt is:

p (yt | Dt−1) =
m∏
j=1

p
(
yjt | y<jt ,Dt−1

)
, . (8)

which simply is the product of the m different univariate Student’s t
distributions.
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Econometric Framework

Open Question and Contribution

DDNMs and the Cholesky-style framework require a specified order of the
m series.

For some lower-dimensional series in macroeconomics, the ordering may
reflect economic reasoning and theory.

However, in many cases, the dependency structure is uncertain.

Or the contemporaneous relations may evolve over time: the economic
environment is always changing.

We propose a highly flexible and fast method to deal with the
problem of ordering uncertainty.

NDLM closed-form sequential learning avoids the use of MCMC/SMC.
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Econometric Framework

Contribution

We propose a dynamic method to deal with the uncertainty around series
ordering and different contemporaneous dependencies across series in an
online fashion.

Dynamic Ordering Selection/Average approach:
It can be applied in any field where the goal is to produce sequential
forecasts for decision-making.

We show in two different applications how our econometric method
outperforms some traditional benchmarks and the use of fixed order over
time. The applications are:

1) Portfolio allocation;

2) Macroeconomic Forecasting.
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Dynamic Order Probabilibites

Dynamic Ordering Learning

In Raftery et al. (2010) and Koop and Korobilis (2012), the model space is
defined by different predictors and discount/forgetting factors.

Here, the models space will be also defined by different order structures.

Curse of dimensionality:
k time-series =⇒ k! possible orders.
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Dynamic Order Probabilibites

Dynamic Ordering Learning

We dynamically compute probabilities for each order.

For each period of time we can:

select the best order (dynamic order selection, DOS), or

average across all different orders (dynamic order averaging, DOA),

weighing by those order probabilities.

Similar to (8), we can compute the predictive density for each equation j at
order i and then simply generate the joint predictive density for order i as:

p (yt | Dt−1,Oi ) =
m∏
j=1

p (yjt | y<jt ,Dt−1,Oi ) . (9)
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Dynamic Order Probabilibites

Dynamic Ordering Learning

Each univariate model is conditionally independent given the parental set.

Given a specific order i :

Known joint predictive distribution.

The time series are decoupled for sequential analysis and then
recoupled for forecasting into an optimal multivariate model.

Now, we are able to compute Dynamic Order Probabilities (DOP).
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Dynamic Order Probabilibites

Dynamic Order Probabilibites

After computing the joint predictive density for all k! orders, we just follow
the laws of probability and compute the DOP. Let

πt−1|t−1,i = p(Oi | Dt−1),

denote the posterior probability of order i at time t − 1. The predicted
probability of order i , given data until time t − 1:

πt|t−1,i =
παt−1|t−1,i∑K
l=1 π

α
t−1|t−1,l

, (10)

where 0 ≤ α ≤ 1 is a forgetting factor (Raftery et al., 2010). Then,

πt|t,i =
πt|t−1,ip (yt | Dt−1,Oi )∑K
l=1 πt|t−1,lp (yt | Dt−1,Ol)

. (11)
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Dynamic Order Probabilibites

Predictors and discount factors learning

Similar to Raftery et al. (2010) and Koop and Korobilis (2012), we apply
Dynamic Model Selection (DMS) for each equation in a given order
structure.

We dynamically choose the univariate model with the best predictors and
discount factors over time.

Since each equation is conditionally independent for a given order i :

P(M∗1:m|Dt−1,Oi ) =
m∏
j=1

P(M∗j |Dt−1,Oi )

As soon as we select univariate models with the highest model probabilities
in each order, we recover the best multivariate model for that specific
ordering.

Our approach is also able to sequentially change predictors and discount
factors for each equation.
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Econometric Applications

Econometric Applications

We test how our approach performs in two different econometric contexts:

1) Portfolio Allocation

2) Macroeconomic Forecasting

We are interested in statistical (forecasting) and economic (portfolio)
evaluation.

Levy & Lopes (INSPER) June 24, 2021 21 / 46



Econometric Applications

Statistical Evaluation

We make point (MSFE) and density (LPDR) forecast evaluations.

Mean Square Forecast Error (MSFE):

MSFE l =

∑k
i=1 MSFE l

i∑k
i=1 MSFEBmk

i

(12)

where l is the specific order to be evaluated and Bmk is the specific
benchmark model.

Log-Predictive Density Ratio (LPDR):

LPDRl =
T∑
t=1

log

{
pl (yt+1|yt)

pBmk (yt+1|yt)

}
. (13)
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Econometric Applications

Economic Evaluation

For the portfolio allocation problem, we are not concerned about
out-of-sample predictability, but how our approach improves final decisions
and outcomes.

As in Fleming et al. (2001), Della Corte et al. (2009) and Beckmann et al.
(2020), besides Sharp Ratios we also compute the performance fee (Φ)
that an investor will be willing to pay to switch from the benchmark model
to the DOL approach.

T−1∑
t=0

{(RDOL
p,t+1 − Φ)− γ(RDOL

p,t+1 − Φ)2} =
T−1∑
t=0

{RBmk
p,t+1 − γ(RBmk

p,t+1)2}

where γ = 0.5θ/(1 + θ) and θ is the investor’s degree of relative risk
aversion and Rp,t is the gross return of the portfolio at period t.
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Econometric Applications

Portfolio Allocation Problem - Exchange Rates

Structural models have shown great difficulty to outperform a simple
random walk model (Meese and Rogoff, 1983).

Growing literature on how to improve forecast performance:

Della Corte et al. (2009), Aastveit et al. (2018), Byrne et al. (2018) and
Beckmann et al. (2020).

The environment of the economy is always changing: the relations
between currencies may change and depend differently over time.
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Econometric Applications

Portfolio Allocation Problem

Predictors: 12 measures of momentum. Look-Back period of 1 to 12
months.

Choose between constant or time-varying parameters: δ ∈ {0.99, 1} and
κ ∈ {0.96, 1}.

The investor can adapt to a new forecasting environment each time period
by switching to a new model, based on past forecast errors.

Monthly data from Beckmann et al. (2020) - from 1986:01 until 2016:12

Benchmark Model: Wishart Random-Walk (W-RW)
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Econometric Applications

Dynamic Asset Allocation

We consider an US investor who builds a portfolio by allocating her wealth
between 7 bonds: one domestic (US), and 6 foreign bonds.

In each period, the foreign bonds yield a riskless return in the local
currency plus a risky return due to currency fluctuations.

Currencies: Australian dollar (AUD), the Canadian dollar (CAD), the Euro
(EUR), the Japanese yen (JPY), the Swiss franc (SWF), the Great Britain
pound (GBP) and the US dollar (USD).

Following Della Corte et. al (2009) and Byrne, Korobilis and Ribeiro
(2018), the investor solves the following problem:

maxwt

{
µp,t+1 = w ′tµt+1|t + (1− w ′tι) rf

}
s.t.

(
σ∗p
)2

= w ′t
∑

t+1|t wt
(14)
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Econometric Applications

Mean-Variance Investor

Solution:

wt =
σ∗p√
Ct

−1∑
t+1|t

(
µt+1|t − ιrf

)
with Ct =

(
µt+1|t − ιrf

)′∑−1
t+1|t

(
µt+1|t − ιrf

)
.

For each period t,

1st step: Use the selected model to forecast one-period ahead returns
and covariance matrix.

2nd step: Dynamically rebalance the portfolio by calculating the new
optimal weights for each currency.

We consider a volatility target of σp = 10%
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Econometric Applications

Results

Figure: Time-Varying Forgetting Factor αt (Left panel) and Order Selection
(Right panel)
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Econometric Applications

Statistical Evaluation

Figure: Statistical performance relative to the Wishart-Random-Walk model.
i) Left panel: Log Predictive Density Ratio (LPDR);
ii) Right panel: Mean Square Forecast Error (MSFE)
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Econometric Applications

Statistical Evaluation

Figure: Accumulated Log Predictive Likelihood relative to the Wishart-Random
Walk Model
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Econometric Applications

Economic Evaluation

Figure: Economic performance relative to the Wishart-Random-Walk model.
i) Left panel: Annualized Managment Fees (Φ);
ii) Right panel: Sharp Ratios.
All results are already net of transaction costs (TC = 10 bps).
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Econometric Applications

Best Fixed Orders in 2006 and Out-of-Sample for 07-2016

Figure: Economic Performance 2007-2016: DOA and DOS against top 10 orders
at the end of 2006.
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Econometric Applications

Macroeconomic Forecasting

Vector Autoregressive (VAR) models are commonly applied in the
macroeconomic literature and used in Central Banks and financial
institutions in many different contexts.

VARs are known to be a powerful tool to predict the future movements of
the economy and for monetary policy evaluation (Sims, 1980, Litterman,
1986, Primiceri, 2005, Clark and McCracken, 2010 and Koop and
Korobilis, 2013, Kastner and Huber, 2020).

Inspired by the Cholesky-style behind the work of Primiceri (2005) and
Del Negro and Primiceri (2015), we are motivated to explore the ability of
our approach to deal with the problem of order uncertainty in a
macroeconomic context.
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Econometric Applications

Macroeconomic Forecasting

Since the macroeconomy is continuously adapting to new environments
and different sources of breaks, such as wars, global crisis and pandemics,
VAR models are strongly susceptible to instabilities.

Those instabilities can induce different sources of dependencies among
economic variables, dynamically changing from year to year or just in few
months.

The out-of-sample forecasting results can be seriously harmed when
considering a static behavior of economic series dependencies.
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Econometric Applications

Macroeconomic Forecasting

Similar to Zhao et al. (2016), now the predictors will be composed by the
time series lagged values, building on the format of VARs with
time-varying parameters and stochastic volatilities (TVP-VAR-SV).

As Primiceri (2005), we focus on a VAR model with three important US
macroeconomic variables: inflation, unemployment and interest rates.

Quarterly data for the US economy from 1953Q1 to 2015Q2. Data from
Federal Reserve Bank of Philadelphia and St. Louis (also easily available
from the R package bvarsv (Krueger, 2015)).

Choose between constant or time-varying parameters: δ and κ ∈
{0.95, 0.99, 1} .

Benchmark Model: The same fixed order used in Primiceri (2005) (
y = [Inf .,Unemp., Int.])
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Econometric Applications

Statistical Evaluation

Figure: Time-Varying Forgetting Factor αt (Left panel) and Order Selection
(Right panel)
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Econometric Applications

Statistical Evaluation

Figure: Relative statistical performance relative to the benchmark. i) Left panel:
Log Predictive Density Ratio (LPDR); ii) Right panel: Mean Square Forecast
Error (MSFE)
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Econometric Applications

Statistical Evaluation

Figure: Accumulated Log Predictive Likelihood relative to the benchmark.
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Conclusion

Conclusion

We introduce a flexible approach to model and forecast multivariate
series in the case of uncertainty around the contemporaneous relations
among dependent variables.

The econometrician is able to sequentially learn the dynamic
importance of orders when faced with the Cholesky-style model and
produce forecasts in decion-making problems.

We perform two econometric applications to show the importance of
ordering learning over time.
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Conclusion

Conclusion

In a dynamic asset allocation we show that the DOL approach
generated significant statistical and economic improvements
compared to models with fixed orders over time and with the
traditional Wishart-Random Walk.

A mean-variance investor will be willing to pay a considerable
managment fee to switch from the traditional Wishart-Random Walk
model to the DOL method.

In a macroeconomic forecasting problem, we show that the
econometrician is able to adapt to new economic environments,
learning from past mistakes and updating believes about different
economic contemporaneous dependencies over time.

The DOL approach substantially increases point and density forecast
accuracy compared to a standard order structure commonly used in
the macroeconomic literature.
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Conclusion

Conclusion

Thank you!

brunopcl@al.insper.edu.br
hedibertfl@insper.edu.br
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Additional Results

Additional Results - Portfolio Allocation

Table: Statistical Performance Relative to DOA

MSFE LPDR

DOA-CP-CV 1.01 −103.73
DOA-TVP-CV 1.01 −66.99
DOA-CP-SV 1.01 −12.83
DOS-CP-CV 1.02 −115.77

DOS-TVP-CV 1.01 −81.97
DOS-CP-SV 1.01 −33.02
W-RW-CV 1.07 −159.62
W-RW-SV 1.07 −70.87
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Additional Results

Additional Results - Portfolio Allocation

Figure: Accumulated Log Predictive Likelihood relative to the DOA approach.
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Additional Results

Additional Results - Portfolio Allocation

Table: Potfolio Performance

SR Φ

DOA-CP-CV 1.32 724.44
DOA-TVP-CV 1.18 616.13
DOA-CP-SV 1.33 625.94
DOS-CP-CV 1.26 615.16

DOS-TVP-CV 1.16 663.34
DOS-CP-SV 1.25 600.59
W-RW-CV 0.56 −179.14
W-RW-SV 0.72 0.00
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Additional Results

Additional Results - Macroeconomic Forecasting

Table: Statistical Performance Relative to DOA

MSFE LPDR

DOA-CP-CV 1.16 −51.11
DOA-TVP-CV 1.05 −42.95
DOA-CP-SV 1.08 −12.66
DOS-CP-CV 1.13 −49.52

DOS-TVP-CV 1.03 −41.33
DOS-CP-SV 1.09 −18.34
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Additional Results

Additional Results - Macroeconomic Forecasting

Figure: Accumulated Log Predictive Likelihood
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