
Third homework assignment

PhD in Business Economics Course: Econometrics III
Professor: Hedibert Freitas Lopes Due date: 9am, February 23rd, 2020.

You can work individually or in pairs.
Use, preferably, Rmarkdown (via RStudio) to produce your report in PDF or HTML.

1 Fitting Gaussian and Student’s t ARMA(1,1) model

Let us assume that some observed time series data {y1, . . . , yn} follows an ARMA(1,1) model

yt = φyt−1 + εt + γεt−1

where ε1, . . . , εn are i.i.d. eitherM0 : N(0, σ2) orM1 : tν(0, τ
2), where τ 2 = (ν−2)/νσ2. Both σ2 and

ν are going to be kept fixed and known throughout. In addition, in order to simplify the homework,
we will assume that y0 = ε0 = 0. Therefore, it is easy to see that {ε1, . . . , εn} are deterministically
obtained from the parameters θ = (φ, γ) and the data yn = {y1, . . . , yn}. More specifically, ε1 = y1

and εt = yt − φyt−1 − γεt−1, for t = 2, . . . , n.

Likelihood functions. To avoid overloading the notation, let us drop (ε0, y0) in what follows. The
likelihood functions are, therefore,

L(θ|yn,M0) = c0 exp

{
−
∑n

t=1 ε
2
t

2σ2

}
and L(θ|yn,M1) = c1

n∏
t=1

(
1 +

1

ν

ε2
t

τ 2

)− ν+1
2

,

where the normalizing constants are c0 = (2πσ2)−n/2 and c1 =
(

Γ(ν+1
2

)

Γ(ν
2

)
√
πντ2

)n
are irrelevant for poste-

rior inference, but very important when computing predictive densities.

Hint: Once you have computed the errors ε1, . . . , εn conditional on φ and γ, the above likelihoods
(their logs is better for computation!) are easily computed in R as

loglike.gaussianmodel = sum(dnorm(eps,,sig,log=TRUE))
loglike.studenttmodel = sum(dt(eps/tau,df=nu,log=TRUE))-n/log(tau)

Prior distribution. Let us assume that p(θ) = p(φ)p(γ), for φ ∼ U(−1, 1) and γ ∼ U(−1, 1), so
we are only entertaining stationary and invertible ARMA(1,1) models.

Simulating some data. You should simulate two datasets of size n = 400, one with Gaussian
errors and the other with Student’s t errors where σ = 1, ν = 4, φ = 0.98 and γ = −0.64. Feel free
to use the following R script:

set.seed(12345)
n =400
sig=1.0
nu=4
phi=0.98
gamma =-0.64
tau = sqrt((nu-2)/nu)*sig
e.n = sig*rnorm(n)
e.t = tau*rt(n,df=nu)
y.n = rep(0,n)
y.t = rep(0,n)
y.n[1] = e.n[1]
y.t[1] = e.t[1]
for (t in 2:n){

y.n[t] = phi*y.n[t-1]+e.n[t]+gamma*e.n[t-1]
y.t[t] = phi*y.t[t-1]+e.t[t]+gamma*e.t[t-1]

}
par(mfrow=c(1,1))
ts.plot(cbind(y.n,y.t),col=1:2,main="ARMA(1,1) data")
legend("bottomleft",legend=c("Gaussian errors ","Student’s t(4) errors"),col=1:2,lty=1,bty="n")

Questions: Answer the following questions for each one of the two datasets generated by the
previous script.

1. What are the maximum likelihood estimates (MLE) of (φ, θ) under both models? Use the R
function nlm to minimize the negative of the likelihood functions. Are the results similar to
the ones from the R function arima(y,order=c(1,0,1))? Take a look at the hint below.

2. Use sampling importance resampling (SIR) to sample from both posteriors of θ. Recall that
the log-posterior densities are

log p(θ|yn,M0) = log c0 − 0.5
n∑
t=1

ε2
t/σ

2

log p(θ|yn,M1) = log c1 − 0.5(ν + 1)
n∑
t=1

log

(
1 +

1

ν

ε2
t

τ 2

)
.

Use these draws whenever necessary in the next several questions.

2

Hint: Observe where p(θ|yn,M0) and p(θ|yn,M1) in the domain of the θ, i.e. the square
(−1, 1) × (−1, 1). In fact, there they are in the tiny little lower right corner of the square.
Therefore, using the prior of θ might not be a wise idea since virtually all draws will be
rejected and your resample will contain only a handful of those prior draws. Try using a tighter
proposal, say a uniform in the tinier square (0.94, 1.04)× (−0.9,−0.5) (as in the top row of the
figure.

3. Compute posterior means, medians and 95% credibility interval for φ and γ. Are posterior
means (and medians) similar to their MLE counterparts?

4. Plot the contours of the posterior density. What are the posterior probabilities that γ > 1.0
under both Gaussian and Student’s t models?

5. Compute both predictive values p(yn|M0) and p(yn|M1). Since p(θ) = 1 for θ ∈ A = (−1, 1)×
(−1, 1), we can Monte Carlo integration to approximate the prior predictive densities, for
j = 0, 1,

p(yn|Mj) =

∫
A

∏n
t=1 p(yt|yt−1, θ,Mj)

q(θ)
q(θ)dθ,

3

by

p̂(yn|Mj) =
ξ

M

M∑
i=1

n∏
t=1

p(yt|yt−1, θ
(i),Mj),

where θ(1), . . . , θ(M) are draws from the proposal, q(θ) = 1/ξ, a uniform distribution on the
square B = (0.94, 1.04)× (−0.9,−0.5). From the previous hint, we see that all the parameter
region in A that is outside the tiny little region B has negligible posterior density, i.e. p(θ|yn) =
0 for θ ∈ A\B, hence eed not be considered for Monte Carlo approximation. Here ξ is the area
under B, i.e. ξ = (1.04 − 0.94)(−0.5 − (−0.9)) = 0.04. I suggest using at least M = 100, 000
draws from q(θ).

Let us also compute the Bayes factor of the Gaussian model agains the Student’s t model

B01 =
p(yn|M0)

p(yn|M1)
,

and discuss your findings.

6. Compute E(yn+1|yn,Mj) and V (yn+1|yn,Mj) for j = 0, 1. Similar to the previous question, it
can be shown that

E[g(yn+1)|yn,Mj] =

∫
A
E[g(yn+1)|yn, θ,Mj]p(θ|yn)dθ,

which is an integral similar to the one found when computing p(yn|Mj) in 5) above. The
difference is that the integral is with respect to the posterior of θ, while in 5 it was with
respect to the prior. These new quantities are from the posterior predictive densities. We
already have draws form these posterior distributions from 2, 3 and 4 above). We have now
all ingredients necessary to compute E(yn+1|yn,Mj) and V (yn+1|yn,Mj) for j = 0, 1 and only
need to consider g(yn+1) = yn+1 and g(yn+1) = y2

n+1.

4

2 Threshold autoregressive (TAR) model

In the third edition of his Analysis of Financial Time Series book, Ruey Tsay introduces the 2-regime
threshold autoregressive model of order p, or the TAR(p) model:

yt|yt−1, . . . , yt−p, θ ∼

 N
(
φ0 +

∑p
j=1 φjyt−j, σ

2
)

if yt−1 < γ

N
(
β0 +

∑p
j=1 βjyt−j, τ

2
)

if yt−1 ≥ γ

for t = 1, . . . , n and θ = (φ, σ, β, τ, γ) of dimension k = 2p+ 5. See Section 4.1.2 (pages 179-182) and
Section 4.5 (pages 218-222), for further details.

Quarterly U.S. civilian unemployment rate, seasonally adjusted. Section 4.5 (Application)
of Ruey’s book starts by illustrating the estimation of nonlinear time series models by analyzing the
quarterly U.S. civilian unemployment rate, seasonally adjusted, from 1948Q1 to 1993Q4. Equation
(4.53) shows a fitted TAR(2) model to ∆yt = (yt − yt−1), the first difference of the unemploy-
ment rate. He obtained, by maximum likelihood estimation (MLE), φ̂ = (0.01, 0.73, 0.10), β̂ =

(0.18, 0.80,−0.56), σ̂ = 0.76, τ̂ = 0.165 and γ̂ = 0.1, and standard errors se(φ̂) = (0.03, 0.10, 0.12)

and se(β̂) = (0.09, 0.1, 0.16).

Updating the data. Your task is three-fold. Firstly, you should use an updated version of the time
series. Downloaded the time series from https://fred.stlouisfed.org/series/LRUN64TTUSQ156S
and let us set the period between 1970Q1 to 2019Q4. Secondly, you should obtain MCMC-based
posterior inference for θ in the above 2-regime Gaussian TAR(2) model using the data up to 2017Q4.
Thirdly, you should use the last 8 quarters (2018Q1-2019.Q4) to perform out-of-sample forecasting.
The following plot was taken from FRED, Federal Reserve Bank of St. Louis, webpage.

5

https://fred.stlouisfed.org/series/LRUN64TTUSQ156S

Prior. Let us use conditionally conjugate independent priors for the 3-dimensional vectors of pa-
rameters φ and β, i.e. N(0, I3) is the prior distribution for both φ and β. Also, let us use a
Half-Cauchy(0, 1) distribution for both standard deviation parameters σ and τ . For the threshold
parameter γ, let its prior be a uniform distribution from ymin to ymax, i.e. between the minimum
and the maximum of the observed data.

Posterior. It should come at no surprise that the posterior of θ does not resemble any known
distribution. More specifically,

p(φ, σ, β, τ, γ|y1:n) ∝

exp{−0.5(φ′φ)}
1 + σ2

∏
Aγ

pN (yt, x
′
tφ, σ

2)

exp{−0.5(β′β)}

1 + τ2

∏
Bγ

pN (yt, x
′
tβ, τ

2)

 , (1)

where y0 = y−1 = y−2 = 0, x′t = (1, yt−1, yt−2), Aγ = {t = 1, . . . , n | yt−1 < γ} and Bγ = {t =
1, . . . , n | yt−1 ≥ γ}. Hence, posterior inference should be based on some sort of MCMC scheme.
Also, it should be obvious by now that φ and β are conditionally independent given γ (the same
applies σ and τ). Notice that (φ, σ) and (β, τ), conditionally on γ, are completely separated in
Equation (1).

MCMC algorithm. You will notice that the full posterior distributions of φ and β

p(φ|y1, . . . , yn, σ, φ, τ, γ) and p(β|y1, . . . , yn, τ, φ, σ, γ),

are both Gaussian, therefore Gibbs steps are available. The same cannot be said about the full
conditional distributions of the three remaining parameters, i.e. σ, τ and γ. I suggest you use
Gaussian random-walk Metropolis-Hastings (RW-MH) proposals for log σ, log τ and log γ, with the
same tuning variance for all three parameters, say ν2 = 0.01. You should be extra careful when
computing the RW-MH acceptance probabilities as it should include the Jacobians of the logarithm
transformations, i.e. when

Y ∼ pY (y) and Y = g(X), then pX(x) = pY (g(y))|g′(y)|.

Therefore, our MCMC scheme has two Gibbs steps, each sampling three parameters, and three RW-
MH steps, each one sampling only one parameter. Set the initial state of the Markov chain at θ(0)

(suggestion: use the MLE θ̂). Then, algorithmically, the MCMC scheme runs as follows:

For i = 0, . . . ,M − 1,

[φ] Sample φ(i+1) from p(φ|y1:n, σ, γ) - Gibbs step;

[β] Sample β(i+1) from p(β|y1:n, τ, γ) - Gibbs step;

[σ] Sample log σ∗ from N(log σ(i), ν2) - RW-MH step:

σ(i+1) =

{
σ∗ with probability α
σ(i) with probability 1− α

6

where

α = min

{
1,
p(φ(i), σ∗, β(i), τ (i), γ(i)|y1:n)

p(φ(i), σ(i), β(i), τ (i), γ(i)|y1:n)
×

1
σ(i)

1
σ∗

}
[τ] Sample log τ ∗ from N(log τ (i), ν2) - RW-MH step (the derivation is similar to the one for

σ);

[γ] Sample log γ∗ from N(log γ(i), ν2) - RW-MH step (the derivation is similar to the one for
σ);

7

Review: a generic SIR

There is a lot of confusion here about what is drawn from the proposal distribution and what is to
evaluate a function at a specific value. Let us consider a um parameter, θ, implementation of SIR
where the target distribution is π(θ). In our most common context, π(θ) ∝ p(θ)p(y|θ) where p(θ) is
the prior of θ and p(y|θ) is the likelihood of θ. What we would do in order to draw from π(θ) via
SIR?

1. Pick a proposal q(θ) that is easy to sample from, easy to evaluate and that resembles π(θ).

2. Draw {θ̃(1), . . . , θ̃(M)} from the proposal q(θ).

3. Evaluate the resampling weights

w(i) =
π(θ̃(i))

q(θ̃(i))
, i = 1, . . . ,M.

Notice that we are evaluating both π(·) and q(·) at the sampled draws. We are not evaluating
on any pre-specified grid.

4. Sample from the discrete set {θ̃(1), . . . , θ̃(M)} with sampling weights {w(1), . . . , w(M)}.

5. Let {θ(1), . . . , θ(M)} be the resampled draws.

6. The histogram of {θ(1), . . . , θ(M)} should approximate π(θ) when M is considerably large.

7. Similarly, E(g(θ)) =
∫
g(θ)π(θ)dθ is approximated by

∑M
i=1 g(θ(j))/M .

In the first question (ARMA(1,1) model), θ = (φ, γ) and π(θ) ∝ L(θ|yn)p(θ). A natural choice for
q(θ) is the prior p(θ). That is fine and it is a common practice, which leads to weights proportional to
the likelihood L(·|yn) evaluated at the draws from the prior. The main problem with this approach
appears when the prior is too flat relative to the likelihood. In this case, the vast majority of the
proposed draws will have weights virtually and practically equal to zero and only a few proposed
draws will have weights very large.

Finally, regardless of how you choose your proposal density q(θ), it is usually advisable to consider
logarithms of the prior, of the likelihood and of the proposal (therefore, of the weights as well) to
avoid underflow and/or overflow during your computations. Try the following piece of code and check
the weights when drawing from a N(0, σ2

prop) to obtain draws from a N(0, 1). Notice some weights
as small as e−238. These ratios can easily collapse at zero, Inf or NA. Play around with σprop and see
how easy is to crash this code!

Now, if you want to check if the SIR draws are actually draws from the target density, i.e. the
N(0,1), you simple add its curve on the top of the histogram. More specifically, you simple add a line
of code lines(thetas,dnorm(thetas),col=2), where thetas is a grid of points say from -5 to 5,
or thetas=seq(-5,5,length=100).

8

set.seed(12345)
M = 100000
sig.prop = 10
draws = rnorm(M,0,sig.prop)
w = dnorm(draws)/dnorm(draws,0,sig.prop)
w1 = dnorm(draws,log=TRUE)-dnorm(draws,0,sig.prop,log=TRUE)
w2 = exp(w1-max(w1))
sort(w)[c(1:3,(M-2):M)]
sort(w1)[c(1:3,(M-2):M)]
sort(w2)[c(1:3,(M-2):M)]
draws1 = sample(draws,replace=TRUE,size=M/2,prob=w2)
par(mfrow=c(1,2))
hist(draws,prob=TRUE,xlab="",main=paste("Draws from N(0,",sig.prop,"^2)",sep=""))
hist(draws1,prob=TRUE,xlab="",main="Draws from N(0,1)")
thetas=seq(-5,5,length=100)
lines(thetas,dnorm(thetas),col=2,lwd=2)

results
#[1] 0 0 0 10 10 10
#[1] -1540.618531 -1028.417719 -1026.298068 2.302585 2.302585 2.302585
#[1] 0 0 0 1 1 1

9

	Fitting Gaussian and Student's t ARMA(1,1) model
	Threshold autoregressive (TAR) model

