Midterm take-home exam

Course: Bayesian Learning
Program: Professional Master in Economics
Instructor: Hedibert Freitas Lopes
Due date: No later than Thursday, 7:30am, May 27th, 2021 (Worth 12 points before 7:30pm and 11 points before 10:30pm, May 26th).
Instructions: Prepare one (and only one) PDF file with your solutions (preferably in Rmarkdown) and send it directly to my Insper email at hedibertfl@insper.edu.br.

Poisson data with Gamma prior for its rate

Poisson model. Let us assume that y_{1}, \ldots, y_{n} are a random sample of Poisson counts with rate $\lambda>0$, i.e. $y_{i} \sim \operatorname{Poi}(\lambda)$ for $i=1, \ldots, n$. Recall that the Poisson distribution is discrete and take values in $\{0,1,2, \ldots\}$ and has probability mass given by

$$
\operatorname{Pr}(y=k \mid \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!} \quad k=0,1,2, \ldots
$$

The mean and variance of the Poisson distribution are the same, $E(y \mid \lambda)=V(y \mid \lambda)=\lambda$.
Likelihood and MLE. It is easy to show that the likelihood of λ based on observations y_{1}, \ldots, y_{n} is

$$
L\left(\lambda \mid y_{1}, \ldots, y_{n}\right) \equiv p\left(y_{1}, \ldots, y_{n} \mid \lambda\right)=\prod_{i=1}^{n} \frac{\lambda^{y_{i}} e^{-\lambda}}{y_{i}!}=\frac{\lambda^{n \bar{y}_{n}} e^{-n \lambda}}{\prod_{i=1}^{n} y_{i}!}
$$

and the log-likelihood of λ is

$$
\mathcal{L}(\lambda) \equiv \log L\left(\lambda \mid y_{1}, \ldots, y_{n}\right)=\kappa+n \bar{y}_{n} \log \lambda-n \lambda,
$$

where $\bar{y}_{n}=\left(y_{1}+\cdots+y_{n}\right) / n$ and $\kappa=\sum_{i=1}^{n} \log y_{i}!$. It is also easy to check that the maximum likelihood estimator of λ, i.e. $\hat{\lambda}_{m l e}=\arg \max _{\lambda>0} \mathcal{L}(\lambda)$, is given by \bar{y}_{n}.

Hint: The likelihood "looks like" a $\operatorname{Gamma}\left(n \hat{y}_{n}+1, n\right)$ (See more details about the Gamma distribution below when we talk about the prior)

Application. As a concrete context, we will consider the CreditCard dataset form the R package AER, which is a cross-section data on the credit history for a sample of applicants for a type of credit card. We will focus on the count variables reports that has the number of major derogatory reports. Here $n=1319$. Check it out by running the following script. However, if you have any difficulty accessing the data, I have added the reports variable at the end of this document.

```
install.packages("AER")
library("AER")
data(CreditCard)
reports = CreditCard[,2]
hist(reports)
mean(reports)
```

For the reports data, $\bar{y}_{n}=0.4564064$, so $\hat{\lambda}_{m l e}=0.4564064$. The following piece of code plots the likelihood function:

```
ybar = mean(reports)
n = length(reports)
lambdas = seq(0.35,0.55,length=1000)
loglike = n*ybar*log(lambdas)-n*lambdas
like= exp(loglike-max(loglike))
plot(lambdas,like,xlab="lambda",ylab="Likelihood",type="l")
abline(v=ybar)
```

Prior. Let us assume that the prior on λ is $\operatorname{Gamma}\left(\alpha_{0}, \beta_{0}\right)$ distribution, i.e.

$$
p(\lambda)=\frac{\beta_{0}^{\alpha_{0}}}{\Gamma\left(\alpha_{0}\right)} \lambda^{\alpha_{0}-1} e^{-\beta_{0} \lambda}, \quad \lambda>0
$$

for $\alpha_{0}, \beta_{0}>0$. The $\operatorname{Gamma}\left(\alpha_{0}, \beta_{0}\right)$ distribution has mean, mode and variance equal to, respectively, α_{0} / β_{0}, $\left(\alpha_{0}-1\right) / \beta_{0}$ if $\alpha_{0} \geq 1$, and $\alpha_{0} / \beta_{0}^{2}$.

Assuming we are fairly agnostic about λ, a priori, we will take the values of $\alpha_{0}=1.5$ and $\beta_{0}=1$ as the prior hyperparameters. Prior mean and mode of λ are 1.5 and 0.5 , respectively, while the prior standard deviation is $\sqrt{1.5}=1.224745$. Also, the prior probability that λ falls into $(0,6)$ is 0.9926168 ; just use the R function pgamma ($6,1.5,1$). Compare the range of variation of the likelihood (above) with that of the prior density (below). Notice that the prior is way less informative about λ than the likelihood (where the data information is lended and channelled).

```
par(mfrow=c(1,2))
lambdas = seq(0,1,length=1000)
plot(lambdas,dgamma(lambdas,n*ybar+1,n),type="l",xlab="lambda",ylab="Likelihood")
abline(v=ybar, col=2)
lambdas = seq(0,10,length=1000)
plot(lambdas,dgamma(lambdas,1.5,1),type="l",xlab="lambda",ylab="Prior")
abline(v=ybar,col=2)
```

Questions. Your job is to answer the following questions:
a) Show that the posterior of λ, i.e. $p\left(\lambda \mid y_{1}, \ldots, y_{n}\right) \propto L\left(\lambda \mid y_{1}, \ldots, y_{n}\right) p\left(\lambda \mid \alpha_{0}, \beta_{0}\right)$, follows a Gamma distribution with parameters α_{1} and β_{1}, where

$$
\alpha_{1}=\alpha_{0}+n \bar{y}_{n} \quad \text { and } \quad \beta_{1}=\beta_{0}+n .
$$

b) Compare prior and posterior means, modes and standard deviations:
b1) $E(\lambda)$ and $E\left(\lambda \mid y_{1}, \ldots, y_{n}\right)$,
b2) $\operatorname{Mode}(\lambda)$ and $\operatorname{Mode}\left(\lambda \mid y_{1}, \ldots, y_{n}\right)$, and
b3) $\sqrt{\operatorname{var}(\lambda)}$ and $\sqrt{\operatorname{var}\left(\lambda \mid y_{1}, \ldots, y_{n}\right)}$.
Needless to say that all these derivations can be performed in closed form.
c) Let us now pretend that we only know how to evaluate pointwise both prior density $p\left(\lambda \mid \alpha_{0}, \beta_{0}\right)$ and likelihood function $L\left(\lambda \mid y_{1}, \ldots, y_{n}\right)$, already given above. Besides, we also know how to sample from the prior $p\left(\lambda \mid \alpha_{0}, \beta_{0}\right)$. Use these abilities and a SIR algorithm to produce $N=10,000$ draws from the posterior $p\left(\lambda \mid y_{1}, \ldots, y_{n}\right)$. Use these $N=10,000$ draws to approximate posterior mean and standard deviation obtained in exact form in b1) and b3). Comment your findings abundantly.
d) The posterior predictive for a new count y_{n+1} is obtained as follows:

$$
\begin{aligned}
\operatorname{Pr}\left(y_{n+1}=k \mid y_{1}, \ldots, y_{n}, \alpha_{0}, \beta_{0}\right) & =\int_{0}^{\infty} \operatorname{Pr}\left(y_{n+1}=k \mid \lambda\right) p\left(\lambda \mid y_{1}, \ldots, y_{n}\right) d \lambda \\
& =\int_{0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!} \frac{\left(\beta_{0}+n\right)^{\alpha_{0}+n \bar{y}_{n}}}{\Gamma\left(\alpha_{0}+n \bar{y}_{n}\right)} \lambda^{\alpha_{0}+n \bar{y}_{n}-1} e^{-\left(\beta_{0}+n\right) \lambda} d \lambda
\end{aligned}
$$

which is a function of $\left(n, \bar{y}_{n}, \alpha_{0}, \beta_{0}\right)$, i.e. $\left(n, \bar{y}_{n}\right)$ is sufficient statistic for λ. Your job here is to show that

$$
\operatorname{Pr}\left(y_{n+1}=k \mid n, \bar{y}_{n}, \alpha_{0}, \beta_{0}\right)=\frac{1}{k!} \times \frac{\left(\beta_{0}+n\right)^{\alpha_{0}+n \bar{y}_{n}}}{\left(\beta_{0}+n+1\right)^{\alpha_{0}+n \bar{y}_{n}+k}} \times \frac{\Gamma\left(\alpha_{0}+n \bar{y}_{n}+k\right)}{\Gamma\left(\alpha_{0}+n \bar{y}_{n}\right)}
$$

for $k=0,1, \ldots$.
For the reports counts data, recall that $n=1319, n \bar{y}_{n}=602, \alpha_{0}=1.5$ and $\beta_{0}=1$, so

$$
\operatorname{Pr}\left(y_{1320} \mid n, \bar{y}_{n}, \alpha_{0}, \beta_{0}\right)=\frac{1}{k!} \times \frac{(1320)^{603.5}}{(1321)^{603.5+k}} \times \frac{\Gamma(603.5+k)}{\Gamma(603.5)}, \quad k=0,1,2, \ldots
$$

Based on the following piece of R code, we can see that the posterior predictive is almost all concentrated in values below 5 .

```
k = 0:5
term1 = 1/factorial(k)
term2 = (1320/1321) - (603.5)/(1321) ^k
term3 = exp(lgamma(603.5+k)-lgamma(603.5))
postpred = term1*term2*term3
plot(k-0.1, postpred,type="h",lwd=2,xlab=expression(y[n+1]),
    ylab="Probability",xlim=c(-0.5,5.5))
lines(k+0.1,dpois(k,602/1319),type="h", col=2,lwd=2)
legend("topright",legend=c("MLE","Bayes"), col=2:1,bty="n", lwd=2,lty=1)
```


The reports variable from the CreditCard data

```
reports = c(
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,3,0,1,0,1,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
2,0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,3,0,0,0,0,1,
2,0,0,4,2,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,0,0,0,
4,0,0,0,1,0,0,0,0,0,5,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,3,
2,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,1,1,0,
1,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,6,1,0,
0,1,0,0,1,0,0,0,0,0,0,0,0,7,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,11,1,0,0,0,0,0,0,
0,1,0,0,1,4,0,0,0,0,0,0,0,4,0,0,1,0,0,0,0,2,0,0,0,1,0,2,0,0,
2,0,0,0,0,4,0,0,0,0,0,1,0,0,5,0,0,0,0,0,2,0,0,0,0,2,0,2,3,0,
1,0,0,5,0,0,1,0,0,0,0,0,0,1,2,0,0,2,0,0,0,2,3,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,0,0,3,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,0,0,7,0,0,0,0,1,0,0,1,0,0,2,0,0,0,2,0,
0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,5,0,0,0,0,2,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,2,0,0,
1,2,4,0,0,0,0,0,0,0,1,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,
0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,3,0,0,
2,7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,4,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,6,
0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,3,2,0,0,0,0,0,0,0,0,0,
0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,3,2,0,7,0,
0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,9,0,0,0,0,1,0,0,0,0,0,0,
0,0,1,0,1,0,0,0,5,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,2,0,
0,1,0,0,0,0,3,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,0,0,12,0,0,
0,2,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,3,0,0,1,0,0,0,0,0,0,
0,2,0,0,0,1,0,2,0,0,4,0,0,0,0,2,0,0,0,2,0,0,11,0,0,0,0,0,0,11,
0,0,0,0,1,0,0,0,0,2,0,0,0,1,0,0,0,0,14,1,0,1,0,0,0,0,1,0,0,0,
3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,5,1,1,1,0,0,0,0,0,0,5,0,
0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,3,0,0,0,0,0,2,0,0,2,0,0,
0,0,0,0,0,0,0,0,5,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,3,3,0,0,0,0,0,
1,0,0,0,4,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,4,1,0,2,0,3,0,0,0,1,
0,1,1,0,0,0,0,0,4,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,
0,0,1,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,9,0,6,0,0,0,0,0,0,1,
0,0,0,2,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,1,6,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,11,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,5,0,0,0)
```

