Third homework assignment - SOLUTION
PhD in Business Economics Advanced Bayesian Econometrics
Hedibert Freitas Lopes Due at 9am, February 18th, 2021.

Nonlinear Gaussian regression

Let us consider the context of Example 6.1 (pages 192-194) of Gamerman and Lopes (2006), where the
response variable y, is the velocity of an enzymatic reaction (in counts/min/min) and the regressor, x,
is substrate concentration (in ppm). Check the book webpage at http://www.dme.ufrj.br/mcmc/
chapter6.html. Here is the data and a scatter plot showing the nonlinear relationship between y
and x:

X c(0.02,0.02,0.06,0.06,0.11,0.11,0.22,0.22,0.56,0.56,1.10,1.10)

y c(76,47,97,107,123,139,159,152,191,201,207,200)

plot(x,y,ylim=range(y,ql,q2),pch=16,xlab="Substrate concentration (ppm)",
ylab="Velocity of enzymatic reaction (counts/min/min)",col=2)
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Figura 1: Observe the nonlinear nature of the relationship between y and =z.

Model. We would like to entertain a Gaussian nonlinear model, for i = 1,...,n (n = 12),

yi|xi7ﬁav7 02 ~ N(BO + ﬁlg<$i77)7 02)7

where 3 = (8o, £1) and g(zs,7) = z:;/(y + z;), for B € R?, v € IR and 0% € IRT. The first thing
to realize here is that, conditional « the above model is a Gaussian linear regression of y on g(z, 7).
That being said, conditional on v, posterior inference for 3 and o might be straightforward should
one use a conjugate Normal-Inverse Gamma prior on (3,02). In other words, the bottleneck is the
parameter 7, since it appears in a nonlinear fashion when linking y to x. This is the source of the
nonlinearity, not the fact that x appears as /(v + z).


http://www.dme.ufrj.br/mcmc/chapter6.html
http://www.dme.ufrj.br/mcmc/chapter6.html

Prior. Let us consider the prior for (3,0?) and v as follows:

p(B,7,0%) = p(Blo*)p()p(0?)
Blo* ~ N(by,0*By), bo = (50,170, By = 31

v N(9077-(?>7 902077—(?:1
o? ~ IG(/2,108/2), vy = 5,08 = 10.

The prior of (3,0%) is Normal-Inverse Gamma, as pointed out above. This might be useful when
designing an MCMC scheme that either cycles through p(3, 02|z, y,7) and p(v|z,y, 3,02) or cycles
through p(B|z,y,0%,7), p(o?|x,y,B,v) and p(y|z,y, 3,0?). It is worth noticing cycling through
p(Blr,y,0% v) and p(o?|z,y, 3,7) will produce draws from p(83,c%|z,y,7v), BUT only in the limit
and as a result of a Markov chain argument. The lesson here is to always derive your posterior
distributions analytically and resort to MC and MCMC schemes only when necessary.

Let . = (xy,...,2,) and y = (y1,...,Yn). Answer the following questions.

(a) Show that p(8|z,y,0?,~) is a Gaussian distribution.
(b) Show that p(c?|x,y, 3,7) is an Inverse-Gamma distribution.

(c) Show that p(c?|x,y,~) is also an Inverse-Gamma distribution.

Note 1: (c) is possible because we made the prior of 3 conditional on o2, p(8|o?), which results
in p(o?|z,y,7) also being an Inverse-Gamma distribution. What is the catch? Well, the catch is
that multiplying (a) and (c) is exactly p(8,0%|z,y,~), while iterating between (a) and (b) is
approximately p(f3,c?%|z,y, ), which is the standard Gibbs (or, more generally, MCMC) theorem.

Note 2: Tt is not hard to see that (y|z,y, 3,0?) comes from a distribution of no known form, since
~ from the prior does not conjugate with v from the likelihood function. Nonetheless, it can be
point-wise evaluated up to a normalizing constant as

1
p(y|z,y,B,0%) o exp {—p(v2 - 27mo)}
70

X exp {—% [ﬁf 292(%’7) -2 Z(y — 50)9(952'77)] } :

(d) Algorithm 1: Implement an MCMC algorithm that cycles through the full conditionals:

(d1) Gibbs step: Sample o2 from p(o?|z,y, 8,7);
(d2) Gibbs step: Sample 3 from p(8|z,y, 02, 7);
(d3) Metropolis-Hastings step: Sample Sample v from p(v|z,y, 8, o?).

(e) Algorithm 2: Replace step (d1) from Algorithm 1 by

(el) Gibbs step: Sample o2 from p(c?|z,y,7).
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Figura 2: MCMC chains (top row), autocorrelations of the chains (middle row) and marginal posterior
densities (bottom row). Algorithm 1 in red and algorithm 2 in black.

Conceptually, what is the difference between the above MCMC algorithms?

(f) Compare the algorithms in terms of MCMC mixing, sample autocorrelation functions and ef-
fective sample sizes, as well as by comparing the approximate marginal posterior distributions
for By, P1, v and o2.

(g) Finally, on the top of the scatterplot of = against y, add the posterior predictive curve. More
precisely, for a grid of new values of z, say z,1, in {0.02,0.03,...,1.10}, a 109-point grid,
draw the 2.5th, 50th and 97.5th percentiles the posterior predictive densities

p(yn+1’$n+1>x7y) = /p<yn+1|xn+17577702>p<67770—2‘x>y)dﬁd7d02'

Recall that, by Monte Carlo integration,
| M

ﬁmc(yn-i-l ’xn-&-l? T, y) = M Zp(yn—i-l |$n+17 5(1)7 7(1)7 02(”)7

=1
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Figura 3: Posterior of E(Ynew|Tnew: T, y) = Bo + B19(@new, ) and p(Ynew|Tnew T, y)-

where {(,7,0%)@}M  are draws from the posterior p(3,~, 02|z, y), which could be obtained

from algorithm 1 or 2 above. In fact, draws {(3,7, %)@ }¥, can also be used to generate draws
{ySil}iAi1 from p(yp41|Tns1, 7, y) by sampling ?/7(;4)-1 fromp(y|:vn+1, (8,7, U2>(i))> fori=1,..., M.



