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Abstract. State-space models are commonly used in the engineering, economic, and statistical lit-

eratures. They are flexible and encompass many well-known statistical models, including random

coefficient autoregressive models and dynamic factor models. Bayesian analysis of state-space

models has attracted much interest in recent years. However, for large scale models, prior specifi-

cation becomes a challenging issue in Bayesian inference. In this paper, we propose a flexible prior

for state-space models. The proposed prior is a mixture of four commonly entertained models, yet

achieves parsimony in high-dimensional systems. Here “parsimony” is represented by the idea that

in a large system, some states may not be time-varying. Our prior for the state-space component’s

standard deviation is able to accommodate different scenarios. Simulation and simple examples

are used throughout to demonstrate the performance of the proposed prior. As an application, we

consider the time-varying conditional covariance matrices of daily log returns of the components of

the S&P 100 index, leading to a state-space model with roughly five thousand time-varying states.
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nia State University, Universidad Autonoma de Mexico, University of Missouri, University of Colorado-Boulder, Vienna
University of Economics and Business, University of Washington, University of Waterloo, University of South Car-
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Nazionale delle Ricerche, George Mason University, University of California at Irvine, University of California at Santa
Cruz, IMPA, Insper, Arizona State University, University of Texas at Austin. XX Brazilian Symposium of Probabil-
ity and Statistics, VIII International Purdue Symposium on Statistics, Meetings of the Midwest Econometrics Group,
Oxford-Man Institute Conference on Financial Econometrics and Vast Data, XXVI Brazilian Colloquium of Mathemat-
ics, V Workshop on Bayesian Inference in Stochastic Processes, Seminar on Bayesian Inference in Econometrics and
Statistics, Joint Statistical Meeting, Minneapolis and XI School of Time Series and Econometrics. We are deeply thankful
for all the discussants for their invariably useful and clarifying feedback. The also thank the editorial team, who has been
fundamental to guide us to a much clearer and complete version of the manuscript. All inconsistencies and remaining
typos are all on us.
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Our model for this large system enables us to use parallel computing.

Keywords: Bayesian modeling, conditional heteroscedasticity, forward filtering and backward

sampling, parallel computing, sparsity, shrinkage.

1 Introduction

State-space models, also known as dynamic models, are well established in many scientific areas

ranging from signal processing to spatio-temporal modeling to marketing applications, to name

only a few. See, for instance, Migon et al. [2005] and Schmidt and Lopes [2019], for reviews of

various kinds of dynamic models. In the modern and applied business and economics literature,

state-space structures have gained additional attention, particularly in macroeconomic and financial

applications where they are used, respectively, when describing time-varying parameters (TVP)

in vector autoregressive (VAR) models Primiceri [2005] or in large-scale dynamic factor models

(DFM); and time-varying variances and covariances in stochastic volatility (SV) models Lopes and

Polson [2010]. See also Belmonte et al. [2014] and Bitto and Frühwirth-Schnatter [2019], amongst

others, for regularisation inducing strategies in TVP models.

To be more specific, we will consider throughout the basic dynamics governing a given state-

space component, which will be called st, and could potentially be a time-varying coefficient in the

VAR model, a log-volatility in a SV model or a time-varying factor loading in a DFM. The most

popular dynamics resembles a first order autoregressive, AR(1), model,

st = α + β st−1 + τεt,

where the errors ε1, . . . , εT are independent and identically distributed, usually standard normals.

Primiceri (2005), for example, models the US economy with a trivariate TVP-VAR model contain-

ing inflation rate, unemployment rate and short-term interest rate. He assumes (α, β) = (0, 1) when

modeling the time-varying coefficients of the VAR model, giving random walk dynamics.

One of our key contributions is to avoid the conditionally conjugate normal-inverse gamma

(N-IG) prior, commonly used in the Bayesian state-space literature to model (α, β, τ2). The N-IG

prior fails to properly account for common parsimonious and sparse cases. In other words, when

a state-space component st mimics the behaviour of a time invariant, static parameter, the N-IG-
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AR(1) model has a hard time identifying such behaviour. The main reason is that there are two two

ways to represent such situation: i) β = 0 and α is close to the static parameter, possibly zero, or ii)

α = 0 and β = 1. In both cases, τ can be fairly small and hard to deal with. We propose a prior for

τ that is able to accommodate these and other scenarios. For an illustrative example, see the top row

of Figure 3, where the state-space component flat-lines at a nonzero constant. We argue, and show

in our applications, that i) limiting the evolution of state-space components to a random walk, as in

Primiceri [2005] and many others that followed, can be unrealistic and forces static states to artifi-

cially evolve over time, and consequently that ii) using the conditionally conjugate normal-inverse

gamma prior for (α, β, τ2) prevents sparsity in TVP models (see, for instance, Frühwirth-Schnatter

[2004]). These limitations are particularly troubling when dealing with large-scale systems with

several hundreds, or thousands, of state-space components flat-lining, rendering the random walk

hypothesis meaningless. Section 3 carefully treats the Cholesky stochastic volatility model when

modeling exchange rates and components of the S&P100 index. In both real data analysis contexts,

we found that the data “recommends” that several of the state-space components be flat-lined.

The first of our two main goals, extensively discussed in Section 2, is to propose a general

mixture prior structure that allows us to entertain and investigate different kinds of state evolution

within the simple AR(1) framework. More specifically, we will focus our attention on parsimo-

nious/shrinkage cases, such as (α, β) = (0, 1) (random walk component), α = β = 0 (sparse

component) , β = 0 (flat-line component), and 0 < β < 1 (stationary component). Our mix-

ture prior probability implicitly addresses the identifiability mentioned earlier. As it can be seen,

two of these mixture components, namely the sparse component and the flat-line component, are

sparse-inducing ones, therefore in line with the current literature above mentioned.

The second of our two main goals, also extensively discussed in Section 3, is modeling of time-

varying covariance matrices in large-scale financial time series of log-returns, where the above-

mentioned parsimonious prior structure will play a major regularizing role by collapsing unneces-

sary coefficients at constant values, many of them potentially at zero. More specifically, we will

rewrite the time-varying covariances Σt of the multivariate normal log-returns via a Cholesky trans-

formation Σt = AtHt A′t and, in turn, model the recursive conditional regression coefficients in the

lower-triangular matrix At and the log conditional variances from the diagonal matrix Ht, both with

the above state-space AR(1) structure and mixture prior. Section 3 provides extensive details re-

garding this Cholesky stochastic volatility (CSV) structure along with a customized MCMC scheme
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for posterior Bayesian inference that takes advantage of the parallel nature of the CSV model. We

illustrate our approach by a number of real and synthetic examples, with particular emphasis on

the CSV model with 94 financial time series from components of the S&P100 index. Section 4

discusses our contributions and findings and suggests directions for further research.

2 Prior specification for the state equation

To facilitate the following discussion, we begin with the univariate state-space model

Observation equation: yt = f (xt, st, ηt)

State equation: st = α + β st−1 + τεt,
(1)

where st is the latent (hidden) state-space variable. The error terms ηt and εt are independent

random shocks in the observation and state equations respectively, usually Gaussian, and we ob-

serve the pairs (xt, yt), t = 1, 2, . . . , T. Two fairly common specifications for the observation

equation are i) yt = xt st + ηt, a dynamic regression with a time-varying coefficient st, and ii)

yt = exp(st/2) ηt, a standard stochastic volatility model.

As one would expect, the parameters (α, β, τ) strongly affect the posterior distribution of the

state sequence s = (s1, s2, . . . , sT). A basic observation is that if τ is small then the state sequence

evolves smoothly. Consequently, the choice of prior for (α, β, τ) is influential. As stated earlier in

the paper, one of our goals is to specify a prior on (α, β, τ) that allows us to investigate different

kinds of state evolutions within the simple AR(1) framework for the state equation, particularly

promoting sparsity-inducing flat-lining structures. In addition, we will specify a prior for s0, the

initial state.

Initial state s0. A less important but still worth noting feature of our approach is the treatment of

the initial state s0. In many applications, zero is a value of particular importance for the state because

it represents a model simplification. An important example is that of a time varying regression

coefficient. To shrink the initial state s0 towards zero we use a mixture prior along the lines of that

used by George and McCulloch [1993] for variable selection:

s0 ∼ γ N(0, (cw)2) + (1− γ) N(0, w2)
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where γ ∼ Bernoulli(p∗), c is a large positive real number, w is small, and p∗ is a hyper-parameter

denoting the prior knowledge about the initial state. A small p∗ favors zero initial state and p∗ = 0.5

shows no preference. The variable γ is a latent variable. When γ = 0, the state is shrunk heavily

towards zero and when γ = 1, the state may be large.

2.1 A 4-component mixture prior

In this section we present a mixture prior for (α, β, τ). The basic notions our prior must be able to

express are i) we may want τ small, and ii) the following four cases are of particular interest:

Case (1): (α, β) = (0, 1) - (random walk component)

Case (2): (α, β) = (0, 0) - (sparse component)

Case (3): α ∈ <, β = 0 - (flat-line component)

Case (4): α ∈ <, β ∈ (0, 1) - (stationary component).

Our prior for (α, β, τ) mixes over these four cases. Without loss of generality, and keeping in mind

the stochastic volatility dynamics, we place zero prior weight on β < 0. In addition, we use stock

returns in our applications and it is well known the correlations between them tend to be positive.

If we analyze returns of stocks and bond yields jointly, then we might have negative correlations.

However, if negative correlations are to be expected, the sign of the data can be changed without

affecting the analysis, yet we keep the correlations to be positive. Ultimately, this restriction can be

relaxed without affecting the current structure of our mixture prior specification.

Case (1) corresponds to the classic “random-walk” prior. With τ small, this prior succinctly

expresses the notion that the state evolves smoothly and may “wander”. Many applications assume

Case (1). Case (2) says that the state is fixed near zero, which is often a possibility of particular

interest. For example, if the state-space component is a time-varying coefficient in dynamic regres-

sion, then the corresponding regressor has no effect, provided that τ is negligible. Case (3) says the

state simply varies about a fixed level α. With very small τ this is practically equivalent to a fixed

value for the state, or a flat-line. Case (4) allows the state to vary in a stationary fashion.

A near constant state can be achieved with Case (1) or Case (3), given τ small. Depending on

the application, the user may choose to weight different mixture components. For example, if we
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are only extrapolating a few periods ahead, β ≈ 1 may be fine. If, however, we wish to predict

farther ahead, we may be more comfortable with β < 1, if the data allows it.

As usual, the prior allows us to push the inference in desired directions, without imposing

it. In Section 3 we consider the problem of modeling high dimensional multivariate stochastic

volatility. This large, complex model consists of thousands of univariate state-space models. In

this application we found it essential to be able to flexibly consider the possibility that many of the

states are constant over time. This leads to more parsimonious representations with time-invariant

states greatly simplifying the model. Appropriately mixing over our four cases allows us to push

our inference towards these parsimonious representations.

To specify our mixture we need prior probabilities for each of the cases and then a prior for

(α, β, τ) given the case. As our four cases delineate, β is the key parameter for determining the

state dynamics. Consequently, we specify the joint prior for (α, β, τ) by first choosing a marginal

for β and then a conditional for (α, τ) given β. Using the Smith-Gelfand bracket notation for

joint distributions, we have [α, β, τ] = [β] [α, τ | β]. All the specifications we consider in this

paper make the additional simplifying assumption that τ and α are independent given β; or, more

specifically, that [α, τ | β] = [α | β] [τ | β].

Let δx denote the Dirac measure which assigns probability one to the value x. We use the Dirac

measure to identify the special role that the values β = 0 and β = 1 play in our four cases. Our full

mixture prior has the form

p(α, β, τ) = p01 δ{α=0} δ{β=1} p(τ | β = 1)

+ p00 δ{α=0} δ{β=0} p(τ | β = 0)

+ pu0 p(α | β = 0) δ{β=0} p(τ | β = 0)

+ puu p(α | β) p(β) p(τ | β)

where p01, p00, pu0, and puu are the mixture weights of our four components. p01 is the probability

that (α, β) = (0, 1), p00 is the probability that (α, β) = (0, 0), pu0 is the probability that α is

unrestricted and β = 0, and puu is the probability that α is unrestricted and β ∈ (0, 1).
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The prior of β: To specify the prior p(β) for β ∈ (0, 1) (used in our fourth “uu” component

above) we use a normal distribution restricted to the interval (0, 1):

p(β) ∝ pN(β | β̄, σ2
β) δ{β∈(0,1)}. (2)

where pN(· | β̄, σ2
β) denotes a normal density with mean β̄ and standard deviation σβ and, as before,

δx denotes the Dirac measure.

The prior of α|β: For the prior p(α | β) we use,

α | β ∼ N(0, σ2
α (1− β2)). (3)

When β = 0, we simply have α ∼ N(0, σ2
α). As β increases toward one, we shrink our prior down

towards the Case (1), the random walk component, where α = 0 at β = 1.

Our mixture prior enables us to incorporate the special role of β in the AR(1) state equation.

The parameter τ also plays a crucial role. We have developed a form of prior for τ that allows us

to shrink towards small values but still have a right tail that allows for larger values. Note that as

soon as you think about what it might mean for τ to be small, you realize that it depends on β. In

particular, the effect of τ depends on whether β = 1, β = 0, or β ∈ (0, 1). These considerations

make our mixture prior plausibly the minimally complex construction for serious prior thought.

The prior for τ|β: The commonly used prior for τ2 is the inverse gamma τ2 ∼ IG(ν/2, νλ/2).

However, we have empirically found that it was very difficult to choose values for ν and λ that

gave consistently good results, especially for dynamic models with hundreds or thousands of state-

space components. For small values of ν, the prior is not informative so that we cannot express a

preference for smaller values. We can use an informative prior by using big values of ν. But, with

large ν, if we choose λ to favor smaller τ, we find that we have too little prior probability attached

to the possibility of larger τ. Our prior is designed to favor small τ but allow for large ones in

the simplest possible way. This is a crucial advantage of our prior set up in scenarios where the

majority, but not all, of the state-space components are actually time invariant.

More specifically, we will set the prior of τ on a finite set of possible values. While the basic

idea of the prior could be expressed using a continuous (or mixture of discrete and continuous)
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distribution, we find it conceptually and computationally convenient to use the discrete construction.

We first choose the minimum and the maximum values of τ, namely τmin and τmax. Using ng grid

points, we have evenly spaced values (t1, t2, . . . , tng) with t1 = τmin and tng = τmax. Then, we

set P(τ = τmin) ≡ pmin. For i > 1, P(τ = ti) ∝ exp(−cτ |ti − τmin|). We have chosen not to

consider the case τ = 0. There is no practical advantage in considering τ to be zero as opposed to

small, since a negligible τ will produce sparse and flat-line state-space as well. A useful variation

on the basic scheme above is to use a non-evenly spaced grid for τ. It might make sense to have the

grid tighter for smaller τ. However, we have employed an evenly spaced grid in all our examples.

Thus, our τ prior has the four hyper-parameters (τmin, τmax, pmin, cτ). Understanding and choosing

the hyper-parameters of this prior is quite simple. We pick an interval, and then our choice of cτ

determines the degree to which we push τ towards smaller values.

Figure 1 illustrates how our discrete prior compares to the square root of the commonly used

inverse gamma prior. In the left panel we see that our prior density pushes hard towards small values

of τ, which is what is needed. In the right panel, we see that the tail of our prior is more like the tail

of the ν = 5 density, so that, if the data demands it, larger values of τ are easily found. Finally, to

specify p(τ | β) in our general mixture prior we let the parameters τmin, τmax, pmin and cτ depend

on β. For example, in our applications we choose a value of cτ to use for all β > 0 and then use

twice that value when β = 0. The larger cτ value allows us to express an even stronger desire for

small τ when β = 0. In what follows we study a few prior specifications with various values of cτ.

2.2 Issues in prior choice

In this section we review the hyperparameter choices associated with our mixture prior. We discuss

some of the issues involved and simplifying choices we have used in application.

Perhaps the most basic issue in choosing the prior is that of scale. We have discussed the need to

allow for small values of τ but the meaning of “small” depends of the scale (units) of the observed

y and the relationship between y and the state s are defined by the observation equation. While

in any particular application there is no real substitute for careful thought about the prior, we have

found it useful to simplify things in two ways.

First, we typically standardize y to have sample mean zero and sample stardard deviation one.

This is a common practice in statistics (e.g the very popular glmnet R package defaults to stan-

dardize = TRUE). If y has outliers or extreme skewness, this can be inappropriate, but it typically
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put things in a reasonable “ballpark”.

Second, to specify p(τ | β) we consider only the two case β = 0 and β ∈ (0, 1]. We choose

values of (τmin, τmax, pmin, cτ) to use for all β ∈ (0, 1] and a different set to be used when β = 0.

We keep τmax and pmin the same in both cases, but use cτ and τmin when β ∈ (0, 1] (the 01 and uu

mixture components) and use c0
τ and τ0

min when β = 0 (the 00 and u0 components). The choice

of this simplication was driven by our application in Section 3 where we wanted to push things

towards a near constant state when β = 0. In some applications it might also make sense to pay

particular attention to the β = 1 case and our general prior construction would facilitate this.

In summary, the hyperparameters we consider in our applications are i) p01, p00, pu0 and puu

(for p), ii) τmin, τ0
min, τmax pmin, cτ and c0

τ (for τ), iii) σα (for α), iv) β̄ and σβ (for β), and v)

p∗, w and c (for s0). Additionally, one just chooses the grid sizes for both τ and β. We have use

ng = nb = 100 throughout and these choices seem to give us a fine enough inference without

taking too much computational time.

Smoother and rougher prior specifications. Specific hyper-parameter values we will use in

some examples are given by i) p01 = 0.5, p00 = 0.15, pu0 = 0.15 and puu = 0.2 (for p), ii)

τmin = 0.005, τ0
min = 0.001, τmax = 0.15, pmin = 0.5, cτ = 100, and c0

τ = 200 (for τ), iii)

σα = 2.0 (for α), iv) β̄ = 1 and σβ = 1 (for β), and v) p∗ = 0.5, w = 0.1 and c = 10 (for s0). This

prior suggests smaller τ when β = 0 which effectively leads to a constant state around α. We have

a 50% prior probability of the random walk prior, 30% chance of a constant state and a 20% of a

time-varying stationary state. We call this configuration the rougher prior specification. The name

rougher refers to the fact that in our applications this prior allows for substantial state variation. A

smoother version, named smoother prior, will result in inferring a smoother state by using larger cτ

(cτ = 200, c0
τ = 400) and a smaller τmax = 0.05. In addition the smoother prior sets p01 = 0.85,

p00 = 0.05, pu0 = 0.05, puu = 0.05, so placing much more weight on the random walk.

Much smoother and mimicking prior specifications. In some of our examples we also entertain

two additional prior specifications. A third specification, which we named much smoother prior,

changes the smoother prior by setting τmax = 0.02, cτ = 300 and c0
τ = 600, so inducing even

more smoothness. Finally, we also entertain a mimicking prior specification, where we set the 4-

component mixture prior to “mimic’ the G(1/2, 1/2) prior used to model τ2 (see Kastner et al.
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[2017]) coupled with independent normal priors for α and β:

α ∼ N(0, 100), β ∼ N(0.5, 100) and τ2 ∼ G(1/2, 1/2).

As we already highlighted in Section 2.1 and Figure 1, the (conditionally conjugate) normal-inverse

gamma prior for (α, β, τ2) bounds τ2 away from zero a priori. Hence, we decided to try to “mimic”

the gamma prior as an example of a more standard prior specification.

Table 1 lists the subset of tuning parameters that vary across these four different prior specifica-

tions, while Figure 2 shows the marginal prior densities under the smoother, rougher and mimicking

priors. Our prior setup can give us shrinkage towards small τ or more spread out prior as in the the

mimicking case which is particularly important in larger systems. The hyperparameter choices are

heavily influenced by our actual application. In other applications, other choices might be consid-

ered. Nevertheless, given that we have standardized the data, we hope that they might at least serve

as useful starting points.

Appendix D contains a summary of our R code csv that accommodates these two default

prior specifications. The smoother prior is set when defpri=-1 (this is the default), while the

defpri=0 sets the prior as the rougher prior. In addition, we defer the details about our cus-

tomized Markov Chain Monte Carlo algorithm for approximate posterior inference to the Appendix

A.

2.3 Local level and dynamic regression models

In this section we illustrate the implementation of our 4-component mixture prior of (α, β, τ) for

two normal dynamic linear models (NDLMs): the first order model and a multiple dynamic linear

regression model. We chose these two models as representative ones of the vast and recent applied

business and economics literature where state-space structures have gained additional attention,

particularly in macroeconomic and financial applications where they are used, respectively, when

describing time-varying parameters (TVP) in vector autoregressive (VAR) models (see Primiceri

[2005]) or in large-scale dynamic factor models; and time-varying variances and covariances in

stochastic volatility (SV) models (see, Lopes and Carvalho [2007], Kastner et al. [2017]). Also,

regularisation inducing strategies in TVP models recently appeared in Belmonte et al. [2014], Kalli

and Griffin [2014], Bitto and Frühwirth-Schnatter [2019], Rocková and McAlinn [2018], Kowal

10



et al. [2018] and Uribe and Lopes [2018], amongst several others.

Local level model. We consider a standard simple local level model, also commonly known as

first order DLM:

yt = st + σ ηt,

st = α + β st−1 + τ εt,

where ηt and εt are independent and identically distributed N(0, 1). We simulate series of length

T = 300 with σ = 0.1 and s0 = 0. We chose three combinations of (α, β, τ):

Flat-line state : (α, β, τ) = (0.0, 0.0, 0.01)

AR(1) state : (α, β, τ) = (0.0, 0.99, 0.02)

Random walk state : (α, β, τ) = (0.0, 1.0, 0.01)

For each one of the above three simulated datasets, we employ the three prior specifications, namely

the smoother prior, the rougher prior and the mimicking prior, which were detailed in Section 2.2

and Table 1 and visualized in Figure 2. We run our csv code for 5000 iterations as burn-in and keep

the next 2000 for posterior inference. Our findings are summarized in Figure 3. The right column

shows summaries of the posterior draws of τ under each one of the above four prior specifications.

As it can be argued that the much smoother and, to some extent, the smoother priors always lead

to more concentrated posteriors near zero, more so when the actual state-space component is a flat-

line. The rougher leads to a more flat-lined state when the actual state-space component is a flat-line,

while the mimicking prior behaves as a much noisier version of the rougher prior. We also argue

that both smoother and rougher priors (the default ones in our csv code) are sensible compromises

between over fitting and over smoothing the state-space component. Finally, the mimicking prior

grossly overestimates the size of the standard deviations τ, as we anticipated earlier when discussing

the various priors in Figure 1.
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Dynamic regression model. The model is written as:

yt = st1xt1 + st2xt2 + st3xt3 + σ ηt,

sti = αi + βi st−1,i + τi εti, i = 1, 2, 3,

where ηt and εti are independent and identically distributed N(0, 1). We fix σ = 0.1, (α1, β1, τ1) =

(0, 0, 0.1), (α2, β2, τ2) = (0, 1, 0.1) and (α3, β3, τ3) = (0.1, 0.9, 0.2). Therefore, the three state-

space components are, respectively, a flat-line at zero (x1 is irrelevant), a random walk component

and a stationary AR(1) component. The predictors x1 and x2 are standard normal, while x3 is

N(5, 1). Figure 4 show posterior summaries for each one of the four prior specifications we en-

tertained in the previous example. On the one hand, our mixture prior specifications, the much

smoother, the smoother and the rougher priors, accurately captures the flat-lined state-space com-

ponent and smooths out the random walk component. On the other hand, the mimicking prior adapts

well to the AR(1) state-space component and overestimates the variability of the random walk com-

ponent. Once again, both smoother and rougher priors seem to be reasonable compromises that

avoids over smoothing and over noisy cases.

One can argue that these differences can become irrelevant from a practical point of view when

the number of state-space components is small, or even moderate, say less than a dozen. How-

ever, we show in the next section that when the total number of state-space components is much

larger, say in the hundreds or thousands, such minor differences accumulate and might make esti-

mation and forecasting less efficient. Below we illustrate these issues by considering a multivariate

stochastic volatility model for about one hundred time series of asset returns. In this case, the final

number of state-space components is around five thousand and leads to fifteen thousand (α, β, τ)

parameters and, therefore, flat-lining can lead to substantial decrease in parameter estimation.

3 Time-varying covariances

In this section we show the impact of our mixture prior in a much larger set up where thousands

of state variables might evolve over time according to an AR(1) process. More specifically, we are

interested in the case where yt = (y1t, . . . , yqt)′ denotes a q-dimensional vector of financial time

series observed at time t and consider posterior inference regarding the (possibly large) covariance
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matrices Σt driven by the observation equation:

yt|Ft−1 ∼ N(0, Σt), (4)

where Ft−1 denotes the information available at time t− 1. Without loss of generality, we assume

that any mean structure of yt has been subtracted out as part of a larger MCMC algorithm.

The main focus is on modeling the dynamic behavior of the conditional covariance matrix

Σt, which is known as the volatility matrix in finance. Two challenges arise in the multivariate

context. Firstly, the number of distinct elements of Σt equals q(q + 1)/2. This quadratic growth

has made the modeling Σt computationally very expensive and, consequently has created, up to

a few years ago, a practical upper bound for q. The vast majority of the papers available in the

literature employed a small q or use highly parametrized models to simplify the computation. For

instance, Engle [2002] and Tse and Tsui [2002] proposed dynamic conditional correlation (DCC)

models where the time evolution of correlations is essentially driven by a pair of parameters. We

argue that such models unrealistically over-simplify the complexity of the covariance dynamics.

Secondly, the distinct elements of Σt cannot be modeled independently since positive definiteness

has to be satisfied. In what follows, we briefly review the literature on time-varying covariance

models, while Section 3.1 introduces our proposed Cholesky stochastic volatility (CSV) model.

Brief literature review. There are at least three ways to decompose the covariance matrix Σt. In

the first case, the covariance matrix is decomposed as Σt = DtRtDt, where Dt is a diagonal matrix

with standard deviations, i.e. Dt = diag(σ1t, . . . , σqt) with σit being the volatility of yit, and Rt is

the correlation matrix. The above two challenges remain in this parametrization, i.e. the number

of parameters increases with q2 and Rt has to be positive definite. This is the parametrization used

in dynamic conditional correlation models (see, Tse and Tsui [2002] and Engle [2002], amongst

many others).

In the second case, a standard factor model is used to produce Σt = βtHtβ
′
t + Ψt, where βt is

the q× k matrix of factor loadings and is block lower triangular with diagonal elements equal to

one. Ψt and Ht are the diagonal covariance matrices of the specific factors and common factors,

respectively. This is the factor stochastic volatility (FSV) model of Harvey et al. [1994], Pitt and

Shephard [1999], Aguilar and West [2000], and, more recently, Lopes and Migon [2002], Chib

et al. [2006], Han [2006], Lopes and Carvalho [2007] and Philipov and Glickman [2006b], to name
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just a few. Philipov and Glickman [2006b] extended the FSV model by allowing Ht to follow a

Wishart random process and fit a 2-factor FSV model to the covariance of the returns of q = 88

S&P500 companies. Han [2006] fitted a similar FSV model to q = 36 CRSP stocks. Chib et al.

[2006] analyzed q = 10 international weekly stock index returns (see also Nardari and Scruggs

[2007]). Lopes and Carvalho [2007] extended the FSV model to allow for Markovian regime shifts

in the dynamic of the variance of the common factors and apply their model to study q = 5 Latin

America stock indexes. See Kastner [2019], for instance, who model daily log-returns of 300

S&P500 members via a sparse FSV model, where sparsity is achieved through the factor loadings

matrix.

We take a third alternative, one that parametrizes the full-rank time-varying covariance matrix

Σt via a Cholesky decomposition (Wu and Pourahmadi [2003], Huang et al. [2006] and Pourahmadi

[2013]):

Σt = AtHt A′t,

where AtH1/2
t is the lower triangular Cholesky decomposition of Σt. Ht is a diagonal matrix, the

diagonal elements of At are all equal to one and, more importantly, the lower diagonal elements of

At are unrestricted since positive definiteness is guaranteed. Next we show that there will be q(q +

1)/2 state-space components to be estimated and, consequently, 3q(q+ 1)/2 static parameters, the

(α, β, τ) of Section 2. As an example of these magnitudes, modeling q = 30 time series of (log)

returns with the CSV structure, for example, leads to around 500 state-space components and about

1500 static parameters.

Even though the factor stochastic volatility structure might, at first, seem more parsimonious

than our Cholesky stochastic volatility model, it suffers from well known, unresolved problems,

such as the selection of the order of the variables and, perhaps more importantly, it relies on the

selection of a suitable, time invariant number of common factors. Our CSV model also is sensitive

to pre-defined order of the variables in the Cholesky transformation. Nonetheless, we argue that its

impact is less pronounced due to the full Cholesky transformation and not a truncated, factor-based

transformation. We argue that in practice the number of factors is likely to be time varying. For

instance, the number of common factors might be lower during financial crises. Our approach avoid

the need to determine time-varying number for factors, which can be endogenously accommodated

by the φ-states dynamics, where the φ-states are the non-zero components of the inverse of the
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matrix At (see Section 3.1, particularly equations 5 – 8, for details). Put differently, the factor model

limitations became, under our CSV structure, modeling tools that might suggest more parsimonious

(zero columns in the lower triangular Cholesky matrix) and/or more sparse (zeros in the lower

triangular Cholesky matrix).

The prior developed in Section 2, coupled with the computational approach developed below,

enables us to search for simplifying structure in a large system without imposing it.

3.1 Cholesky stochastic volatility model

Below we lay out our basic parametrization of the time-varying covariance structure in terms of

linear regressions. Recall that yt ∼ N(0, Σt) and Σt = AtHt A′t where AtH1/2
t is the lower

triangular Cholesky decomposition of Σt. The matrix At is lower triangular with ones in the main

diagonal and Ht = diag(ω2
1t, . . . , ω2

qt). Therefore,

A−1
t yt ∼ N(0, Ht).

Let the (i, j)th element of the lower triangular matrix A−1
t be −φij for i > j. It follows that the

joint normal distribution for yt given Ft−1, that is N(0, Σt), can be rewritten as a set of q recursive

conditional regressions where

y1t ∼ N(0, ω2
1t) (5)

and, for i = 2, . . . , q,

yit ∼ N(φi1ty1t + φi2ty2t + · · ·+ φi(i−1)ty(i−1)t, ω2
it). (6)

Once φijts and ω2
its are available, so are A−1

t , At, Ht and, consequently, Σt = AtHt A′t. To

make Σt fully time-varying without any restrictions, we simply make each parameter in the regres-

sion representation time-varying. More precisely,

φijt ∼ N(αij + βij φij(t−1), τ2
ij) (7)

for i = 2, . . . , q and j = 1, . . . , i− 1, and

dit ∼ N(αi + βi di(t−1), τ2
i ) (8)
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for dit = log(ω2
it) and i = 1, . . . , q, where τ2

ij and τ2
i are hyper-parameters. It is understood that

the aforementioned distributions are all conditional on the available information Ft−1.

The actual parameters we work with are the φijts and dits. These parameters are our state

variables in the state equations (7) and (8), while the recursive conditional regressions (or simply

triangular regressions) are our observation in the observation equations (5) and (6). Our Cholesky

stochastic volatility (CSV) model comprises equations (5) to (8). The connection between the state-

space components φijts and dits and the parameters (αi, βi, τi) and (αij, βij, τij) and the set up of

Section 2 is straightforward.

Other Cholesky-based models. The Cholesky decomposition approach has been studied else-

where. On the one hand, various lasso-type regularization strategies for sparse modeling of co-

variance matrices appear, amongst others, in Levina et al. [2008], Rothman et al. [2010] and

Leng and Li [2011]. For time varying covariance matrices, on the other hand, Uhlig [1997] and

Philipov and Glickman [2006a], for example, proposed models for the covariance matrix based

on the temporal update of the parameters of a Wishart distribution (see also Asai and McAleer

[2009]). Uhlig [1997] models Σ−1
t = B−1

t−1Θt−1(B−1
t−1)

′ν/(ν + 1), where Bt = AtH1/2
t and

Θt−1 ∼ Beta ((ν + pq)/2, 1/2) is a multivariate Beta distribution Uhlig [1994]. See also Tri-

antafyllopoulos [2008] for a similar derivation in the context of multivariate DLMs. Philipov and

Glickman [2006a] model Σ−1
t ∼ W(ν, S−1

t−1), where S−1
t−1 = 1

ν (C
1/2)(Σ−1

t−1)
d(C1/2)′, such that

E(Σt|Σt−1, θ) = ν(C−1/2)(Σt−1)
d(C−1/2)′/(ν − q − 1). The parameter d controls the persis-

tence in the conditional variance process. A constant covariance model arises when d = 0, so

E(Σt) = νC−1/(ν− q− 1) and C plays the role of a precision matrix. When d = 1 and C = Iq,

it follows that E(Σt) = Σt−1 so generating random walk evolution for the conditional covariance.

See Dellaportas and Pourahmadi [2012] for a similar model for time-invariant A and Ht following

GARCH-type dynamics. Uhlig [1997] models daily/current prices per ton of aluminum, copper,

lead and zinc, i.e. q = 4, exchanged in the London Metal Exchange. Philipov and Glickman

[2006a] fit their model to returns data on p = 5 industry portfolios. Dellaportas and Pourahmadi

[2012] model exchange rates of the US dollar against q = 7 other country/regions. A thorough

review of the multivariate stochastic volatility literature up to a few years is provided in Asai et al.

[2006] and Lopes and Polson [2010]. See also Bauwens et al. [2012].
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Shrinkage prior for large scale state-space models. Our parsimony inducing priors, when ap-

plied to the Cholesky SV problem, falls into the emerging literature on shrinkage priors for large

scale state-space models. Frühwirth-Schnatter and Wagner [2010], for instance, uses spike-and-slab

priors for shrinking states towards zero or nonzero constant in dynamic models, while Belmonte

et al. [2014] and Bitto and Frühwirth-Schnatter [2019] implement hierarchical shrinkage to large

dynamic systems. More recently, there has a several contributions to tackle sparsity dynamically,

i.e. when a state variable (st in our generic notation) goes on and off throughout time. A few

prominent contributions are Nakajima and West [2013], who proposes a thresholding scheme for

dynamic sparsity, and Kalli and Griffin [2014] who extends the Normal-Gamma prior of Griffin

and Brown [2010] with a stationary gamma autoregressive process. Additional related contribu-

tions are Rocková and McAlinn [2018], Kowal et al. [2018] and Uribe and Lopes [2018]. Finance

and economics applications appeared in Dangl and Halling [2012], Zhao et al. [2016], Eisenstat

et al. [2016] and Carvalho et al. [2018].

3.2 Low-dimensional illustrations

In this section, we illustrate the performance of our CSV approach on i) simulated data with q = 3

and ii) real data with q = 9. In case i), we can assess the performance by comparing the CSV fit

to the known true Σt. We make the true process rather smooth in order to see how adaptive our

4-component mixture prior handles such an extreme scenario. In case ii) we compare the results

from our parsimony-inducing CSV model to the well-known factor stochastic volatility (Lopes and

Carvalho [2007], Kastner et al. [2017] and Kastner [2019]). We also empirically illustrate how

standard deviations and correlations are affected by the order in which the time series appear in our

CSV model. These examples are meant to illustrate CSV. Our more ambitious goal is the analysis of

large scale systems using an unrestricted model coupled with prior information to “regularize” the

fit and we know of no competing methodology with these features. This is illustrated in Section 3.3

3.2.1 Smooth or piecewise constant covariance dynamics

To gain insight into the proposed analysis, in this section we present results from two simple sim-

ulated exercises where the covariance matrix Σt evolves smoothly over time (first case) or in a

piece-wise constant fashion (second case).

17



Smooth case: We let q = 3, Σ1 = Iq, ΣT with standard deviations σ1 = 1.0, σ2 = 0.81,

σ3 = 0.25, and correlations ρ12 = ρ23 = 0.95, ρ13 = 0.9025 and Σt = (1−wt)Σ1 +wt ΣT where

wt increases from 0 to 1 as t goes from 1 to T. At each t we draw yt ∼ N(0, Σt). We simulate

T = 2500 observations. We run our R package csv under three prior specifications. The first two

ones are the default rougher prior and smoother prior specifications of Section 2.3. We have added

a third specification, namely much smoother prior, where τmax = 0.02, cτ = 300 and c0
τ = 600,

which induce even more smoothness. Results appear in Figure 5. Naturally, the posterior medians

from the much smoother prior are the ones that more closely follows the truth. Both smoother and

rougher priors produce reasonable estimates, but both more noisy than the smoother prior.

Piecewise constant case: Here, we let T = 1000 and q = 5, while the covariance matrix Σt

assumes one of four possible configurations. More specifically, Σt = Σ0
1 for t = 1, . . . , 250,

Σt = Σ0
2 for t = 251, . . . , 500, Σt = Σ0

3 for t = 501, . . . , 750 and Σt = Σ0
4 for t = 751, . . . , T.

Σ0
l,ij = ρ

|i−j|
l , for l = 1, 2, 3, 4 and i, j = 1, . . . , q. Basic correlations are ρ1 = 0.3, ρ2 = 0.5,

ρ3 = 0.7 and ρ4 = 0.9. Figure 6 shows posterior summaries for correlations, standard deviations

as well as φ coefficients from the Cholesky parametrisation. For illustration, we compare to a factor

stochastic volatility (FSV) model with k = 2 common factors. As expected, the posterior estimates

of the φ coefficients collapse at zero when the true coefficients are zero.

3.2.2 Order of the time series

The two main goals of the following empirical applications are: i) Compare the posterior summaries

for time-varying standard deviations and correlations based on the various prior specifications we

have outlined in the paper for the CSV model, as well as those from the factor stochastic volatility

models implemented in the R packages factorstochvol (see Kastner et al. [2017] and Kastner

[2019]).

S&P100 data. We randomly selected q = 9 time series of returns (companies) out of the 100

components of the S&P100 index. Posterior summaries are presented in Figures 7, 8 and 9. The

Cholesky approach requires us to pick an order for the time series, which can be mistakenly seen

as a weakness of the proposed modeling framework. We argue that the order can be important,

but it does not necessarily implies that different orders will lead to practically different covariance
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estimates. More specifically, the q = 9 S&P100 time series, y1, . . . , y9, was fit under two differ-

ent orders: the original order, y1, . . . , y9, and the full reverse order, y9, . . . , y1. Figures 8 and 9

present posterior medians for correlations and Cholesky time-varying coefficients. We argue that

the correlations are quite similar regardless of the type of prior smoothing strategy is implemented.

Nonetheless, when comparing φijt coefficients, is becomes apparent, as expected, that the order of

the time series matters as many coefficients in on order becomes flat-lined in the reserve order. This

is more pronounced when we use the smoother prior and seen in the bottom row of Figure 9. The

two CSV fits result from different priors on the d-states and φ-states under both orderings, so there

is no reason that they be identical. However, their similarity is striking, regardless of the time of

prior specification and regardless of that fact we are comparing standard deviations or correlations.

In some cases, this may be a convenient way to express prior information. For example, if one

series represented returns on the market (or some “factor”) we may want to put it early in the list.

In some applications, a natural ordering may not be apparent. Figures 8 and 9 suggest that when the

data is reasonably informative, we do not have to worry too much about getting the “right” order. It

also shows that, in this example at least, our MCMC is remarkably stable. In addition, one possible

solution to overcome the ordering issue is randomly selecting a few orders and then averaging them

out in order to obtain a more precise estimate of the covariance matrix.

Figure 10 exhibits the posterior densities for the standard deviations τ corresponding to all φ

coefficients. As expected, the rougher priors lead to similar rougher posteriors. Nonetheless, even in

the rougher prior set up, many φ coefficient flat-line and the corresponding τ shrinks toward zero.

Finally, Figure 11 plot through time the posterior means of the weights for the global minimum

variance portfolio based on the much smoother prior discussed above in Section 3.2.1. The time t

global minimum variance portfolio weights are computed as ωt = Σ−1
t 1q/1′qΣ−1

t 1q, where 1q is

a column vector of ones of length q. We see that the time variation in the standard deviations and

correlations may be of real practical importance in that the corresponding portfolio weights change

over time substantially. For instance, some of weights are always zero or positive, while others start

at zero and half way through become positive. Both CSV and FSV models produce similar weights,

with the FSV ones more jittered for some of the financial assets.

Exchange rate returns data. Figure 12 compares our CSV model with the FSV with k = 4

common factors for a subset of q = 9 exchange times series randomly selected from the 23 ones
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from the database exrates, included in the R package stochvol (see, Kastner et al. [2017]).

More specifically, the exchange rates that were selected correspond to the Canadian dollar (CAD),

UK pound (GBP), Hong Kong dollar (HKD), Mexican Peso (MXN), New Zealand dollar (NZD),

Poland zloty (PLN), Sweden krona (SEK), Singapore dollar (SGD) and the US dollar (USD). The

data spans from January 3rd, 2000 to April, 4th 2012, with a total of T = 3140 observations. We

compare cumulative portfolio performance and cumulative likelihood ratios relative to the FSV(4)

model. The comparisons are based on posterior point estimates of Σt, say Σ̂t. More specifically, we

compute ∑t
l=1 log p(yl |yl−1, Σ̂l) for t = t0, . . . , T and some t0 ≥ 1. Similarly, cumulative portfo-

lio returns are computed from point estimates of portfolio weights, i.e. ω̂t = Σ̂−1
t 1q/1′qΣ̂−1

t 1q. The

CSV model under the much smoother and smoother prior specifications lead to superior or similar

portfolio performances when compared to the FSV(4) model. Also, when comparing cumulative

likelihoods, the much smoother and the mimicking priors are the winners, but all CSV prior speci-

fications lead to superior performance when compared to the FSV(4) model. Similar results were

obtained when comparing to FSV(3), while FSV(1) and FSV(2) have much worse performance

overall.

3.3 High-dimensional illustration

In this final illustration, we use asset returns from firms making up the S&P100 index in order to

show that our CSV framework is particularly suited to deal with moderate to large settings. More

specifically, we stress that one of the crucial strengths of our proposed Cholesky SV framework

is that the triangular representation of the model naturally leads to parallelization in the MCMC

scheme. We refer to Appendix C for a simple account of the processing times when various proces-

sors are used in parallel to estimate a standard mid-size CSV model. Nonetheless, when it comes to

recomputing full correlations matrices, the entire system is need, i.e. we need to compute the full

covariance matrix Σt.

First case - q = 20: We first consider a selection of returns on q = 20 of the firms and use both

the smoother prior and the much smoother prior discussed in Section 3.2.1. We use these priors

since more smoothing may be desirable for larger q. Figure 13 plots the posterior means of the

d and φ states that represent the Cholesky SV framework. As expected, the time variation in the

residual variances visible, while the φ series have relatively little time variation and are centered
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near zero. However, under the smoother prior, a few of the φ series do vary substantially over time

This figure shows how our Bayesian model, with our particular prior choice, seeks a parsimonious

representation of a very high-dimensional problem. The amount of “parsimony”, “smoothness”, or

“regularization” inevitably is heavily influenced by our choice of prior. Under the much smoother

prior, the “flat-line” appearance of many of the φ states is striking. The results are quite similar to

those shown by Figure 9, when q = 9 and two orders of the time series were investigated. One could

argue that different levels of smoothness of the prior should be applied to state variables, perhaps

with smoother specifications to the φ coefficients and less smooth ones to the log-volatilities. In

addition, the level of roughness or smoothness might vary according to the relation between q,

number of time series, and T, number of time points.

Second case - q = 94: Finally, Figure 14 reports results for q = 94 assets using the much

smoother prior specification. Six of the return series from the 100 companies have missing values,

due to inclusion and exclusion to the index, leaving us with 94. In this case there are q = 94 latent

standard deviation processes (σit) and q(q− 1)/2 = 4, 371 latent correlation processes (ρijt), so

it becomes quite difficult to present the results. The top panel displays results for the σit while the

bottom panel displays the ρijt. The two panels have the same format. The solid gray band gives

pointwise quartiles for the posterior means. Thus, in the top panel, the gray band is the middle 50%

of the 94 standard deviation posterior means σ̂it for each fixed t and in the bottom panel it is the

middle 50% of the 4,371 correlation estimates for each fixed t. The thick solid (black) lines give

95% intervals. We can see that with 94 series we observe the same overall patterns we saw with

q = 20. We also randomly picked 20 of the {σ̂it} series to plot in the top panel and 20 of the {ρ̂ijt}

series to plot in the bottom panel. These plots, along with the size of the 95% intervals, indicate

the while there is an overall pattern over time, there are substantial differences amongst the {σ̂it}

across i (assets) and the {ρ̂ijt} across (i, j) (pairs of assets).

4 Final discussion and remarks

In this paper we develop a new prior specification for the parameters of the state equation in a state-

space model. We then develop an approach for modeling high dimensional time varying covariance

matrices in which the covariance at each time is a high dimensional state. We are able to compute

the posterior of the states using parallel computation and shrinkage based on our new prior. In high
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dimensions, some form of shrinkage is essential given the large number of parameters and that we

do not want to impose restrictions on the set of possible covariance matrices. For the important

example of vectors of asset returns, our prior allows us to uncover a novel form of shrinkage in

which some state elements remain essentially constant over time while others vary.

State space models have become increasingly important in economic and financial applications

as well as in problems in the physical sciences. Inevitably, the specification of the prior on the

parameters of the state equation plays an important role in the overall model. Often, simple and

possibly naive choices (such as imposing a random walk) are made. Our prior allows for consider-

ation of the possibilities of interest to most researchers. Important cases such as the random walk

model and the iid model become simple special cases whose presence may be inferred.

While our full prior specification provides the user with a lot of choice, the essential feature of

state smoothness in easily controlled by choosing the τmin, τmax, and cτ parameters. We show in

the examples that a few simple choices give good results. As the dimension increases, we make the

prior stronger (τmin and τmax smaller and cτ bigger).

The problem of estimating time-varying covariance matrices Σt is important and difficult when

the dimension q is large. Our approach was guided by the desire to enable parallel computation

which is essential for large q and a desire to keep the model as simple as possible without restricting

the Σt. See Appendix A for an illustration of how parallel processing is a natural tool Bayesian

inference in our time-varying covariance models. Approaches such as factor stochastic volatility

achieve parsimony by making strong assumptions (the number of factors) which may not be time

invariant.

However, without restrictions, some form of prior shrinkage (regularization) becomes essential

to stop the model from overfitting. We show that our prior enables us to shrink towards smooth

state evolution in a simple way and identify states which are essentially constant. This is a novel

form of shrinkage we feel is both an important empirical observation for the returns data as well

as a useful general insight for high-dimensional state-space modeling. We empirically showed that

our approach is comparable to the popular factor stochastic volatility (FSV) methodology and gives

stable intuitively plausible MCMC results.

While the examples in this paper show that a few simple prior choices work very well, it may

also be of interest to go beyond these choices in practice. The simple fact that there are many

more φ states than d states, suggest that a stronger prior might be used for the φ states rather than
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using the same prior for each state equation. A more exploratory modeling approach might reorder

the components of the vector y from the most important to the least important relative to common

latent factors. We argue that many of the φ-states would wonder around zero as the row of the

Cholesky equation increases, mimicking the usual block, lower triangular factor loadings structure,

as in Lopes and West [2004], for static factor models, and Kastner et al. [2017], for factor SV

models.

Both shrinkage and time-evolution of factor loadings in moderate and large scale factor stochas-

tic volatility and related models has emerged over the last decade. See, amongst others, Lopes

and Carvalho [2007], Belmonte et al. [2014], Zhao et al. [2016], Kastner et al. [2017], Bitto and

Frühwirth-Schnatter [2019], Rocková and McAlinn [2018], Kowal et al. [2018] and Uribe and

Lopes [2018] and Kastner [2019]. See also Frühwirth-Schnatter and Tüchler [2008] for a connec-

tion between rank reduction in the Cholesky decomposition and identification issues.

Of course, our approach has some key additional advantages stemming from its Bayesian for-

mulation. It can be embedded in a large MCMC as a conditional model. A basic example is that any

real example would have to have a model for the mean. In addition, the posterior uncertainty nat-

urally qualifies our inference, something that is difficult to do in high dimensional models without

the Bayesian machinery. An R package csv is being made available. A version (testing on Ubuntu

and the Mac) will soon be available at www.rob-mcculloch.org/csv.

Final remark. A key contribution of our paper is the mixture prior on the AR(1) parameters

(α, β, τ) of the state equation. In many applications, this state equation specification lies at the

heart of the model. Our prior coherently delineates the structural implications of prior choice. Our

prior prior is the first to do so, and should be helpful both in inputting prior information about

structure, and extracting posterior inferences about structure. A key element of our prior is the

simple specification for the τ prior. This priors allows us to express prior beliefs appropriate for the

larger context of the state space model and is superior to the commonly use conditionally conjugate

prior.

Our MCMC approach to the posterior computation is simple and allows us to obtain posterior

probabilities of key quantities like the probability β = 1 in a relatively straightforward manner.

However, our MCMC algorithm was tailored to the applications in this paper and modifications of

the algorithm could be of interest in other situations. In particular, the simple Gibbs sampler (Equa-
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tion 9) mixes slowly and in some applications it might be worth computing a marginal likelihood

by integrating out the state so the the parameters may be drawn directly. In this paper, inferential

details our full mixture model prior were only of interest in low dimension problems so that the

slow mixing was handled by using long runs.

Another contribution of our paper is inference for high-dimensional time varying covariance

matrices (Section 3). Our approach builds upon our prior specification and much of the development

of the prior was driven by this problem. Our MCMC for the for this problem draws each {φijt}

sequence for a given i and j conditionally. In some applications, a multivariate approach may

be preferable. In our high dimensional examples, the correlations were not extreme so that the

univariate approach worked well.
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A. Bitto and S. Frühwirth-Schnatter. Achieving shrinkage in a time-varying parameter model frame-

work. Journal of Econometrics, 210(1):75–97, 2019.

C. M. Carvalho, H. F. Lopes, and R. E. McCulloch. On the long run volatility of stocks. Journal of

the American Statistical Association (in press), 2018.

24



S. Chib, F. Nardari, and N. Shephard. Analysis of high dimensional multivariate stochastic volatility

models. Journal of Econometrics, 134:341–371, 2006.

T. Dangl and M. Halling. Predictive regressions with time-varying coefficients. Journal of Financial

Economics, 106:157–181, 2012.

P. Dellaportas and M. Pourahmadi. Cholesky-GARCH models with applications to finance. Statis-

tics and Computing, 22:849–855, 2012.

E. Eisenstat, J. C. C. Chan, and R. Strachan. Stochastic model specification search for time-varying

parameter vars. Econometric Reviews, 35:1638–1665, 2016.

R. F. Engle. Dynamic conditional correlation: a simple class of multivariate generalized autore-

gressive conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20:

339–350, 2002.
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A State equation: MCMC implementation

In this section we describe our implementation of a Markov chain Monte Carlo (MCMC) algo-

rithm for drawing the state s and (α, β, τ) in the state-space model given by Equation 1. Let

y = (y1, y2, . . . , yT), x = (x1, x2, . . . , xT), and s = (s1, s2, . . . , sT). Let s0 be the initial state.

Posterior inference is obtained by cycling through the two Gibbs full conditional distributions

[(s0, s) | (α, β, τ), y, x] and [(α, β, τ) | (s0, s)]. (9)

That is, we draw the state-space components conditional on the AR(1) parameters and then draw

the AR(1) parameters conditional on the state-space components. To draws the whole vector state-

space components s, we use the well known forward filtering, backward sampling (FFBS) algorithm

(see, for instance, Frühwirth-Schnatter [2004] and Chib et al. [2006]).
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Because the likelihood for (α, β, τ) given the states is that of a linear regression, the Gibbs

sampler (9) allows us to develop a simple approach for the draw [(α, β, τ) | (s0, s)] using our non-

conjugate mixture prior. However, this Gibbs sampler has the draw back that it may mix very

slowly given the strong dependence between s and (α, β, τ). Our approach in this paper has been

to use the Gibbs sampler 9 and then thin the draws to reduce dependence. In simple applications,

thinning the draws is adequate. In our more complex examples (Section 3), we may simplify our

use of the mixture prior by letting some components have zero prior probability. This strong prior

information is appropriate in a high dimensional problem and simplifies the inferential complexity.

We note however, that in some problems it may be worthwile to consider alternatives to (9). For

example, in some cases it is possible to analytically or numerically integrate out the states making

a direct draw of [(α, β, τ) | y, x] possible.

We draw [(α, β, τ) | (s0, s)] jointly by drawing from [(β, τ) | (s0, s)] and then [α | (β, τ), (s0, s)].

Given (β, τ), α is either known to be zero or has the normal prior given by 3 depending on the mix-

ture component. In the normal prior case, the prior is conditionally conjugate so it is a standard

calculation to both integrate out α to obtain a marginal likelihood for the draw of [(β, τ) | (s0, s)]

and to draw [α | (β, τ), (s0, s)].

In order to make a joint draw of [(β, τ) | (s0, s)] we must consider our four mixture components

which we label 01, 00, u0 and uu as in the labeling of our mixture prior probabilities p01, p00, pu0,

and puu.

In the 01 component we know α = 0 and β = 1 and we have a grid of ng possible τ values with

prior probabilities p(τ | β = 1). The prior probabilities p(τ | β = 1) will come from a choice of

(τmin, τmax, pmin, cτ) associated with β = 1. Each of the ng grid points will have prior probability

p01 p(τ | β = 1). Similarly, in the 00 component we have a set of ng values of (α, β, τ) each

having α = 0 and β = 1 and prior probability p00 p(τ | β = 0). These two components gives

us 2 ng values of (α, β, τ). At each of the values we can compute the simple linear regression

likelihood resulting from the (s0, s) state values.

In the u0 component, we know β = 0 and we again have a grid of τ values with prior proba-

bilities p(τ | β = 0). In this case we have a N(0, σ2
α) prior for α. Our likelihood for a (β = 0, τ)

value is obtained by integrating out α in the regression likelihood.

Finally, we have the uu component in which β ∈ (0, 1) rather than being zero or one. Again,

given β and τ we can integrate out α to obtain an integrated likelihood. The integrated likelihood
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will depend on β in a non-conjugate manner because of the N(0, σ2
α(1− β2)) prior in 3. We again

look for a simple approach and discretize the prior 2 by picking nb equally spaced grid points in

(0, 1). At each grid point βi, p(βi) ∝ n(βi | β̄, σ2
β), i = 1, 2, . . . , nb. Thus in the uu compontent

we have ngnb possible (β, τ) pairs each having prior puu p(β) p(τ | β).

Combining the four components we have 3ng + ngnb possible values of (β, τ). We draw from

this discrete distribution. In the 01 and 00 components, α is known. In the other two components α

is a draw from the normal given the states, the values of (β, τ), and a normal prior on α (3). In many

problems this brute force grid approach is unappealing because of the time it takes to evaluate the

likelihood and prior at each grid point. However in our case the computation of likelihood and prior

is so simple (given the states) that in our applications we do not incur a computational bottleneck

relative to the other computations that are being made.

Note that given a (α, β, τ) value the mixture component can be identified by inspection. For

example, if β = 1 you know you are in the 01 component. In some applications inferring the com-

ponent is a major goal as it reveals the essential characteristics of the state evolution. Given draws

of (α, β, τ), we can compute posterior probabilities of mixture components simply by counting the

number of draws in each component. This solves an important and complex problem in a simple

way. The drawback again is that the slow mixing of the basic Gibbs sampler (9) may necessitate a

large number of runs.

We emphasize that the most crucial aspect of our prior is the prior on τ having the properties

illustrated in Figure 1. This prior and the mixture elaboration, were developed in order to deal

with the larger problem discussed in Section 3. Initially we tried using the standard inverse gamma

prior for τ2, i.e. τ2 ∼ IG(ν/2, νλ/2). If you run the MCMC with small ν and many states, the

lack of prior information will give you signals that cannot be distinguished from noise. With big

ν, the MCMC can be deceptive in that in short runs it appears to have converged but in longer runs

the right tail of the prior is overcome, and large τ’s are drawn. For additional discussion on the

inverse gamma and its problematic use in state space models, see Frühwirth-Schnatter [2004] and

Frühwirth-Schnatter and Wagner [2010].

Initial state s0. The basic Gibbs sampler (9) is modified by adding the draw of the latent variable

[γ | (s0, s), (α, β, τ), y, x] = [γ | s0],
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then a draw from [(s0, s) | γ, (α, β, τ), y, x] from [s0 | s, γ, (α, β, τ)] = [s0 | s1, γ, (α, β, τ)] and,

finally, a draw form [s | γ, (α, β, τ), y, x]. Conditional on a draw of γ, we have a normal prior for

the initial state with mean zero and standard deviation w (when γ = 0) or cw (when γ = 1).

B CSV: MCMC implementation

We detail here the Markov chain Monte Carlo algorithm for posterior computation of our CSV

model introduced above. Before we proceed and to make the prior specification less sensitive to

scale, we recommend the standardization of the time series upfront, as it is commonly done in

virtually all statistics and econometrics applications of finance, economics and related datasets.

Let q denote the number of series and T denote the number of observations on each time series.

Let Yi = {yit}T
t=1 and di = {dit}T

t=1, i = 1, 2, . . . , q. Let φij = {φijt}T
t=1, i = 2, 3, . . . , q,

j = 1, 2, . . . , (i− 1). That is, Yi is the time series of observations on the ith variable, di is the time-

varying state corresponding to the residual variance of the regression of yit on yjt, j < i, and φij

is the time-varying state corresponding to the regression coefficient of yit on yjt. See Equation (6).

Let di0 and φij0 denote initial states.

With p(·) denoting a generic probability density function, the full joint distribution of every-

thing we need to think about is then given by the product of the following four hierarchical terms:

i. Likelihood function: ∏
q
i=2 p(Yi |Y1, . . . , Yi−1, di, φi1, . . . , φi(i−1))× p(Y1|d1),

ii. (d, φ) states: ∏
q
i=1 p(di | αi, βi, τi, di0)∏j<i p(φij | αij, βij, τij, φij0),

iii. AR parameters: ∏
q
i=1 p(αi, βi, τi)∏j<i p(αij, βij, τij), and

iv. Initial states: ∏
q
i=1 p(di0)∏j<i p(φij0),

where ∏j<i = 1 when i = 1. The joint densities in iii. and in iv. denote our prior on the parameters of

the autoregressive specification of the state evolution and our prior on the initial state, respectively.

The choice of this prior is a key component of our approach and was extensively discussed in

Section 2.

Our Markov chain Monte Carlo is a (large-scale) Gibbs sampler where we (efficiently) draw

from the following full conditional distributions (with ◦ denoting “everything else”):

i. d states: (di0, di) | ◦,
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ii. φ states: (φij0, φij) | ◦,

iii. d AR parameters: (αi, βi, τi) | ◦, and

iv. φ AR parameters: (αij, βij, τij) | ◦.

The key property in this potentially large system is that, in the conditionals above, the states and

parameters for a given equation are independent of the states and parameters of the other equations.

This is readily seen in the structure of the full joint distributions given above. Thus, to draw di,

we simply compute ỹit = yit − ∑j<i φijt yjt and use standard methods developed for univariate

stochastic volatility given the model:

ỹit ∼ N(0, exp{dit/2}),

dit ∼ N(αi + βi di(t−1), τ2
i ).

Similarly, the draw of φij reduces to the analysis of a basic dynamic linear model (DLM) for ỹijt =

yit −∑k<i,k 6=j φikt ykt:

ỹijt ∼ N(φijt yjt, exp{dit/2}),

φijt ∼ N(αij + βij φij(t−1), τ2
ij).

The draws of the AR parameter also reduce to consideration of a single state,

(αi, βi, τi) | ◦ ≡ (αi, βi, τi) | (di0, di),

(αij, βij, τij) | ◦ ≡ (αij, βij, τij) | (φij0, φij).

Thus, all the φij draws reduce to simple applications of the forward filtering backward sampling

(FFBS) algorithm and all of the di draws reduce to those of the univariate stochastic volatility

model. We use the method of Kim et al. [1998], again based on FFBS, for the univariate stochastic

volatility model.

In order to keep the entire system manageable for large q, we use a univariate DLM for each φ

in each equation rather than running a multivariate FFBS to jointly draw all the φ series for a given

equation. This approach avoids a great many high-dimensional matrix operations. Potentially, this
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could put dependence into our chain depending upon the application. This does not seem to be a

severe problem in our examples.

Thus, the whole thing boils down to repeated applications of the basic Gibbs sampler that cycles

through (s0, s) | (α, β, τ) and (α, β, τ) | (s0, s), where s denotes a state series and s0 the initial

state. Since we need to put a strong prior on (α, β, τ) there is unavoidable dependence in the basic

chain. Because of this dependence, we have found it useful to draw (α, β, τ) jointly as discussed in

Section 2.1.

C Parallel processing

One of the strengths of the proposed CSV framework is that the triangular representation of the

model naturally leads to parallelization in the MCMC scheme. More specifically, the T × i-

dimensional state-space matrix

(di, φi1, . . . , φi,i−1),

and the 3× i-dimensional parameter matrix

(αi, βi, τi, αi1, βi1, τi1, . . . , αi,i−1, βi,i−1, τi,i−1),

corresponding to the i-th recursive conditional regression can be drawn independently from the

other recursive conditional regressions.

However, it is well known that sampling di (log-volatilities) is more computationally expensive

(more time consuming) than sampling φij. In fact, for a small to moderate i, it is likely that the

computational burden is due to di almost exclusively. Let cd, cφ and cθ be the computational cost (in

seconds, for instance) to draw the T-dimensional vectors di and φij and the 3-dimensional vectors

θi = (αi, βi, τi), for any i and j (see full conditional distributions in Appendix B).

Usually cθ is negligible when compared to cd and cφ. The cost to draw the states from recursive

conditional regression i is ci = cd + (i− 1)cφ + icθ , and the total cost is

c = κ1(q)cd + κ2(q)cφ + κ3(q)cθ

where κ1(q) = q, κ2(q) = q(q − 1)/2 and κ3(q) = q(q + 1)/2. Similarly, the total cost of
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running regressions ia + 1 to ib (ib − ia regressions) is

cia :ib = ∆κab
1 cd + ∆κab

2 cφ + ∆κab
3 cθ

where ∆κab
j = κj(ib)− κj(ia), for j = 1, 2, 3. Assume that computation can be split between two

parallel processors. Due to the imbalance between (mainly) cd and cφ (and cθ), it is not immediately

obvious which recursive conditional regression i1 will make c1:i1 = c(i1+1):q = c/2. Similarly, what

are the optimal i1 and i2 when three processors are available? In general, for m processors, the goal

is to find the cut-offs (i1, i2, . . . , im−1) such that the cost within each group of recursive conditional

regressions is the same:

c1:i1 = c(i1+1):i2 = · · · = c(im−2+1):im−1
= c(im−1+1):q = c/m.

The search for the cut-offs is performed recursively with i1 selected from {1, . . . , q} such that

c1:i1 < c/m and c1:(i1+1) > c/m, i2 selected from {i1 + 1, . . . , q} such that c1:i2 < 2c/m and

c1:(i2+1) > 2c/m, and so forth.

Figure 15 provides an illustration when there are q = 100 time series and up to m = 20

processors. The costs (cd, cφ, cθ) = (310, 23, 0) are based on actual run times (in seconds) for

T = 2, 516 time points and 50,000 MCMC draws. It takes 13.5 times longer to draw di than it does

to draw φij. These costs were based on our code running in a 2.93 GHz Intel Core 2 Duo processor.

For m = 1 processor, the total cost is about 26 hours. For m = 2 processors, i1 = 67 and the

cost per processor is about 21 hours. For m = 3 processors, (i1, i2) = (52, 79) and the cost per

processor is about 14 hours. For m = 4 processors, (i1, i2, i3) = (44, 67, 84) and cost per processor

is about 10.5 hours. For m = 20 processors, cost per processor is about 2 hours.
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D Prior setup in R package csv

Recalling the set up of Section 2.3, In the univariate state-space model with observation equation

yt = f (xt, st, ηt) and state equation st = α+ β st−1 + τεt, the full mixture prior for the parameters

(α, β, τ) of the state equation is

p(α, β, τ) = p01 p(τ|β = 1) δ{α=0,β=1} + p00 p(τ|β = 0) δ{α=0,β=0}

+ pu0 p(τ|β = 0) p(α|β = 0, τ) δ{β=0} + puu p(β) p(τ|β 6= 0) p(α|β),

where p01=p01, p00=p00 and pu0=pu0, and

• Prior on τ|β: Pr(τ = τi|β) ∝ exp{−cτ|τi − τmin|}, where Pr(τ = τmin|β) = pmin,

τi ∈ {τmin + hτ, . . . , τmax}, with hτ is defined on a grid of length ngt, pmin=tauminp,

τmax =taumax. Additionally, when β = 0, τmin =taumin0 and cτ =tauc0, and when

β 6= 0, τmin =taumin and cτ =tauc.

• Prior on α|β: α|β ∼ N{0, σ2
α(1− β2)}, where σα =sa.

• Prior on β: Pr(β = βi) ∝ pN(βi, β̄, σ2
β), where β̄=bbar, σβ=sb, and βi ∈ (0, 1) on a grid

of length ngb.

Finally, the prior on the initial state is s0 ∼ γN(0, (cw)2) + (1 − γ)N(0, w2) and γ ∼

Ber(p∗), where p∗ =gamp, w =wgam, and c =cgam.

Default smoother prior - defpri=-1: This is the default prior we set-up for csv. In other

words, running csv(y) is the same as running

csv(y,burn=500,nd=1000,thin=1,taumin=0.005,taumin0=0.001,

taumax=0.05,tauminp=0.5,tauc=200,tauc0=400,p00=0.05,

pu0=0.05,p01=0.85,sa=2.0,bbar=1.0,sb=1.0,gamp=0.5,

wgam=0.1,cgam=10.0,ngb=100,ngt=100,defpri=-1)

Default rougher prior - defpri=0: Running csv(y, defpri = 0) sets p01=0.5, p00=0.15,

pu0=0.15, taumax=0.15, tauc=100 and tauc0=200, while all other values are kept the

same as in the case of the smoother prior.
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List of Tables

Prior set up
Parameter csv name much smoother smoother rougher mimicking
τmin taumin 0.005 0.005 0.001 0.001
τ0

min taumin0 0.001 0.001 0.01 0.001
τmax taumax 0.02 0.05 0.15 6
pmin tauminp 0.50 0.50 0.50 0.001
cτ tauc 300 200 100 1.25
c0

τ tauc0 600 400 200 1.25
σα sa 2.0 2.0 2.0 10
β̄ bbar 1.0 1.0 1.0 0.5
σβ sb 1.0 1.0 1.0 10
p00 p00 0.05 0.05 0.15 0.01
pu0 pu0 0.05 0.05 0.15 0.01
p01 p01 0.85 0.85 0.5 0.01

Table 1: 4-component mixture prior for AR parameters – Hyper-parameters of the much smoother, smoother,
rougher and mimicking prior specifications presented in Section 2.2. The densities are depicted in Figure 2.
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Figure 1: Prior for τ: Here τmin = 0.005, τmax = 0.15, pmin = 0.3, cτ = 120. In
each panel the solid line is our τ prior and the other two correspond to the densities for τ de-
rived from inverse gamma densities for τ2 with λ equal to the square of E(τ) under our prior
and ν equal to 5 (dashed lines) or 20 (dotted lines). These are, respectively, IG(2.5, 0.0002)
and IG(10, 0.001). When τ2 ∼ IG(ν/2, νλ/2), it follows that the density of τ is p(τ) =
[(νλ/2)ν/2/Γ(ν/2)]τ−(ν+1) exp{−0.5νλ/τ2}. In the left panel we have the three densities
where our discrete distribution has been scaled to be comparable to the continuous distributions.
In the right panel we have the log densities.
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Figure 2: 4-component mixture prior for AR parameters – Marginal prior distributions for α (top
left panel), β (top right panel) and τ (bottom left panel) for the three prior specifications: smoother,
rougher and mimicking priors presented in the text of Section 2.2 and in Table 1. Given the extreme
differences in variation, the bottom right panel is again the marginal prior of τ under the mimicking
prior.
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Figure 3: Local level model – Each row shows the results for a different configuration of the local
level model: flat-line state component (top row), AR(1) state component (middle row) and random
walk state component (bottom row). Posterior medians of the state-space components are presented
in the left column, while posterior summaries for the state-space standard deviations, τ, appear in
the right column. For each configuration (flat-line, AR(1) and random walk), we fit the local level
models based on the four priors discussed in the text: much smoother, smoother, rougher and
mimicking priors (see Table 1).
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Figure 4: Dynamic regression model – Each plot shows posterior medians of the three state-space
components, st1, st2 and st3 based on each one of the four prior specifications outlined in Section
2.2: much smoother prior (top left), smoother prior (top right), rougher prior (bottom left) and
mimicking prior (bottom right).
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Figure 5: Smooth covariance dynamics – Standard deviations are on the top row and correlations
are on the bottom row. True values (thicker black lines), much smoother prior (red lines), smoother
prior (green lines) and rougher prior (blue lines).
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Figure 6: q = 5 example – Structural break. n = 1000 with Σt = Σ0
1 constant for t = 1, . . . , 250,

Σt = Σ0
2 constant for t = 251, . . . , 500, Σt = Σ0

3 constant for t = 501, . . . , 750 and Σt = Σ0
4

constant for t = 750, . . . , n. Σ0
l,ij = ρ

|i−j|
l , for l = 1, 2, 3, 4 and i, j = 1, . . . , q. Basic correlations

are ρ1 = 0.3, ρ2 = 0.5, ρ3 = 0.7 and ρ4 = 0.9. The flat-lines and the step-lines are true values of
φtij and ρtij. CSV are the thicker lines and FSV with k = 2 are the grey lines.
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Figure 7: q = 9 example – Comparing the factor stochastic volatility model with k = 4 common
factors (top row), with the Cholesky stochastic volatility models based on two priors: the rougher
prior (middle row) and the much smoother prior (bottom row). Standard deviations are in the left
column and correlations are in the right column.
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Figure 8: q = 9 example – Posterior medians of correlations. Rougher prior (top row) and smoother
prior (bottom row). Two orders for the time series: (1, 2, . . . , 9) (left column) and (9, 8, . . . , 1)
(right column).
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Figure 9: q = 9 example – Posterior medians of φ-states. Rougher prior (top row) and smoother
prior (bottom row). Two orders for the time series: (1, 2, . . . , 9) (left column) and (9, 8, . . . , 1)
(right column).
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Figure 10: q = 9 example – Posterior densities of the standard deviations τ of the φ-states. Rougher
prior (left frame) and smoother prior (right frame).
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Figure 11: q = 9 example – Global minimum variance portfolio weights. Comparing FSV with
k = 4 and CSV with the much smoother prior.
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Figure 12: Exchange rates example – Global minimum variance portfolio cumulative performance
and cumulative likelihood for CSV models under the four prior specifications detailed in the text
and against a factor stochastic volatility model with k = 4 common factors.
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Figure 13: S&P100 data, q = 20 - Posterior means of the d-states (top row) and the φ-states
(bottom row). Posteriors are based on the smoother prior (left column) and the much smoother
prior (right column) specifications.
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Figure 14: S&P100 data, q = 94 - Posterior means of time-varying standard deviations (top frame)
and correlations (bottom frame), based on our much smoother prior specification.

49



●

●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ●

Number of processors

T
im

e 
in

 h
ou

rs

0
5

10
15

20

2 4 6 8 10 12 14 16 18 20

(a)

Recursive conditional regression

N
um

be
r 

of
 p

ro
ce

ss
or

s

0 20 40 60 80 100

2
6

10
14

18

●

● ●

● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(b)

Figure 15: Multiple processors – In panel (a) we plot the number of processors vs. the total time
in hours to run 50,000 iterations for a 100 × 100 (q = 100) time varying covariance matrix with
T = 2, 516. It takes about 13.5 times longer to draw a d state than it does to draw a φ state. Code
was run on a 2.93 GHz Intel Core 2 Duo processor. With 1 processor, the time is about 26 hours.
With 20 processors, the time is about 2 hours. In panel (b) we have the number of processors
on the vertical axis and each set of points along the dotted lines indicate how the 100 conditional
regressions in the Cholesky decomposition are allocated to the different processors. For example,
when m = 2 the cut-off is regression i1 = 67, i.e. the first processor runs regressions 1 to 67 while
the second processor runs regressions 68 to 100.
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