
Third homework assignment

Professional Master in Economics Bayesian Learning
Hedibert Freitas Lopes Due date: 7:30pm, June 22nd, 2021

Prepare one (and only one) PDF file with your solutions
Send the file to our T.A. Igor Martins (igorfbm@al.insper.edu.br)
Assignments will be delivered in pairs (the pairs will be randomly assigned in class)

Bayesian linear regression: Comparing in-sample and out-of-sample fit

Let us revisit the wage data from our worked problem http://hedibert.org/wp-content/uploads/2021/
03/wage.txt. The data is about monthly earnings, education, demographic variables, and IQ scores for n =
935 men in 19801 We used this dataset in http://hedibert.org/wp-content/uploads/2021/03/wage-R.
txt to perform Bayesian Variable selection in multiple linear regression by comparing a few alternatives
strategies: 1) BIC; 2) Mallows’ Cp; 3) Horseshoe prior; and 4) Normal-Gamma prior; and using Bobby
Gramacy’s R Package monomvn - https://bobby.gramacy.com/r_packages/monomvn/. Below is a short
script for you to get started:

data = read.table("http://hedibert.org/wp-content/uploads/2021/03/wage.txt")

# Dependent variable - standardized log wage
y = data[,1]
y = (y-mean(y))/sd(y)
n = length(y)

# Predictors
x1 = data[,5] # years of education
x2 = data[,7] # years with current employer
x3 = data[,8] # age in years
x4 = data[,9] # =1 if married
x5 = data[,10] # =1 if black
x6 = data[,12] # =1 if live in SMSA

# Exploratory data analysis
par(mfrow=c(2,3))
plot(x1,y,xlab="Years of education",ylab="Standardized log wage")
plot(x2,y,xlab="Years with current employer",ylab="Standardized log wage")
plot(x3,y,xlab="Age in years",ylab="Standardized log wage")
boxplot(y~x4,outline=FALSE,names=c("Single","Married"),xlab="",ylab="Standardized log wage")
boxplot(y~x5,outline=FALSE,names=c("Not black","Black"),xlab="",ylab="Standardized log wage")
boxplot(y~x6,outline=FALSE,names=c("Not SMSA","SMSA"),xlab="",ylab="Standardized log wage")

# Ordinary least squares fit
summary(lm(y~x1+x2+x3+x4+x5+x6))

1For further details, see Blackburn and Newmark (1992) Unobserved ability, efficiency wages and interindustry wage, Quar-
terly Journal of Economics, 107, 1421-36 and Wooldridge (2012) Introductory Econometrics: A Modern Approach (5th edition).
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a) There are p = 6 covariates and, therefore, 26 − 1 = 63 possible models (excluding the model with only
the intercept!). Fit all 63 models to the whole data and compare them in terms of adjusted R2 and
BIC. List the top 5 models and comment your findings.

b) There are up to q = p + 1 regression coefficients. Let us use a conjugate prior for (β, σ2) for the full
model, i.e.

β|σ2 ∼ N(b0, σ
2B0) and σ2 ∼ IG(c0, d0)

where b0 = 0q, B0 = 2Iq, c0 = 2 and d0 = 1. Here, 0q is a q-dimensional vector of zeros and Iq
is the identity matrix of order q. For any one of the 62 sub-models, consider subsets of b0 and B0

corresponding the the sub-model. Your job is to compute the prior predictive p(y|X,Mi) for all sub-
models i = 1, . . . , 63 and rank them all. Compare the top 5 models (with the largest prior predictive
densities) with the above top 6 models ranked according to R2 and BIC.

c) Now, let us pick the top 5 models based on the BIC and prior predictive and verify their out-of-sample
root mean square error (RMSE) and mean absolute error (MAE) performances. In order to do that,
let us randomly split the data into a training set with n1 = 468 observations and a testing set with
n2 = 467 observations. Repeat the split R = 100 times. More precisely, for r = 1, . . . , R = 100 and
models m = 1, . . . , 5,

RMSErm
ols =

√√√√ 1

467

467∑
i=1

(ytestir − ŷtestirm,ols)
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similarly for RMSErm
bayes and MAErm

bayes. Here ytestir is the ith response/dependent variable in the rth

testing set, while ŷtestirm,ols and ŷtestirm,ols are the out-of-sample prediction based on the ith training set.
These out-of-sample (based on the testing set) estimates are computed as

ŷirm,ols = x′irmβ̂rm,ols and ŷirm,bayes = x′irmβ̃rm,bayes,

where β̂rm,ols and β̂rm,bayes are, respectively, OLS estimate and posterior mean of βrm based on the
training set of split r and model m. Report and discuss you findings.
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