
Third homework assignment - SOLUTION
PhD in Business Economics Advanced Bayesian Econometrics
Hedibert Freitas Lopes Due at 9am, February 18th, 2021.

Nonlinear Gaussian regression

Let us consider the context of Example 6.1 (pages 192-194) of Gamerman and Lopes (2006), where the
response variable y, is the velocity of an enzymatic reaction (in counts/min/min) and the regressor, x,
is substrate concentration (in ppm). Check the book webpage at http://www.dme.ufrj.br/mcmc/
chapter6.html. Here is the data and a scatter plot showing the nonlinear relationship between y
and x:

x = c(0.02,0.02,0.06,0.06,0.11,0.11,0.22,0.22,0.56,0.56,1.10,1.10)
y = c(76,47,97,107,123,139,159,152,191,201,207,200)
plot(x,y,ylim=range(y,q1,q2),pch=16,xlab="Substrate concentration (ppm)",

ylab="Velocity of enzymatic reaction (counts/min/min)",col=2)
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Figura 1: Observe the nonlinear nature of the relationship between y and x.

Model. We would like to entertain a Gaussian nonlinear model, for i = 1, . . . , n (n = 12),

yi|xi, β, γ, σ2 ∼ N(β0 + β1g(xi, γ), σ
2),

where β = (β0, β1)
′ and g(xi, γ) = xi/(γ + xi), for β ∈ IR2, γ ∈ IR and σ2 ∈ IR+. The first thing

to realize here is that, conditional γ the above model is a Gaussian linear regression of y on g(x, γ).
That being said, conditional on γ, posterior inference for β and σ2 might be straightforward should
one use a conjugate Normal-Inverse Gamma prior on (β, σ2). In other words, the bottleneck is the
parameter γ, since it appears in a nonlinear fashion when linking y to x. This is the source of the
nonlinearity, not the fact that x appears as x/(γ + x).

http://www.dme.ufrj.br/mcmc/chapter6.html
http://www.dme.ufrj.br/mcmc/chapter6.html


Prior. Let us consider the prior for (β, σ2) and γ as follows:

p(β, γ, σ2) = p(β|σ2)p(γ)p(σ2)

β|σ2 ∼ N(b0, σ
2B0), b0 = (50, 170)′, B0 = 3I2

γ ∼ N(g0, τ
2
0 ), g0 = 0, τ 20 = 1

σ2 ∼ IG(ν0/2, ν0σ
2
0/2), ν0 = 5, σ2

0 = 10.

The prior of (β, σ2) is Normal-Inverse Gamma, as pointed out above. This might be useful when
designing an MCMC scheme that either cycles through p(β, σ2|x, y, γ) and p(γ|x, y, β, σ2) or cycles
through p(β|x, y, σ2, γ), p(σ2|x, y, β, γ) and p(γ|x, y, β, σ2). It is worth noticing cycling through
p(β|x, y, σ2, γ) and p(σ2|x, y, β, γ) will produce draws from p(β, σ2|x, y, γ), BUT only in the limit
and as a result of a Markov chain argument. The lesson here is to always derive your posterior
distributions analytically and resort to MC and MCMC schemes only when necessary.
Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Answer the following questions.

(a) Show that p(β|x, y, σ2, γ) is a Gaussian distribution.

(b) Show that p(σ2|x, y, β, γ) is an Inverse-Gamma distribution.

(c) Show that p(σ2|x, y, γ) is also an Inverse-Gamma distribution.

Note 1: (c) is possible because we made the prior of β conditional on σ2, p(β|σ2), which results
in p(σ2|x, y, γ) also being an Inverse-Gamma distribution. What is the catch? Well, the catch is
that multiplying (a) and (c) is exactly p(β, σ2|x, y, γ), while iterating between (a) and (b) is
approximately p(β, σ2|x, y, γ), which is the standard Gibbs (or, more generally, MCMC) theorem.

Note 2: It is not hard to see that (γ|x, y, β, σ2) comes from a distribution of no known form, since
γ from the prior does not conjugate with γ from the likelihood function. Nonetheless, it can be
point-wise evaluated up to a normalizing constant as

p(γ|x, y, β, σ2) ∝ exp

{
− 1

2τ 20
(γ2 − 2γm0)

}
× exp

{
− 1

2σ2

[
β2
1

n∑
i=1

g2(xi, γ)− 2
n∑

i=1

(yi − β0)g(xi, γ)

]}
.

(d) Algorithm 1: Implement an MCMC algorithm that cycles through the full conditionals:

(d1) Gibbs step: Sample σ2 from p(σ2|x, y, β, γ);
(d2) Gibbs step: Sample β from p(β|x, y, σ2, γ);

(d3) Metropolis-Hastings step: Sample Sample γ from p(γ|x, y, β, σ2).

(e) Algorithm 2: Replace step (d1) from Algorithm 1 by

(e1) Gibbs step: Sample σ2 from p(σ2|x, y, γ).
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Figura 2: MCMC chains (top row), autocorrelations of the chains (middle row) and marginal posterior
densities (bottom row). Algorithm 1 in red and algorithm 2 in black.

Conceptually, what is the difference between the above MCMC algorithms?

(f) Compare the algorithms in terms of MCMC mixing, sample autocorrelation functions and ef-
fective sample sizes, as well as by comparing the approximate marginal posterior distributions
for β0, β1, γ and σ2.

(g) Finally, on the top of the scatterplot of x against y, add the posterior predictive curve. More
precisely, for a grid of new values of x, say xn+1, in {0.02, 0.03, . . . , 1.10}, a 109-point grid,
draw the 2.5th, 50th and 97.5th percentiles the posterior predictive densities

p(yn+1|xn+1, x, y) =

∫
p(yn+1|xn+1, β, γ, σ

2)p(β, γ, σ2|x, y)dβdγdσ2.

Recall that, by Monte Carlo integration,

p̂mc(yn+1|xn+1, x, y) =
1

M

M∑
i=1

p(yn+1|xn+1, β
(i), γ(i), σ2(i)),
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Figura 3: Posterior of E(ynew|xnew, x, y) = β0 + β1g(xnew, γ) and p(ynew|xnew, x, y).

where {(β, γ, σ2)(i)}Mi=1 are draws from the posterior p(β, γ, σ2|x, y), which could be obtained
from algorithm 1 or 2 above. In fact, draws {(β, γ, σ2)(i)}Mi=1 can also be used to generate draws
{y(i)n+1}Mi=1 from p(yn+1|xn+1, x, y) by sampling y(i)n+1 from p(y|xn+1, (β, γ, σ

2)(i)), for i = 1, . . . ,M .
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