
Second homework assignment

PhD in Business Economics Course: Advanced Bayesian Econometrics
Professor: Hedibert Freitas Lopes Due date: 12h, February 11th, 2021.

Use, preferably, Rmarkdown (via RStudio) to produce your report in PDF or HTML.

Fitting Gaussian and Student’s t ARMA(1,1) model

Let us assume that some observed time series data {y1, . . . , yn} follows an ARMA(1,1) model

yt = φyt−1 + εt + γεt−1

where ε1, . . . , εn are i.i.d. eitherM0 : N(0, σ2) orM1 : tν(0, τ
2), where τ 2 = (ν − 2)/νσ2. We will

keep ν fixed and known throughout. In addition, in order to simplify the homework, we will assume
that y0 = ε0 = 0. Therefore, it is easy to see that {ε1, . . . , εn} are deterministically obtained from
θ = (φ, γ, σ) and the data yn = {y1, . . . , yn}: ε1 = y1 and εt = yt − φyt−1 − γεt−1, for t = 2, . . . , n.

Likelihood functions. To avoid overloading the notation, let us drop (ε0, y0) in what follows. The
likelihood functions are, therefore,

L(θ|yn,M0) = (2πσ2)−n/2 exp
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Prior distribution. Let us assume that

p(θ) = p(φ, γ, σ2) = p(φ)p(γ)p(σ2),

for

φ ∼ U(−1, 1)

γ ∼ U(−1, 1)

σ2 ∼ IG(5/2, 5(1.4)/2).

Hence, we are constraining our inference to the class of stationary and invertible ARMA(1,1) models.
In additional, prior mean, mode and standard deviation for σ2 is around 2.33, 1 and 3.3, respectively.
Also, Pr(σ2 ∈ (0.33, 26.3)) ≈ 99.9%, so σ < 0.5 or σ > 5 are essentially ruled out as well.



Simulating some data. You should simulate two datasets of size n = 400, one with Gaussian
errors and the other with Student’s t errors where σ = 1, ν = 4, φ = 0.98 and γ = −0.64. Feel free
to use the following R script:

set.seed(12345)
n =400
sig=1.0
nu=4
phi=0.98
theta=-0.64
tau = sqrt((nu-2)/nu)*sig
e.n = sig*rnorm(n)
e.t = tau*rt(n,df=nu)
y.n = rep(0,n)
y.t = rep(0,n)
y.n[1] = e.n[1]
y.t[1] = e.t[1]
for (t in 2:n){

y.n[t] = phi*y.n[t-1]+e.n[t]+theta*e.n[t-1]
y.t[t] = phi*y.t[t-1]+e.t[t]+theta*e.t[t-1]

}
par(mfrow=c(1,1))
ts.plot(cbind(y.n,y.t),col=1:2,main="ARMA(1,1) data")
legend("bottomleft",legend=c("Gaussian","Student’s t"),col=1:2,lty=1,bty="n")

Questions: Answer the following questions for each one of the two datasets generated by the
previous script.

1. Maximum likelihood inference.
What are the maximum likelihood estimates (MLE) of θ under both models? Use the R function
nlm to minimize the negative of the likelihood functions. Are the results similar to the ones
from the R function arima(y,order=c(1,0,1))?

2. Bayesian inference via Monte Carlo methods.

(a) Use sampling importance resampling (SIR) to sample from both posterior distributions of
θ:

p(θ|yn,M0) ∝ L(θ|yn,M0)p(θ)

p(θ|yn,M1) ∝ L(θ|yn,M1)p(θ).

Use these draws whenever necessary in the next several questions.

(b) Compute posterior means, medians and 95% credibility interval for φ, γ and σ2. Are
posterior means (and medians) similar to their MLE counterparts?
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(c) Plot the contours of the posterior density. What are the posterior probabilities that
φ > 0.9 under both models?

3. Prior predictive, Bayes factor and posterior model probability.

(a) Compute both prior predictive p(yn|M0) and p(yn|M1). We can approximate the prior
predictive densities, for j = 0, 1

p(yn|Mj) =

∫ ∞
0

∫ 1

−1

∫ 1

−1

n∏
t=1

p(yt|yt−1, θ,Mj)dφdγdσ
2,

via Monte Carlo by

p̂(yn|Mj) =
1

M

M∑
i=1

n∏
t=1

p(yt|yt−1, φ
(i), γ(i), σ2(i)Mj),

where θ(1), . . . , θ(M) are draws from the prior p(θ). Let us use M = 100, 000.

(b) Compute a MC approximation to the Bayes factor:

B01 =
p(yn|M0)

p(yn|M1)
.

(c) Finally, the posterior model odds can be computed as

Pr(M0|yn)

Pr(M1|yn)
=
Pr(M0)

Pr(M1)
×B01,

where Pr(M0) and Pr(M1) are the prior probabilities assigned to modelsM0 andM1,
respectively. Assuming Pr(M0) = Pr(M1), obtain a MC approximation to Pr(M0|yn),
the posterior model probability of the Gaussian model.

Discuss your findings.
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Hints and clarification: Below are a few hints about specific issues raised by some of you over the
last couple of days while handling this homework assignment.

[A] Gamma, inverse-gamma and their parameterizations.
The notation σ2 ∼ IG(5/2, 5(1.4)/2) means that σ2 is distributed as an inverse-gamma with
parameters a = 5/2 = 2.5 and b = 5(1.4)/2 = 3.5. Why not expressing the prior directly as
σ2 ∼ IG(2.5, 3.5)? I obviously could have done that, but I like the σ2 ∼ IG(ν/2, ντ 2/2), so ν
plays a role similar to the number of degrees of freedom and τ 2 resembles the prior mean of σ2.
Recall that, when X ∼ IG(a, b),

E(X) =
b

a− 1
, a > 1,

V (X) =
b2

(a− 1)2(a− 2)
, a > 2,

p(x) =
ba

Γ(a)
x−(a+1) exp{−b/x},

where Γ(a) is the gamma function (Γ(a) = (a − 1)Γ(a − 1)). Another property is that when
X ∼ IG(a, b), t follows that Y = 1/X ∼ G(a, b), where E(Y ) = a/b, V (Y ) = a/b2 and
p(y) = ba

Γ(a)
y(a−1) exp{−by}. Notice that E(X) = b/(a − 1) 6= b/a = 1/E(Y ), unless a and b

are both very large. With the (ν, τ 2) notation, that translates into ν being very large (or very
large degrees of freedom!)

The lesson here is that only the normal distribution has parameters that are explicitly its
mean ad its variance. All other distributions (Binomial, Poisson, Gamma, Beta, Hypergeome-
tric, Weibull, Gumbel, Student’s t, etc) have means and variances which are functions of its
parameters.

[B] Outline of a generic SIR
There is a lot of confusion here about what is drawn from the proposal distribution and what
is to evaluate a function at a specific value. Let us consider a um parameter, θ, implementation
of SIR where the target distribution is π(θ). In our most common context, π(θ) ∝ p(θ)p(y|θ)
where p(θ) is the prior of θ and p(y|θ) is the likelihood of θ. What we would do in order to
draw from π(θ) via SIR?

1. Pick a proposal q(θ) that is easy to sample from, easy to evaluate and that resembles π(θ).

2. Draw {θ̃(1), . . . , θ̃(M)} from the proposal q(θ).

3. Evaluate the resampling weights

w(i) =
π(θ̃(i))

q(θ̃(i))
, i = 1, . . . ,M.

Notice that we are evaluating both π(·) and q(·) at the sampled draws. We are not
evaluating on any pre-specified grid.

4. Sample from the discrete set {θ̃(1), . . . , θ̃(M)} with sampling weights {w(1), . . . , w(M)}.
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5. Let {θ(1), . . . , θ(M)} be the resampled draws.

6. The histogram of {θ(1), . . . , θ(M)} should approximate π(θ) when M is considerably large.

7. Similarly, E(g(θ)) =
∫
g(θ)π(θ)dθ is approximated by

∑M
i=1 g(θ(j))/M .

In the problem at hand, θ = (φ, γ, σ2) and π(θ) ∝ L(θ|yn)p(θ). Many people are choosing
q(θ) as p(θ), the prior of θ. That is fine and it is a common practice, which leads to weights
proportional to the likelihood L(·|yn) evaluated at the draws from the prior. The main problem
with this approach appears when the prior is too flat relative to the likelihood. In this case,
the vast majority of the proposed draws will have weights virtually and practically equal to
zero and only a few proposed draws will have weights very large.

Finally, regardless of how you choose your proposal density q(θ), it is usually advisable to
consider logarithms of the prior, of the likelihood and of the proposal (therefore, of the weights
as well) to avoid underflow and/or overflow during your computations. Try the following piece
of code and check the weights when drawing from a N(0, σ2

prop) to obtain draws from a N(0, 1).
Notice some weights as small as e−238. These ratios can easily collapse at zero, Inf or NA. Play
around with σprop and see how easy is to crash this code!
Now, if you want to check if the SIR draws are actually draws from the target density, i.e. the
N(0,1), you simple add its curve on the top of the histogram. More specifically, you simple add
a line of code lines(thetas,dnorm(thetas),col=2), where thetas is a grid of points say
from -5 to 5, or thetas=seq(-5,5,length=100).

set.seed(12345)
M = 100000
sig.prop = 10
draws = rnorm(M,0,sig.prop)
w = dnorm(draws)/dnorm(draws,0,sig.prop)
w1 = dnorm(draws,log=TRUE)-dnorm(draws,0,sig.prop,log=TRUE)
w2 = exp(w1-max(w1))
sort(w)[c(1:3,(M-2):M)]
sort(w1)[c(1:3,(M-2):M)]
sort(w2)[c(1:3,(M-2):M)]
draws1 = sample(draws,replace=TRUE,size=M/2,prob=w2)
par(mfrow=c(1,2))
hist(draws,prob=TRUE,xlab="",main=paste("Draws from N(0,",sig.prop,"^2)",sep=""))
hist(draws1,prob=TRUE,xlab="",main="Draws from N(0,1)")
thetas=seq(-5,5,length=100)
lines(thetas,dnorm(thetas),col=2,lwd=2)

# results
#[1] 0 0 0 10 10 10
#[1] -1540.618531 -1028.417719 -1026.298068 2.302585 2.302585 2.302585
#[1] 0 0 0 1 1 1

5


