
Third homework assignment
PhD in Business Economics Advanced Bayesian Econometrics
Hedibert Freitas Lopes Due at 9am, February 18th, 2021.

Use, preferably, Rmarkdown (via RStudio) to produce your report in PDF or HTML.

Nonlinear Gaussian regression

Let us consider the context of Example 6.1 (pages 192-194) of Gamerman and Lopes (2006), where the
response variable y, is the velocity of an enzymatic reaction (in counts/min/min) and the regressor, x,
is substrate concentration (in ppm). Check the book webpage at http://www.dme.ufrj.br/mcmc/
chapter6.html. Here is the data and a scatter plot showing the nonlinear relationship between y
and x:

x = c(0.02,0.02,0.06,0.06,0.11,0.11,0.22,0.22,0.56,0.56,1.10,1.10)
y = c(76,47,97,107,123,139,159,152,191,201,207,200)
plot(x,y)

Model. We would like to entertain a Gaussian nonlinear model, for i = 1, . . . , n (n = 12),

yi|xi, β, γ, σ2 ∼ N(β0 + β1g(xi, γ), σ
2),

where β = (β0, β1)
′ and g(xi, γ) = xi/(γ + xi), for β ∈ IR2, γ ∈ IR and σ2 ∈ IR+.

Prior. Let us consider the prior for β and σ2 as follows:

p(β, γ, σ2) = p(β|σ2)p(γ)p(σ2)

β|σ2 ∼ N(b0, σ
2B0), b0 = (50, 170)′, B0 = 3I2

γ ∼ N(g0, τ
2
0 ), g0 = 0, τ 20 = 1

σ2 ∼ IG(ν0/2, ν0σ
2
0/2), ν0 = 5, σ2

0 = 10.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Answer the following questions.

(a) Show that p(β|x, y, σ2, γ) is a Gaussian distribution.

(b) Show that p(σ2|x, y, β, γ) is an Inverse-Gamma distribution.

(c) Show that p(σ2|x, y, γ) is also an Inverse-Gamma distribution.

Note 1: (c) is possible because we made the prior of β conditional on σ2, p(β|σ2), which results
in p(σ2|x, y, γ) also being an Inverse-Gamma distribution. What is the catch? Well, the catch is
that multiplying (a) and (c) is exactly p(β, σ2|x, y, γ), while iterating between (a) and (b) is
approximately p(β, σ2|x, y, γ), which is the standard Gibbs (or, more generally, MCMC) theorem.

http://www.dme.ufrj.br/mcmc/chapter6.html
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Note 2: It is not hard to see that (γ|x, y, β, σ2) comes from a distribution of no known form, since
γ from the prior does not conjugate with γ from the likelihood function. Nonetheless, it can be
point-wise evaluated up to a normalizing constant as

p(γ|x, y, β, σ2) ∝ exp

{
− 1

2τ 20
(γ2 − 2γm0)

}
× exp

{
− 1

2σ2

[
β2
1

n∑
i=1

g2(xi, γ)− 2
n∑

i=1

(yi − β0)g(xi, γ)

]}
.

(d) Algorithm 1: Implement an MCMC algorithm that cycles through the full conditionals:

(d1) Gibbs step: Sample σ2 from p(σ2|x, y, β, γ);
(d2) Gibbs step: Sample β from p(β|x, y, σ2, γ);

(d3) Metropolis-Hastings step: Sample Sample γ from p(γ|x, y, β, σ2).

(e) Algorithm 2: Replace step (d1) from Algorithm 1 by

(e1) Gibbs step: Sample σ2 from p(σ2|x, y, γ).

Conceptually, what is the difference between the above MCMC algorithms?

(f) Compare the algorithms in terms of MCMC mixing, sample autocorrelation functions and ef-
fective sample sizes, as well as by comparing the approximate marginal posterior distributions
for β0, β1, γ and σ2.

(g) Finally, on the top of the scatterplot of x against y, add the posterior predictive curve. More
precisely, for a grid of new values of x, say xn+1, in {0.02, 0.03, . . . , 1.10}, a 109-point grid,
draw the 2.5th, 50th and 97.5th percentiles the posterior predictive densities

p(yn+1|xn+1, x, y) =

∫
p(yn+1|xn+1, β, γ, σ

2)p(β, γ, σ2|x, y)dβdγdσ2.

Recall that, by Monte Carlo integration,

p̂mc(yn+1|xn+1, x, y) =
1

M

M∑
i=1

p(yn+1|xn+1, β
(i), γ(i), σ2(i)),

where {(β, γ, σ2)(i)}Mi=1 are draws from the posterior p(β, γ, σ2|x, y), which could be obtained
from algorithm 1 or 2 above. In fact, draws {(β, γ, σ2)(i)}Mi=1 can also be used to generate draws
{y(i)n+1}Mi=1 from p(yn+1|xn+1, x, y) by sampling y(i)n+1 from p(y|xn+1, (β, γ, σ

2)(i)), for i = 1, . . . ,M .
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