Bayesian linear regression: Comparing in-sample and out-of-sample fit


```r
data = read.table("http://hedibert.org/wp-content/uploads/2021/03/wage.txt")

# Dependent variable - standardized log wage
y = data[,1]
y = (y-mean(y))/sd(y)
n = length(y)

# Predictors
x1 = data[,5] # years of education
x2 = data[,7] # years with current employer
x3 = data[,8] # age in years
x4 = data[,9] # =1 if married
x5 = data[,10] # =1 if black
x6 = data[,12] # =1 if live in SMSA

# Exploratory data analysis
par(mfrow=c(2,3))
plot(x1,y,xlab="Years of education",ylab="Standardized log wage")
plot(x2,y,xlab="Years with current employer",ylab="Standardized log wage")
plot(x3,y,xlab="Age in years",ylab="Standardized log wage")
boxplot(y~x4,outline=FALSE,names=c("Single","Married"),xlab="",ylab="Standardized log wage")
boxplot(y~x5,outline=FALSE,names=c("Not black","Black"),xlab="",ylab="Standardized log wage")
boxplot(y~x6,outline=FALSE,names=c("Not SMSA","SMSA"),xlab="",ylab="Standardized log wage")

# Ordinary least squares fit
summary(lm(y~x1+x2+x3+x4+x5+x6))
```

a) There are $p = 6$ covariates and, therefore, $2^6 - 1 = 63$ possible models (excluding the model with only the intercept!). Fit all 63 models to the whole data and compare them in terms of adjusted R^2 and BIC. List the top 5 models and comment your findings.

b) There are up to $q = p + 1$ regression coefficients. Let us use a conjugate prior for (β, σ^2) for the full model, i.e.

$$\beta | \sigma^2 \sim N(b_0, \sigma^2 B_0) \quad \text{and} \quad \sigma^2 \sim IG(c_0, d_0)$$

where $b_0 = 0_q$, $B_0 = 2I_q$, $c_0 = 2$ and $d_0 = 1$. Here, 0_q is a q-dimensional vector of zeros and I_q is the identity matrix of order q. For any one of the 62 sub-models, consider subsets of b_0 and B_0 corresponding the the sub-model. Your job is to compute the prior predictive $p(y | X, M_i)$ for all sub-models $i = 1, \ldots, 63$ and rank them all. Compare the top 5 models (with the largest prior predictive densities) with the above top 6 models ranked according to R^2 and BIC.

c) Now, let us pick the top 5 models based on the BIC and prior predictive and verify their out-of-sample root mean square error (RMSE) and mean absolute error (MAE) performances. In order to do that, let us randomly split the data into a training set with $n_1 = 468$ observations and a testing set with $n_2 = 467$ observations. Repeat the split $R = 100$ times. More precisely, for $r = 1, \ldots, R = 100$ and models $m = 1, \ldots, 5$,

$$RMSE^r_{ols} = \sqrt{\frac{1}{467} \sum_{i=1}^{467} (y_{ir}^{\text{test}} - \hat{y}_{irm, ols}^{\text{test}})^2}$$

and

$$MAE^r_{ols} = \frac{1}{467} \sum_{i=1}^{467} |y_{ir}^{\text{test}} - \hat{y}_{irm, ols}^{\text{test}}|,$$

similarly for $RMSE^r_{bayes}$ and MAE^r_{bayes}. Here y_{ir}^{test} is the ith response/dependent variable in the rth testing set, while $\hat{y}_{irm, ols}^{\text{test}}$ and $\hat{y}_{irm, ols}^{\text{test}}$ are the out-of-sample prediction based on the ith training set. These out-of-sample (based on the testing set) estimates are computed as

$$\hat{y}_{irm, ols} = x_{irm}' \hat{\beta}_{rm, ols} \quad \text{and} \quad \hat{y}_{irm, bayes} = x_{irm}' \tilde{\beta}_{rm, bayes},$$

where $\hat{\beta}_{rm, ols}$ and $\tilde{\beta}_{rm, bayes}$ are, respectively, OLS estimate and posterior mean of β_{rm} based on the training set of split r and model m. Report and discuss you findings.