Second homework assignment

Professional Master in Economics
Bayesian Learning
Hedibert Freitas Lopes
Due date: 7:30pm, May 23rd, 2021.

Prepare one (and only one) PDF file with your solutions
Send the file to our T.A. Igor Martins (igorfbm@al.insper.edu.br)
Assignments will be delivered in pairs (the pairs will be randomly assigned in class)
Solution will be posted on the course webpage at 8pm, Sunday, May 23rd, 2021.

Problem 1: Sampling data from a given distribution via sampling importance resampling (SIR)

In R we can sample from various distributions without ever realizing what is actually going on behind the curtain. Here is a short list: $N(0,1), t_{4}(0,1) \operatorname{Gamma}(3,1)$ and $\operatorname{Binomial}(10,0.25)$. Try them out:

```
n = 1000
par(mfrow=c(2,2))
x=rnorm(n);hist(x);mean(x);var(x)
x=rt(n,df=4);hist(x);mean(x); var(x)
x=rgamma(n, 3,1); hist (x);mean(x);var(x)
x=rbinom(n, 10,0.25);hist(x);mean(x); var(x)
```

Let us now introduce a couple of "new" distributions (not really new!!!):

1. Standard skew-normal distribution with skewness parameter equal to 3 :

$$
p_{1}(x)=2 \phi(x) \Phi(3 x), \quad \text { for } x \in \mathbb{R},
$$

where $\phi(x)$ is the density of the standard normal distribution evaluated at x and $\Phi(x)$ is the cumulative distribution function of the standard normal distribution evaluated at x. These values can be obtained in R via dnorm(x) and pnorm(x).
2. Standard half-Cauchy distribution

$$
p_{2}(x)=\frac{2}{\pi\left(1+x^{2}\right)} \quad \text { for } x \in \mathbb{R}^{+}
$$

3. Standard log-normal distribution

$$
p_{3}(x)=\frac{1}{x \sqrt{2 \pi}} \exp \left\{-0.5(\log x)^{2}\right\} \quad \text { for } x \in \mathbb{R}^{+}
$$

4. $\operatorname{Beta}(2,5)$ distribution

$$
p_{4}(x)=30 x(1-x)^{4} \quad \text { for } x \in(0,1)
$$

Recalling the SIR algorithm to draw from a given distribution. If the goal is to obtain a random sample x_{1}, \ldots, x_{N} from the target distribution $p(x)$, but you are only capable of producing a random sample from an auxiliary/candidate/importance distribution $q(x)$, then the SIR algorithm is a promising approach:

Step 1: Sampling from the candidate distribution:

$$
\tilde{x}_{1}, \ldots, \tilde{x}_{M} \sim q(x) .
$$

Step 2: Computing unnormalized resampling weights:

$$
\tilde{w}_{i}=\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}, \quad i=1, \ldots, M
$$

Notice that here you need to be able to evaluate $p(x)$ and $q(x)$, despite not knowing how to sample from $p(x)$.

Step 3: Normalize the weights:

$$
w_{i}=\frac{\tilde{w}_{i}}{\sum_{j=1}^{M} \tilde{w}_{j}}, \quad i=1, \ldots, M
$$

We notice that, when normalizing the weights, we only need to evaluate $p(x)$ and $q(x)$ up to normalizing constants (See Problem 2 for an example).

Step 4: Resampling

$$
\text { Sample } x_{i} \text { from }\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{M}\right\} \text { with weights }\left\{w_{1}, \ldots, w_{M}\right\}, \quad i=1, \ldots, N \text {. }
$$

Step 5: . For large M, N, the set $\left\{x_{1}, \ldots, x_{N}\right\}$ is a random sample from $p(x)$.
As an example, if $p(x)$ is the standard normal distribution and $q(x)$ is the standard Student's t with 4 degrees of freedom, here is the R code for the above SIR algorithm:

```
M = 100000
N = 10000
xtilde = rt(M,df=4)
w = dnorm(xtilde)/dt(xtilde,df=4)
x = sample(xtilde,size=N,replace=TRUE,prob=w)
par(mfrow=c(1,2))
hist(xtilde, prob=TRUE, xlab="draws",ylab="Density",main="Proposal",breaks=100)
curve(dt (x, df=4), from=-10, to=10, n=100, col=2, add=TRUE, lwd=2)
hist(x, prob=TRUE,xlab="draws",ylab="Density",main="Target",breaks=40)
curve(dnorm, from=-3,to=3, n=100, col=2, add=TRUE, lwd=2)
```

Your job is to obtain samples of size $N=10000$ from $p(x)$ for each one of the four "new" distributions introduced above.

```
p1 = function(x){2*dnorm(x)*pnorm(3*x)}
p2 = function(x){2/(pi*(1+x ~ 2))}
p3 = function(x){1/(x*sqrt(2*pi))*exp(-0.5*(log(x)) ~2)}
p4 = function(x){30*x*(1-x) ^4}
par(mfrow=c(2,2))
curve(p1,from=-2,to=10,n=1000, ylab="Density")
curve(p2,from=0,to=10,n=1000,ylab="Density")
curve(p3,from=0,to=10,n=1000,ylab="Density")
curve(p4,from=0,to=1,n=1000,ylab="Density")
```

Use the following proposal distributions:

1. $q_{1}(x) \equiv N(0,10)$ (notice that most values below zero will have virtually zero weight!)
2. $q_{2}(x) \equiv \operatorname{Gamma}(1,1) \equiv \operatorname{Exp}(1)$
3. $q_{3}(x) \equiv \operatorname{Gamma}(1,1)$
4. $q_{4}(x) \equiv U(0,1)$

Problem 2: Using SIR for Bayesian inference

For some data x_{1}, \ldots, x_{n}, model $p\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ and prior $p(\theta)$, we have the following posterior for θ :

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) \propto(1+\theta)^{125}(1-\theta)^{38} \theta^{34} \quad \text { for } \theta \in(0,1) .
$$

Use SIR to obtain the following summaries:

1. $E\left(\theta \mid x_{1}, \ldots, x_{n}\right)$
2. $V\left(\theta \mid x_{1}, \ldots, x_{n}\right)$
3. $\operatorname{Pr}\left(\theta<0.6 \mid x_{1}, \ldots, x_{n}\right)$
4. θ_{L}, where $\operatorname{Pr}\left(\theta<\theta_{L} \mid x_{1}, \ldots, x_{n}\right)=0.025$.
5. θ_{U}, where $\operatorname{Pr}\left(\theta<\theta_{U} \mid x_{1}, \ldots, x_{n}\right)=0.975$.

As $\theta \in(0,1)$, the simplest proposal distribution would be the $q_{1}(\theta) \equiv U(0,1)$. However, if you draw $p(\theta)$ you will notice that virtually all posterior density of θ lies in the interval $(0.4,0.9)$, so a "better" proposal would be $q_{2}(\theta) \equiv U(0.4,0.9)$. Compare both approximations when computing the above 5 summaries. In order to make your life easier, let us assume first that i) $M=10,000$ and $N=10,000$. Repeat everything with iii) $M=100,000$, and then with iii) $M=1,000,000$.

	$q_{1} \equiv U(0,1)$			$q_{2} \equiv U(0.35,0.85)$		
	$M=10^{4}$	$M=10^{5}$	$M=10^{6}$	$M=10^{4}$	$M=10^{5}$	$M=10^{6}$
$\begin{gathered} E\left(\theta \mid x_{1}, \ldots, x_{n}\right) \\ V\left(\theta \mid x_{1}, \ldots, x_{n}\right) \\ \operatorname{Pr}\left(\theta<0.5 \mid x_{1}, \ldots, x_{n}\right) \\ \theta_{L} \\ \theta_{U} \\ \hline \end{gathered}$						

