Second homework assignment

Professional Master in Economics
Hedibert Freitas Lopes

Bayesian Learning

Due date: 7:30pm, May 23rd, 2021.

Prepare one (and only one) PDF file with your solutions
Send the file to our T.A. Igor Martins (igorfbm@al.insper.edu.br)
Assignments will be delivered in pairs (the pairs will be randomly assigned in class)
Solution will be posted on the course webpage at 8pm, Sunday, May 23rd, 2021.

Problem 1: Sampling data from a given distribution via sampling importance resampling (SIR)

In R we can sample from various distributions without ever realizing what is actually going on behind the curtain. Here is a short list: \(N(0, 1) \), \(t_4(0, 1) \), Gamma\((3, 1)\) and Binomial\((10, 0.25)\). Try them out:

\[
\begin{align*}
n & = 1000 \\
par(mfrow=c(2,2)) \\
x & = \text{rnorm}(n); \text{hist}(x); \text{mean}(x); \text{var}(x) \\
x & = \text{rt}(n, df = 4); \text{hist}(x); \text{mean}(x); \text{var}(x) \\
x & = \text{rgamma}(n, 3, 1); \text{hist}(x); \text{mean}(x); \text{var}(x) \\
x & = \text{rbinom}(n, 10, 0.25); \text{hist}(x); \text{mean}(x); \text{var}(x)
\end{align*}
\]

Let us now introduce a couple of “new” distributions (not really new!!!):

1. Standard skew-normal distribution with skewness parameter equal to 3:

\[
p_1(x) = 2\phi(x)\Phi(3x), \quad \text{for } x \in \mathbb{R},
\]

where \(\phi(x) \) is the density of the standard normal distribution evaluated at \(x \) and \(\Phi(x) \) is the cumulative distribution function of the standard normal distribution evaluated at \(x \). These values can be obtained in R via \text{dnorm}(x)\) and \text{pnorm}(x)\).

2. Standard half-Cauchy distribution

\[
p_2(x) = \frac{2}{\pi(1 + x^2)} \quad \text{for } x \in \mathbb{R}^+
\]

3. Standard log-normal distribution

\[
p_3(x) = \frac{1}{x\sqrt{2\pi}} \exp\{-0.5(\log x)^2\} \quad \text{for } x \in \mathbb{R}^+
\]

4. Beta(2,5) distribution

\[
p_4(x) = 30x(1 - x)^4 \quad \text{for } x \in (0, 1)
\]
Recalling the SIR algorithm to draw from a given distribution. If the goal is to obtain a random sample x_1, \ldots, x_N from the target distribution $p(x)$, but you are only capable of producing a random sample from an auxiliary/candidate/importance distribution $q(x)$, then the SIR algorithm is a promising approach:

Step 1: Sampling from the candidate distribution:

$$\tilde{x}_1, \ldots, \tilde{x}_M \sim q(x).$$

Step 2: Computing unnormalized resampling weights:

$$\tilde{w}_i = \frac{p(x_i)}{q(x_i)}, \quad i = 1, \ldots, M.$$

Notice that here you need to be able to evaluate $p(x)$ and $q(x)$, despite not knowing how to sample from $p(x)$.

Step 3: Normalize the weights:

$$w_i = \frac{\tilde{w}_i}{\sum_{j=1}^{M} \tilde{w}_j}, \quad i = 1, \ldots, M.$$

We notice that, when normalizing the weights, we only need to evaluate $p(x)$ and $q(x)$ up to normalizing constants (See Problem 2 for an example).

Step 4: Resampling

Sample x_i from $\{\tilde{x}_1, \ldots, \tilde{x}_M\}$ with weights $\{w_1, \ldots, w_M\}, \quad i = 1, \ldots, N.$

Step 5: For large M, N, the set $\{x_1, \ldots, x_N\}$ is a random sample from $p(x)$.

As an example, if $p(x)$ is the standard normal distribution and $q(x)$ is the standard Student’s t with 4 degrees of freedom, here is the R code for the above SIR algorithm:

```r
M = 100000
N = 10000
xtilde = rt(M, df = 4)
w = dnorm(xtilde) / dt(xtilde, df = 4)
x = sample(xtilde, size = N, replace = TRUE, prob = w)
par(mfrow = c(1, 2))
hist(xtilde, prob = TRUE, xlab = "draws", ylab = "Density", main = "Proposal", breaks = 100)
curve(dt(x, df = 4), from = -10, to = 10, n = 1000, col = 2, add = TRUE, lwd = 2)
hist(x, prob = TRUE, xlab = "draws", ylab = "Density", main = "Target", breaks = 40)
curve(dnorm, from = -3, to = 3, n = 1000, col = 2, add = TRUE, lwd = 2)
```

Your job is to obtain samples of size $N = 10000$ from $p(x)$ for each one of the four “new” distributions introduced above.

```r
p1 = function(x) {2 * dnorm(x) * pnorm(3 * x)}
p2 = function(x) {2 / (pi * (1 + x ^ 2))}
p3 = function(x) {1 / (x * sqrt(2 * pi)) * exp(-0.5 * (log(x)) ^ 2)}
p4 = function(x) {30 * x * (1 - x) ^ 4}
par(mfrow = c(2, 2))
curve(p1, from = -2, to = 10, n = 1000, ylab = "Density")
curve(p2, from = 0, to = 10, n = 1000, ylab = "Density")
curve(p3, from = 0, to = 10, n = 1000, ylab = "Density")
curve(p4, from = 0, to = 1, n = 1000, ylab = "Density")
```

2
Use the following proposal distributions:

1. \(q_1(x) \equiv N(0, 10) \) (notice that most values below zero will have virtually zero weight!)
2. \(q_2(x) \equiv Gamma(1, 1) \equiv Exp(1) \)
3. \(q_3(x) \equiv Gamma(1, 1) \)
4. \(q_4(x) \equiv U(0, 1) \)

Problem 2: Using SIR for Bayesian inference

For some data \(x_1, \ldots, x_n \), model \(p(x_1, \ldots, x_n|\theta) \) and prior \(p(\theta) \), we have the following posterior for \(\theta \):

\[
p(\theta|x_1, \ldots, x_n) \propto (1 + \theta)^{125}(1 - \theta)^{38}\theta^{34} \quad \text{for } \theta \in (0, 1).
\]

Use SIR to obtain the following summaries:

1. \(E(\theta|x_1, \ldots, x_n) \)
2. \(V(\theta|x_1, \ldots, x_n) \)
3. \(Pr(\theta < 0.6|x_1, \ldots, x_n) \)
4. \(\theta_L \), where \(Pr(\theta < \theta_L|x_1, \ldots, x_n) = 0.025. \)
5. \(\theta_U \), where \(Pr(\theta < \theta_U|x_1, \ldots, x_n) = 0.975. \)

As \(\theta \in (0, 1) \), the simplest proposal distribution would be the \(q_1(\theta) \equiv U(0, 1) \). However, if you draw \(p(\theta) \) you will notice that virtually all posterior density of \(\theta \) lies in the interval (0.4, 0.9), so a “better” proposal would be \(q_2(\theta) \equiv U(0.4, 0.9) \). Compare both approximations when computing the above 5 summaries. In order to make your life easier, let us assume first that i) \(M = 10,000 \) and \(N = 10,000 \). Repeat everything with iii) \(M = 100,000 \), and then with iii) \(M = 1,000,000 \).