Bayesian Learning - MPE 2021-2
Hedibert Lopes - Insper Question 0 - April 27th 2021

Triple head

In your pocket you have three coins:
one with 50% probability of head (coin 1), one with 90% probability of head (coin 2), and one with 100% probability of head (coin 3).

Triple head

In your pocket you have three coins:
one with 50% probability of head (coin 1), one with 90% probability of head (coin 2), and one with 100% probability of head (coin 3).

You "randomly" pick one of the three coins, toss it three times, and observe three heads.

Triple head

In your pocket you have three coins:
one with 50% probability of head (coin 1), one with 90% probability of head (coin 2), and one with 100% probability of head (coin 3).

You "randomly" pick one of the three coins, toss it three times, and observe three heads.

What is the probability that the picked one is coin 1 ?

What we know and what we do not know

Question: What is the probability that the picked one is coin 1 ?

What we know and what we do not know

Question: What is the probability that the picked one is coin 1 ?

We can easily figure out that

$$
\operatorname{Pr}(\operatorname{coin} 1)=\operatorname{Pr}(\operatorname{coin} 2)=\operatorname{Pr}(\operatorname{coin} 3)=1 / 3,
$$

What we know and what we do not know

Question: What is the probability that the picked one is coin 1 ?

We can easily figure out that

$$
\operatorname{Pr}(\operatorname{coin} 1)=\operatorname{Pr}(\operatorname{coin} 2)=\operatorname{Pr}(\operatorname{coin} 3)=1 / 3,
$$

and that

$$
\begin{aligned}
\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) & =(5 / 10)^{3}=0.125 \\
\operatorname{Pr}(\text { three heads } \mid \text { coin } 2) & =(9 / 10)^{3}=0.729 \\
\operatorname{Pr}(\text { three heads } \mid \text { coin } 3) & =(10 / 10)^{3}=1.000
\end{aligned}
$$

What we know and what we do not know

Question: What is the probability that the picked one is coin 1 ?

We can easily figure out that

$$
\operatorname{Pr}(\operatorname{coin} 1)=\operatorname{Pr}(\operatorname{coin} 2)=\operatorname{Pr}(\operatorname{coin} 3)=1 / 3,
$$

and that

$$
\begin{aligned}
\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) & =(5 / 10)^{3}=0.125 \\
\operatorname{Pr}(\text { three heads } \mid \text { coin } 2) & =(9 / 10)^{3}=0.729 \\
\operatorname{Pr}(\text { three heads } \mid \text { coin } 3) & =(10 / 10)^{3}=1.000
\end{aligned}
$$

What we want is
$\operatorname{Pr}($ coin $1 \mid$ three heads $)$

Bayes theorem

For $\operatorname{Pr}(B)>0$,

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}=\left(\frac{\operatorname{Pr}(B \mid A)}{\operatorname{Pr}(B)}\right) \operatorname{Pr}(A)
$$

Bayes theorem

For $\operatorname{Pr}(B)>0$,

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}=\left(\frac{\operatorname{Pr}(B \mid A)}{\operatorname{Pr}(B)}\right) \operatorname{Pr}(A)
$$

What we want is

$$
\begin{aligned}
\operatorname{Pr}(\text { coin } 1 \mid \text { three heads }) & =\frac{\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) \operatorname{Pr}(\text { coin } 1)}{\operatorname{Pr}(\text { three heads })} \\
& =\frac{(0.125)(1 / 3)}{\operatorname{Pr}(\text { three heads })} .
\end{aligned}
$$

Bayes theorem

For $\operatorname{Pr}(B)>0$,

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)}=\left(\frac{\operatorname{Pr}(B \mid A)}{\operatorname{Pr}(B)}\right) \operatorname{Pr}(A)
$$

What we want is

$$
\begin{aligned}
\operatorname{Pr}(\text { coin } 1 \mid \text { three heads }) & =\frac{\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) \operatorname{Pr}(\text { coin } 1)}{\operatorname{Pr}(\text { three heads })} \\
& =\frac{(0.125)(1 / 3)}{\operatorname{Pr}(\text { three heads })}
\end{aligned}
$$

Easy to see that

$$
\begin{aligned}
& \operatorname{Pr}(\text { coin } 2 \mid \text { three heads })=\frac{(0.729)(1 / 3)}{\operatorname{Pr}(\text { three heads })} \\
& \operatorname{Pr}(\text { coin } 3 \mid \text { three heads })=\frac{(1.000)(1 / 3)}{\operatorname{Pr}(\text { three heads })} .
\end{aligned}
$$

Computing $\operatorname{Pr}($ three heads $)$

For A, B, C such that $\operatorname{Pr}(B \cup C)=1$ and $\operatorname{Pr}(B \cap C)=0$,

$$
\begin{aligned}
\operatorname{Pr}(A) & =\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap C) \\
& =\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid C) \operatorname{Pr}(C) .
\end{aligned}
$$

Computing $\operatorname{Pr}($ three heads $)$

For A, B, C such that $\operatorname{Pr}(B \cup C)=1$ and $\operatorname{Pr}(B \cap C)=0$,

$$
\begin{aligned}
\operatorname{Pr}(A) & =\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap C) \\
& =\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid C) \operatorname{Pr}(C) .
\end{aligned}
$$

To compute Pr (three heads), we need to figure out the "weighted average" of the outcome (three heads) based on ALL possible scenarios, i.e. coin 1 or coin 2 or coin 3:

Computing $\operatorname{Pr}($ three heads $)$

For A, B, C such that $\operatorname{Pr}(B \cup C)=1$ and $\operatorname{Pr}(B \cap C)=0$,

$$
\begin{aligned}
\operatorname{Pr}(A) & =\operatorname{Pr}(A \cap B)+\operatorname{Pr}(A \cap C) \\
& =\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid C) \operatorname{Pr}(C) .
\end{aligned}
$$

To compute $\operatorname{Pr}($ three heads), we need to figure out the "weighted average" of the outcome (three heads) based on ALL possible scenarios, i.e. coin 1 or coin 2 or coin 3:

$$
\begin{aligned}
\operatorname{Pr}(\text { three heads }) & =\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) \operatorname{Pr}(\text { coin } 1) \\
& +\operatorname{Pr}(\text { three heads } \mid \text { coin } 2) \operatorname{Pr}(\text { coin } 2) \\
& +\operatorname{Pr}(\text { three heads } \mid \text { coin } 3) \operatorname{Pr}(\text { coin } 3) \\
& =(0.125)(1 / 3)+(0.729)(1 / 3)+(1.000)(1 / 3) \\
& =1.854 / 3=0.618
\end{aligned}
$$

Back to what we want

What we want is

$$
\begin{aligned}
\operatorname{Pr}(\text { coin } 1 \mid \text { three heads }) & =\frac{\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) \operatorname{Pr}(\text { coin } 1)}{\operatorname{Pr}(\text { three heads })} \\
& =\frac{(0.125)(1 / 3)}{(0.125)(1 / 3)+(0.729)(1 / 3)+(1)(1 / 3)} \\
& =\frac{0.04166667}{0.618}=0.0674
\end{aligned}
$$

Back to what we want

What we want is

$$
\begin{aligned}
\operatorname{Pr}(\text { coin } 1 \mid \text { three heads }) & =\frac{\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) \operatorname{Pr}(\text { coin } 1)}{\operatorname{Pr}(\text { three heads })} \\
& =\frac{(0.125)(1 / 3)}{(0.125)(1 / 3)+(0.729)(1 / 3)+(1)(1 / 3)} \\
& =\frac{0.04166667}{0.618}=0.0674
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{Pr}(\text { coin } 2 \mid \text { three heads })=0.3932 \\
& \operatorname{Pr}(\text { coin } 3 \mid \text { three heads })=0.5394 .
\end{aligned}
$$

Back to what we want

What we want is

$$
\begin{aligned}
\operatorname{Pr}(\text { coin } 1 \mid \text { three heads }) & =\frac{\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) \operatorname{Pr}(\text { coin } 1)}{\operatorname{Pr}(\text { three heads })} \\
& =\frac{(0.125)(1 / 3)}{(0.125)(1 / 3)+(0.729)(1 / 3)+(1)(1 / 3)} \\
& =\frac{0.04166667}{0.618}=0.0674
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{Pr}(\text { coin } 2 \mid \text { three heads })=0.3932 \\
& \operatorname{Pr}(\text { coin } 3 \mid \text { three heads })=0.5394 .
\end{aligned}
$$

Conclusion: It is highly unlikely the selected coin was coin 1.

Back to what we want

What we want is

$$
\begin{aligned}
\operatorname{Pr}(\text { coin } 1 \mid \text { three heads }) & =\frac{\operatorname{Pr}(\text { three heads } \mid \text { coin } 1) \operatorname{Pr}(\text { coin } 1)}{\operatorname{Pr}(\text { three heads })} \\
& =\frac{(0.125)(1 / 3)}{(0.125)(1 / 3)+(0.729)(1 / 3)+(1)(1 / 3)} \\
& =\frac{0.04166667}{0.618}=0.0674
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{Pr}(\text { coin } 2 \mid \text { three heads })=0.3932 \\
& \operatorname{Pr}(\text { coin } 3 \mid \text { three heads })=0.5394 .
\end{aligned}
$$

Conclusion: It is highly unlikely the selected coin was coin 1.
Question: What if a fourth flip turned out head as well?

