Second homework assignment

Professional Master in Economics Bayesian Learning
Hedibert Freitas Lopes Due date: 7:30pm, May 23rd, 2021.

Prepare one (and only one) PDF file with your solutions
Send the file to our T.A. Igor Martins (igorfbm@al.insper.edu.br)
Assignments will be delivered in pairs (the pairs will be randomly assigned in class)

Solution will be posted on the course webpage at 8pm, Sunday, May 23rd, 2021.

Problem 1: Sampling data from a given distribution via sampling impor-
tance resampling (SIR)

In R we can sample from various distributions without ever realizing what is actually going on behind the
curtain. Here is a short list: N(0,1), t4(0,1), Gamma(3,1) and Binomial(10,0.25). Try them out:

n = 1000

par (mfrow=c(2,2))
x=rnorm(n) ;hist (x);mean(x) ;var (x)
x=rt(n,df=4);hist (x);mean(x);var(x)
x=rgamma(n,3,1);hist (x);mean(x);var(x)
x=rbinom(n,10,0.25);hist (x);mean(x);var(x)

Let us now introduce a couple of “new” distributions (not really new!!!):
1. Standard skew-normal distribution with skewness parameter equal to 3:
p1(x) = 2¢(x)P(3x), for x € IR,

where ¢(z) is the density of the standard normal distribution evaluated at = and ®(x) is the cumulative
distribution function of the standard normal distribution evaluated at x. These values can be obtained
in R via dnorm(x) and pnorm(x).

2. Standard half-Cauchy distribution

2
e — f +
p2(x) A+ orz € R
3. Standard log-normal distribution
p3(x) = ! exp{—0.5(log z)?} for v € RT
x\/ﬂ

4. Beta(2,5) distribution
pa(z) = 30z(1 —z)* for x € (0,1)



Recalling the SIR algorithm to draw from a given distribution. If the goal is to obtain a random
sample z1, ...,y from the target distribution p(z), but you are only capable of producing a random sample
from an auxiliary /candidate /importance distribution g(x), then the SIR algorithm is a promising approach:

Step 1: Sampling from the candidate distribution:

Ti,..., Ty~ q(x).
Step 2: Computing unnormalized resampling weights:

- p(zi)
Q($i)7

i=1,...,M.

Notice that here you need to be able to evaluate p(x) and ¢(x), despite not knowing how to sample
from p(z).
Step 3: Normalize the weights:

W;
S
> =1 W5
We notice that, when normalizing the weights, we only need to evaluate p(x) and ¢(z) up to normalizing
constants (See Problem 2 for an example).

Ww; = i:1,...,M.

Step 4: Resampling

Sample x; from {Z1,...,Z)} with weights {w1,...,war}, 1=1,...,N.
Step 5: . For large M, N, the set {x1,...,zn} is a random sample from p(x).

As an example, if p(z) is the standard normal distribution and g(x) is the standard Student’s t with 4 degrees
of freedom, here is the R code for the above SIR algorithm:

M 100000

N 10000

xtilde = rt(M,df=4)

w = dnorm(xtilde)/dt(xtilde,df=4)

X sample (xtilde ,size=N,replace=TRUE, prob=w)

par (mfrow=c(1,2))

hist(xtilde ,prob=TRUE,xlab="draws",ylab="Density" ,main="Proposal",breaks=100)
curve (dt (x,df=4) ,from=-10,t0=10,n=100,co0l=2,add=TRUE, 1wd=2)

hist (x,prob=TRUE,xlab="draws",ylab="Density",main="Target",6breaks=40)

curve (dnorm, from=-3,t0=3,n=100, col=2,add=TRUE, 1wd=2)

Your job is to obtain samples of size N = 10000 from p(z) for each one of the four “new” distributions
introduced above.

pl = function(x){2*dnorm(x)*pnorm(3*x)}

p2 = function(x){2/(pi*(1+x~2))}

p3 = function(x){1/(x*sqrt (2*pi))*exp(-0.5*(log(x))~2)}
p4 = function(x){30*x*(1-x)~4}

par (mfrow=c(2,2))

curve (pl,from=-2,t0=10,n=1000, ylab="Density")

curve (p2,from=0,t0=10,n=1000,ylab="Density")

curve (p3,from=0,t0=10,n=1000,ylab="Density")

curve (p4,from=0,to=1,n=1000,ylab="Density")



Use the following proposal distributions:

1. gi(x) = N(0,10) (notice that most values below zero will have virtually zero weight!)
2. @2(z) = Gamma(1,1) = Exp(1)

3. g3(z) = Gamma(1,1)

4. qu(z) =U(0,1)

Problem 2: Using SIR for Bayesian inference

For some data 1, ..., z,, model p(z1,...,2,|0) and prior p(#), we have the following posterior for 6:
p(Blzy,. .. x,) oc (1+0)5(1 - 0)3803  for 6 (0,1).
Use SIR to obtain the following summaries:

1. E(0|z1,...,20)

2. V(O|z1,...,xn)

3. Pr(0 < 0.6|z1,...,2,)

4. 0r, where Pr(6 < 0r|xi1,...,x,) = 0.025.
5. Oy, where Pr(0 < 0ylzi,...,z,) = 0.975.

As 6 € (0,1), the simplest proposal distribution would be the ¢;(6) = U(0, 1). However, if you draw p(#) you
will notice that virtually all posterior density of € lies in the interval (0.4,0.9), so a “better” proposal would
be ¢2(0) = U(0.4,0.9). Compare both approximations when computing the above 5 summaries. In order to
make your life easier, let us assume first that i) M = 10,000 and N = 10,000. Repeat everything with iii)
M =100, 000, and then with iii) M = 1,000, 000.

¢ =U(0,1) q2 = U(0.35,0.85)
M=10" M=10° M=10°| M=10* M =10° M =10°
E@|xy,...,xz5)
V(@‘xl, cee ,xn)
Pr(0 < 0.5|z1,...,2,)
0r,
Oy




