
Midterm take-home exam
Solution (updated and with comments after I graded the exams)

Course: Bayesian Learning
Program: Professional Master in Economics
Instructor: Hedibert Freitas Lopes

Poisson data with Gamma prior for its rate

Poisson model. Let us assume that y1, . . . , yn are a random sample of Poisson counts with rate λ > 0, i.e.
yi ∼ Poi(λ) for i = 1, . . . , n. Recall that the Poisson distribution is discrete and take values in {0, 1, 2, . . .}
and has probability mass given by

Pr(y = k|λ) =
λke−λ

k!
k = 0, 1, 2, . . . .

The mean and variance of the Poisson distribution are the same, E(y|λ) = V (y|λ) = λ.

Likelihood and MLE. It is easy to show that the likelihood of λ based on observations y1, . . . , yn is

L(λ|y1, . . . , yn) ≡ p(y1, . . . , yn|λ) =
n∏
i=1

λyie−λ

yi!
=
λnȳne−nλ∏n

i=1 yi!
∝ λnȳne−nλ.

Notice that the term
∏n
i=1 yi! is totally irrelevant in the likelihood since IT IS NOT a function of λ. In other

words, whatever one might want to say about λ can be said without mentioning
∏n
i=1 yi!.

The log-likelihood of λ is

L(λ) ≡ logL(λ|y1, . . . , yn) = κ+ nȳn log λ− nλ,

where ȳn = (y1 + · · · + yn)/n and κ =
∑n
i=1 log yi!. It is also easy to check that the maximum likelihood

estimator of λ, i.e. λ̂mle = argmaxλ>0 L(λ), is given by ȳn.

Hint: The likelihood “looks like” a Gamma(nŷn + 1, n) (See more details about the Gamma distribution
below when we talk about the prior)

Application. As a concrete context, we will consider the CreditCard dataset form the R package AER,
which is a cross-section data on the credit history for a sample of applicants for a type of credit card. We
will focus on the count variables reports that has the number of major derogatory reports. Here n = 1319.
Check it out by running the following script. However, if you have any difficulty accessing the data, I have
added the reports variable at the end of this document.

install.packages("AER")
library("AER")
data(CreditCard)
reports = CreditCard [,2]
hist(reports)
mean(reports)



For the reports data, ȳn = 0.4564064, so λ̂mle = 0.4564064. The following piece of code plots the likelihood
function:

ybar = mean(reports)
n = length(reports)
lambdas = seq (0.35 ,0.55 , length =1000)
loglike = n*ybar*log(lambdas)-n*lambdas
like= exp(loglike -max(loglike ))
plot(lambdas ,like ,xlab="lambda",ylab="Likelihood",type="l")
abline(v=ybar)

Prior. Let us assume that the prior on λ is Gamma(α0, β0) distribution, i.e.

p(λ) =
βα0

0

Γ(α0)
λα0−1e−β0λ, λ > 0,

for α0, β0 > 0. The Gamma(α0, β0) distribution has mean, mode and variance equal to, respectively, α0/β0,
(α0 − 1)/β0 if α0 ≥ 1, and α0/β

2
0 .

Assuming we are fairly agnostic about λ, a priori, we will take the values of α0 = 1.5 and β0 = 1 as the
prior hyperparameters. Prior mean and mode of λ are 1.5 and 0.5, respectively, while the prior standard
deviation is

√
1.5 = 1.224745. Also, the prior probability that λ falls into (0, 6) is 0.9926168; just use the R

function pgamma(6,1.5,1). Compare the range of variation of the likelihood (above) with that of the prior
density (below). Notice that the prior is way less informative about λ than the likelihood (where the data
information is lended and channelled).

par(mfrow=c(1 ,2))
lambdas = seq(0,1,length =1000)
plot(lambdas ,dgamma(lambdas ,n*ybar+1,n),type="l",xlab="lambda",ylab="Likelihood")
abline(v=ybar ,col=2)
lambdas = seq(0,10, length =1000)
plot(lambdas ,dgamma(lambdas ,1.5,1), type="l",xlab="lambda",ylab="Prior")
abline(v=ybar ,col=2)

Questions. Your job is to answer the following questions:

a) Show that the posterior of λ, i.e. p(λ|y1, . . . , yn) ∝ L(λ|y1, . . . , yn)p(λ|α0, β0), follows a Gamma distri-
bution with parameters α1 and β1, where

α1 = α0 + nȳn and β1 = β0 + n.

The solution is pretty straightforward once you collect the two main components I have provided
above, i.e. prior density and likelihood function. Again, we only need the prior and the likelihood up
to normalizing constants:

p(λ||y1, . . . , yn) ∝ p(λ)L(λ|y1, . . . , yn) ∝
(
λα0−1e−β0λ

) (
λnȳne−nλ

)
∝ λ(α0+nȳn−1) exp{−(β0 + n)λ}.

Since the kernel of the density of a Gamma(a, b) is p(x) ∝ ax−1e−bx, it follows that λ|y1, . . . , yn ∼
Gamma(α0 + nȳn, β0 + n). With α0 = 1.5, β0 = 1, n = 1319 and nȳn = 602, it follows that
α1 = 1.5 + 602 = 603.5 and β1 = 1320.
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b) Compare prior and posterior means, modes and standard deviations:

b1) E(λ) and E(λ|y1, . . . , yn),

E(λ) =
α0

β0
=

1.5

1
= 1.5 and E(λ|y1, . . . , yn) =

α1

β1
=

603.5

1320
= 0.457197.

b2) Mode(λ) and Mode(λ|y1, . . . , yn), and

Mode(λ) =
α0 − 1

β0
=

0.5

1
= 0.5 and Mode(λ|y1, . . . , yn) =

α1 − 1

β1
=

602.5

1320
= 0.456.

Notice that the prior is more skewed (mean lower than mode) than the posterior (mean and mode
about the same).

b3)
√
var(λ) and

√
var(λ|y1, . . . , yn).

var(λ) =
α0

β2
0

=
1.5

12
= 1.5 and var(λ|y1, . . . , yn) =

α1

β2
1

=
603.5

13202
= 0.0003463613,

so
√
var(λ) = 1.2247 and

√
var(λ|y1, . . . , yn) = 0.0186.

Needless to say that all these derivations can be performed in closed form.

c) Let us now pretend that we only know how to evaluate pointwise both prior density p(λ|α0, β0) and
likelihood function L(λ|y1, . . . , yn), already given above. Besides, we also know how to sample from
the prior p(λ|α0, β0). Use these abilities and a SIR algorithm to produce N = 10, 000 draws from the
posterior p(λ|y1, . . . , yn). Use these N = 10, 000 draws to approximate the quantities obtained in exact
form in b1), b2) and b3). Comment your findings abundantly.

Solution. Since the kernel of the likelihood, λnȳne−nλ, looks just like a Gamma(nŷn + 1, n), we will
use this Gamma as proposal for your SIR algorithm. More precisely

q(λ) ≡ Gamma(nŷn + 1, n).

Many of you have used the prior as proposal. Nothing wrong with that, but remember that the
likelihood is pretty concentrated while the prior is fairly uninformative (flat!). In other words, your
SIR might need way more draws than mine since its proposal is not as good as mine in mimicking the
posterior distribution.

Here is our implementation of the SIR algorithm. Notice that the weights are now proportional to the
prior. This is because our proposal is, in fact, the likelihood (normalized to become a Gamma distri-
bution). In fact, our SIR-based approximation to E(λ|y1, . . . , yn) = 0.457197 is 0.457344, while the
approximation to

√
var(λ|y1, . . . , yn) = 0.01861079 is 0.01848491. As you can see, the approximations

are pretty good up to three decimal digits.

set.seed (12345)
M = 100000
N = 10000
n = 1319
ybar = 602/n
alpha0 = 1.5
beta0 = 1
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lambda.draw = rgamma(M,n*ybar+1,n)
w = dgamma(lambda.draw ,alpha0 ,beta0)
lambda.post = sample(lambda.draw ,replace=TRUE ,size=N,prob=w)
hist(lambda.post)
c(mean(lambda.post),sqrt(var(lambda.post )))

Some of you have messed up the proper derivation of the weights, which is crucial for the success of the
SIR algorithm. As a matter of fact, the ratio target/proposal appears in ALL MCMC algorithms as
well, so carefully deriving it is extremely important.

d) The posterior predictive for a new count yn+1 is obtained as follows:

Pr(yn+1 = k|y1, . . . , yn, α0, β0) =

∫ ∞
0

Pr(yn+1 = k|λ)p(λ|y1, . . . , yn)dλ

=

∫ ∞
0

λke−λ

k!

(β0 + n)α0+nȳn

Γ(α0 + nȳn)
λα0+nȳn−1e−(β0+n)λdλ

=
1

k!

(β0 + n)α0+nȳn

Γ(α0 + nȳn)

∫ ∞
0

λα0+nȳn+k−1e−(β0+n+1)λdλ

=
1

k!

(β0 + n)α0+nȳn

Γ(α0 + nȳn)

∫ ∞
0

λα0+nȳn+k−1e−(β0+n+1)λdλ︸ ︷︷ ︸
Kernel of Gamma(α0+nȳn+k,β0+n+1)

=
1

k!
× (β0 + n)α0+nȳn

Γ(α0 + nȳn)
× Γ(α0 + nȳn + k)

(β0 + n+ 1)α0+nȳn+k

which is a function of (n, ȳn, α0, β0), i.e. (n, ȳn) is sufficient statistic for λ. Show that

Pr(yn+1 = k|n, ȳn, α0, β0) =
1

k!
× (β0 + n)α0+nȳn

(β0 + n+ 1)α0+nȳn+k
× Γ(α0 + nȳn + k)

Γ(α0 + nȳn)

for k = 0, 1, . . .. Recall that n = 1319, nȳn = 602, α0 = 1.5 and β0 = 1, so

Pr(y1320|n, ȳn, α0, β0) =
1

k!
× (1320)603.5

(1321)603.5+k
× Γ(603.5 + k)

Γ(603.5)
, k = 0, 1, 2, . . . .

Based on the following piece of R code, we can see that the posterior predictive is almost all concentrated
in values below 5.

k = 0:5
term1 = 1/factorial(k)
term2 = (1320/1321)^(603.5)/(1321)^k
term3 = exp(lgamma (603.5+k)-lgamma (603.5))
postpred = term1*term2*term3
plot(k-0.1, postpred ,type="h",lwd=2,xlab=expression(y[n+1]),

ylab="Probability",xlim=c( -0.5 ,5.5))
lines(k+0.1, dpois(k,602/1319), type="h",col=2,lwd=2)
legend("topright",legend=c("MLE","Bayes"),col=2:1,bty="n",lwd=2,lty =1)
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The reports variable from the CreditCard data

reports = c(
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,3,0,1,0,1,0,0,0,0,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
2,0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,3,0,0,0,0,1,
2,0,0,4,2,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,0,0,0,
4,0,0,0,1,0,0,0,0,0,5,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,3,
2,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,1,1,0,
1,3,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,6,1,0,
0,1,0,0,1,0,0,0,0,0,0,0,0,7,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,11,1,0,0,0,0,0,0,
0,1,0,0,1,4,0,0,0,0,0,0,0,4,0,0,1,0,0,0,0,2,0,0,0,1,0,2,0,0,
2,0,0,0,0,4,0,0,0,0,0,1,0,0,5,0,0,0,0,0,2,0,0,0,0,2,0,2,3,0,
1,0,0,5,0,0,1,0,0,0,0,0,0,1,2,0,0,2,0,0,0,2,3,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,4,3,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,0,0,3,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,0,0,7,0,0,0,0,1,0,0,1,0,0,2,0,0,0,2,0,
0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,5,0,0,0,0,2,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,2,0,0,
1,2,4,0,0,0,0,0,0,0,1,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,
0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,3,0,0,
2,7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,4,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,6,
0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,3,2,0,0,0,0,0,0,0,0,0,
0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,3,2,0,7,0,
0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,9,0,0,0,0,1,0,0,0,0,0,0,
0,0,1,0,1,0,0,0,5,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,2,0,
0,1,0,0,0,0,3,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,0,0,12,0,0,
0,2,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,3,0,0,1,0,0,0,0,0,0,
0,2,0,0,0,1,0,2,0,0,4,0,0,0,0,2,0,0,0,2,0,0,11,0,0,0,0,0,0,11,
0,0,0,0,1,0,0,0,0,2,0,0,0,1,0,0,0,0,14,1,0,1,0,0,0,0,1,0,0,0,
3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,5,1,1,1,0,0,0,0,0,0,5,0,
0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,3,0,0,0,0,0,2,0,0,2,0,0,
0,0,0,0,0,0,0,0,5,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,3,3,0,0,0,0,0,
1,0,0,0,4,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,4,1,0,2,0,3,0,0,0,1,
0,1,1,0,0,0,0,0,4,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,
0,0,1,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,9,0,6,0,0,0,0,0,0,1,
0,0,0,2,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,1,6,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,11,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,5,0,0,0)
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