
Second homework assignment

Professional Master in Economics Bayesian Learning
Hedibert Freitas Lopes Due date: 7:30pm, May 23rd, 2021.

Prepare one (and only one) PDF file with your solutions
Send the file to our T.A. Igor Martins (igorfbm@al.insper.edu.br)
Assignments will be delivered in pairs (the pairs will be randomly assigned in class)
Solution will be posted on the course webpage at 8pm, Sunday, May 23rd, 2021.

Problem 1: Sampling data from a given distribution via sampling impor-
tance resampling (SIR)

In R we can sample from various distributions without ever realizing what is actually going on behind the
curtain. Here is a short list: N(0, 1), t4(0, 1), Gamma(3, 1) and Binomial(10, 0.25). Try them out:

n = 1000
par(mfrow=c(2 ,2))
x=rnorm(n);hist(x);mean(x);var(x)
x=rt(n,df=4); hist(x);mean(x);var(x)
x=rgamma(n,3 ,1); hist(x);mean(x);var(x)
x=rbinom(n,10 ,0.25); hist(x);mean(x);var(x)

Let us now introduce a couple of “new” distributions (not really new!!!):

1. Standard skew-normal distribution with skewness parameter equal to 3:

p1(x) = 2φ(x)Φ(3x), for x ∈ IR,

where φ(x) is the density of the standard normal distribution evaluated at x and Φ(x) is the cumulative
distribution function of the standard normal distribution evaluated at x. These values can be obtained
in R via dnorm(x) and pnorm(x).

2. Standard half-Cauchy distribution

p2(x) =
2

π(1 + x2)
for x ∈ IR+

3. Standard log-normal distribution

p3(x) =
1

x
√

2π
exp{−0.5(log x)2} for x ∈ IR+

4. Beta(2,5) distribution
p4(x) = 30x(1− x)4 for x ∈ (0, 1)



Recalling the SIR algorithm to draw from a given distribution. If the goal is to obtain a random
sample x1, . . . , xN from the target distribution p(x), but you are only capable of producing a random sample
from an auxiliary/candidate/importance distribution q(x), then the SIR algorithm is a promising approach:

Step 1: Sampling from the candidate distribution:

x̃1, . . . , x̃M ∼ q(x).

Step 2: Computing unnormalized resampling weights:

w̃i =
p(xi)

q(xi)
, i = 1, . . . ,M.

Notice that here you need to be able to evaluate p(x) and q(x), despite not knowing how to sample
from p(x).

Step 3: Normalize the weights:

wi =
w̃i∑M
j=1 w̃j

, i = 1, . . . ,M.

We notice that, when normalizing the weights, we only need to evaluate p(x) and q(x) up to normalizing
constants (See Problem 2 for an example).

Step 4: Resampling

Sample xi from {x̃1, . . . , x̃M} with weights {w1, . . . , wM}, i = 1, . . . , N.

Step 5: . For large M,N , the set {x1, . . . , xN} is a random sample from p(x).

As an example, if p(x) is the standard normal distribution and q(x) is the standard Student’s t with 4 degrees
of freedom, here is the R code for the above SIR algorithm:
M = 100000
N = 10000
xtilde = rt(M,df=4)
w = dnorm(xtilde)/dt(xtilde ,df=4)
x = sample(xtilde ,size=N,replace=TRUE ,prob=w)
par(mfrow=c(1 ,2))
hist(xtilde ,prob=TRUE ,xlab="draws",ylab="Density",main="Proposal",breaks =100)
curve(dt(x,df=4),from=-10,to=10,n=100,col=2,add=TRUE ,lwd =2)
hist(x,prob=TRUE ,xlab="draws",ylab="Density",main="Target",breaks =40)
curve(dnorm ,from=-3,to=3,n=100,col=2,add=TRUE ,lwd=2)

Your job is to obtain samples of size N = 10000 from p(x) for each one of the four “new” distributions
introduced above.
p1 = function(x){2*dnorm(x)*pnorm(3*x)}
p2 = function(x){2/(pi*(1+x^2))}
p3 = function(x){1/(x*sqrt(2*pi))*exp(-0.5*(log(x))^2)}
p4 = function(x){30*x*(1-x)^4}
par(mfrow=c(2 ,2))
curve(p1 ,from=-2,to=10,n=1000, ylab="Density")
curve(p2 ,from=0,to=10,n=1000, ylab="Density")
curve(p3 ,from=0,to=10,n=1000, ylab="Density")
curve(p4 ,from=0,to=1,n=1000 , ylab="Density")
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Use the following proposal distributions:

1. q1(x) ≡ N(0, 10) (notice that most values below zero will have virtually zero weight!)

2. q2(x) ≡ Gamma(1, 1) ≡ Exp(1)

3. q3(x) ≡ Gamma(1, 1)

4. q4(x) ≡ U(0, 1)

Problem 2: Using SIR for Bayesian inference

For some data x1, . . . , xn, model p(x1, . . . , xn|θ) and prior p(θ), we have the following posterior for θ:

p(θ|x1, . . . , xn) ∝ (1 + θ)125(1− θ)38θ34 for θ ∈ (0, 1).

Use SIR to obtain the following summaries:

1. E(θ|x1, . . . , xn)

2. V (θ|x1, . . . , xn)

3. Pr(θ < 0.6|x1, . . . , xn)

4. θL, where Pr(θ < θL|x1, . . . , xn) = 0.025.

5. θU , where Pr(θ < θU |x1, . . . , xn) = 0.975.

As θ ∈ (0, 1), the simplest proposal distribution would be the q1(θ) ≡ U(0, 1). However, if you draw p(θ) you
will notice that virtually all posterior density of θ lies in the interval (0.4, 0.9), so a “better” proposal would
be q2(θ) ≡ U(0.4, 0.9). Compare both approximations when computing the above 5 summaries. In order to
make your life easier, let us assume first that i) M = 10, 000 and N = 10, 000. Repeat everything with iii)
M = 100, 000, and then with iii) M = 1, 000, 000.

q1 ≡ U(0, 1) q2 ≡ U(0.35, 0.85)

M = 104 M = 105 M = 106 M = 104 M = 105 M = 106

E(θ|x1, . . . , xn)
V (θ|x1, . . . , xn)

Pr(θ < 0.5|x1, . . . , xn)
θL
θU

3


