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Sparsity in macro, micro and finance

We revisit Giannone, Lenza and Primiceri’s (GLP) Economic predictions with big
data: the illusion of sparsity, whose abstract says 1:

1. We compare sparse and dense representations of predictive models in
macroeconomics, microeconomics and finance.

2. To deal with a large number of possible predictors, we specify a prior that
allows for both variable selection and shrinkage.

3. The posterior distribution does not typically concentrate on a single sparse
model, but on a wide set of models that often include many predictors.

They conclude:

I No reason predictive models should include only a handful of predictors.

I Low-dimensional models justified only with strong statistical evidence.

1https://faculty.wcas.northwestern.edu/~gep575/illusion4-2.pdf

https://faculty.wcas.northwestern.edu/~gep575/illusion4-2.pdf


GLP datasets
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GLP spike-and-slab prior

They consider a standard Gaussian linear model:

yt = β1xt1 + · · ·+ βkxtk + εt , εt ∼ N(0, σ2).

The prior for βi accommodates sparsity and/or shrinkage:

βi |σ2, γ2, q ∼
{

N(0, σ2γ2) with prob. q
0 with prob. 1− q

i = 1, . . . , k.

q governs the degree of sparsity.

γ2 governs the degree of shrinkage.



Alternative representation

An alternative way of writing the prior for βi is

βi |σ2, γ2, q, νi ∼ N(0, σ2γ2νi ) and νi ∼ Ber(q).

The Bayesian lasso, horseshoe and elastic net methods can instead be obtained
by replacing the Bernoulli for νi with an exponential, a half-Cauchy, or a
transformation of a truncated Gamma, respectively.

None of the these priors admit a truly sparse representation with positive
probability.

We will get back to this representation soon!



Hyperprior of (q, γ2)

Instead of setting a hyperprior for (q, γ2), GLP defined a prior for the pair
(q,R2), where

R2(γ2, q) ≡ qkγ2

qkγ2 + 1
,

is the coefficient of determination.

The hyperprior distributions are:

q ∼ Beta(1, 1)

and
R2 ∼ Beta(1, 1)



Marginal prior of γ: p(γ|k)
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p(1− q|γ) and p(γ)

Pr(q|gamma,k=20)
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p(β|k , σ = 1)
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GLP: p(q, γ|data) - Macro 1, Macro 2 and Finance1
Negative correlation:
higher the probability of inclusion, lower prior variance of a non-zero coefficient.



GLP: p(q, γ|data) - Finance 2, Micro 1 and Micro 2
Micro 1 is the only case where p(q|data) is concentrated around very low values.



GLP: p(q|data)



GLP: Probability of inclusion of each predictor



Outline

Sparsity in macro, micro and finance

GLP approach

Our contribution

Brief review of sparsity in linear models
Ridge and lasso regressions
Spike and slab model (or SMN model)
SSVS and scaled SSVS priors
R package Bayeslm

Recalling GLP main remarks
Inclusion and tail probabilities

Our experiments
I. Adding meaningless variables
II. Fatter tails via Student’s t
III. More simulations

Final remarks



Our contribution

I We analyze the posterior distribution of the included coefficients of the
linear model. This was not explored by GLP

I We add meaningless predictors and observe correct exclusion only in a
subset of the simulated data sets.

I We consider a Student’s t prior βi |β 6= 0.
I More restrictive in selecting possible predictors.

I We show, via simulations, that their prior incorrectly induces shrinkage.

Overall conclusion: Their Spike-and-Slab approach does not seem to be robust,
leading to the illusion that sparsity is nonexistent, when it might in fact exist.
Therefore, the illusion of the illusion :o)
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Ridge and lasso regressions
Recall the standard Gaussian linear model,

yt = β1x1t + β2x2t + · · ·+ βkxkt + νt ,

where RSS= (y − Xβ)′(y − Xβ) is the residual sum of squares.

I Ridge regression Hoerl and Kennard [1970] - `2 penalty on β:

β̂ridge = arg min
β

RSS + λ2
r

k∑
j=1

β2
j

 , λ2
r ≥ 0,

leading to β̂ridge = (X ′X + λ2
r Ik)−1X ′y .

I Lasso regression Tibshirani [1996] - `1 penalty on β:

β̂lasso = arg min
β

RSS + λl

k∑
j=1

|βj |

 , λl ≥ 0,

which can be solved by a coordinate gradient descent algorithm.



Ridge and lasso estimates are posterior modes!

The posterior mode or the maximum a posteriori (MAP) is given by

β̃mode = arg min
β
{−2 log p(y |β)− 2 log p(β)}

The β̂ridge estimate equals the posterior mode of the normal linear model with

p(βj) ∝ exp{−0.5λ2
rβ

2
j },

which is a Gaussian distribution with location 0 and scale 1/λ2
r , N(0, 1/λ2

r ).
The mean is 0, the variance is 1/λ2

r and the excess kurtosis is 0.

The β̂lasso estimate equals the posterior mode of the normal linear model with

p(βj) ∝ exp{−0.5λl |βj |},

which is a Laplace distribution with location 0 and scale 2/λl , Laplace(0, 2/λl).
The mean is 0, the variance is 8/λ2

l and excess kurtosis is 3.



Spike and slab model (or scale mixture of normals)

Ishwaran and Rao [2005] define a spike and slab model as a Bayesian model
specified by the following prior hierarchy:

(yt |xt , β, σ2) ∼ N(x ′tβ, σ
2), t = 1, . . . , n

(β|ψ) ∼ N(0, diag(ψ))

ψ ∼ π(dψ)

σ2 ∼ µ(dσ2)

They go to say that

“Lempers [1988] and Mitchell and Beauchamp [1988] were among the
earliest to pioneer the spike and slab method. The expression ‘spike and
slab’ referred to the prior for β used in their hierarchical formulation.”



Spike and slab model (or scale mixture of normals model)

Regularization and variable selection are done by assuming independent prior
distributions from the SMN class to each coefficient βj :

βj |ψj ∼ N(0, ψj) and ψj ∼ p(ψj)

so

p(βj) =

∫
p(βj |ψj)p(ψj)dψj .

Mixing density p(ψj) Marginal density p(βj) V (βj) Ex.kurtosis(βj)

ψj = 1/λ2
r N(0, 1/λ2

r ) - (ridge) 1/λ2
r 0

IG(η/2, ητ 2/2) tη(0, τ
2) η/(η − 2)τ 2 6/(η − 4)

G(1, λ2
l /8) Laplace(0, 2/λl) - (blasso) 8/λ2

l 3

G(ζ, 1/(2γ2)) NG(ζ, γ2) 2ζγ2 3/ζ

Griffin and Brown [2010] Normal-Gamma prior:

p(β|ζ, γ2) =
1√

π2ζ−1/2γζ+1/2Γ(ζ)
|β|ζ−1/2Kζ−1/2(|β|/γ),

where K is the modified Bessel function of the 3rd kind.



Illustration
Ridge: λ2

r = 0.01 ⇒ Excess kurtosis=0
Student’s t: η = 5, τ 2 = 60 ⇒ Excess kurtosis=6
Blasso: λ2

l = 0.08 ⇒ Excess kurtosis=3
NG: ξ = 0.5, γ2 = 100 ⇒ Excess kurtosis=6
All variances are equal to 100.
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Stochastic search variable selection (SSVS) prior
SSVS George and McCulloch [1993]: For small τ > 0 and c >> 1,

β|ω, τ 2, c2 ∼ (1− ω)N(0, τ 2)︸ ︷︷ ︸
spike

+ωN(0, c2τ 2)︸ ︷︷ ︸
slab

.

SMN representation: β|ψ ∼ N(0, ψ) and

ψ|ω, τ 2, c2 ∼ (1− ω)δτ 2 (ψ) + ωδc2τ 2 (ψ)



Scaled SSVS prior = normal mixture of IG prior
NMIG prior of Ishwaran and Rao [2005]: For υ0 � υ1,

β|K , τ 2 ∼ N(0,Kτ 2),

K |ω, υ0, υ1 ∼ (1− ω)δυ0 (K ) + ωδυ1 (K ),

τ 2 ∼ IG (aτ , bτ ).

(1)

I Large ω implies non-negligible effects.
I The scale ψ = Kτ 2 ∼ (1− ω)IG (aτ , υ0bτ ) + ωIG (aτ , υ1bτ ).
I p(β) is a two component mixture of scaled Student’s t distributions.



R package Bayeslm

Bayeslm was written by Jingyu He and is based on Hahn, He and Lopes (2019)
Efficient sampling for Gaussian linear regression with arbitrary priors, Journal of
Computational and Graphical Statistics, 28, 142-154.

For observation i = 1, . . . , n = 68 and predictor j = 1, . . . , k = 16, we simulate

xij ∼ N(0, 1) and ε∗i ∼ N(0, 1)

We also fix β1 = −0.86, β2 = 0.64 and β3 = 0.89, while the response variable is:

y
(s)
i = β1xi1 + β2xi2 + β3xi3 + σ(s)

ε ε∗i ,

and σ
(s)
ε = 0.75s, for s = 1, 2.

MCMC set-up: N = 2000 draws, burnin= 10000 burn-in

Monte Carlo error: R = 20 replicates



R script
install.packages("bayeslm");library("bayeslm")
n=68;k=16;betas=c(-0.86,0.64,0.89,rep(0,k-3));sigs=c(0.75,1.5)
N=2000;burnin=10000;R=20
qs=c(0.025,0.5,0.975)
J=length(sigs);quants=array(0,c(R,J,3,k,3))
set.seed(54321)
for (r in 1:R){

for (j in 1:J){
X = matrix(rnorm(n*k),n,k)
y = rnorm(n,X%*%betas,sigs[j])
fit.hs = bayeslm(y,x,prior=’horseshoe’,N=N,burnin=burnin,icept=FALSE)
fit.ridge = bayeslm(y,x,prior=’ridge’,N=N,burnin=burnin,icept=FALSE)
fit.lasso = bayeslm(y,x,prior=’laplace’,N=N,burnin=burnin,icept=FALSE)
quants[r,j,1,,] = t(apply(fit.hs$beta,2,quantile,qs))
quants[r,j,2,,] = t(apply(fit.ridge$beta,2,quantile,qs))
quants[r,j,3,,] = t(apply(fit.lasso$beta,2,quantile,qs))

}
}
method = c("horseshoe","ridge","lasso")
par(mfrow=c(2,3))
for (i in 1:2)

for (j in c(2,3,1)){
boxplot(quants[,i,j,,1],names=1:k,ylim=c(-1.5,1.5),outline=FALSE,col=gray(0.8),

xlab="Variable",main=paste(method[j],"\n sig=",sigs[i],sep=""))
abline(h=0,col=4,lwd=2)
for (l in 3:2)

boxplot(quants[,i,j,,l],names=rep("",k),outline=FALSE,col=l,add=TRUE)
points(1:3,betas[1:3],col=5,pch=16)

}



Ridge, Laplace and horseshoe priors
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Various designs for X
1) ρ(xi , xj) = 0.0 for all i , j
2) ρ(xi , xj) = 0.9 for all i , j
3) Two common factors generate the k predictors

library(bayeslm)
set.seed(12345)
k = 18
n = 100
sig = 2.0
sig = 1.0
tau = 0.1
theta1 = c(rnorm(k/2,1,0.1),rnorm(k/2,0,0.1))
beta = rep(0,k)
beta[c(1:2,7:8,13:14)] = 1
theta2 = c(rnorm(k/3,0,0.1),rnorm(k/3,0.5,0.1),rnorm(k/3,1,0.1))
theta = cbind(theta1,theta2)
fac = matrix(rnorm(2*n),n,2)
xf = fac%*%t(theta)+rnorm(n*k,0,tau)
Vx = diag(apply(xf,2,var))
yf = xf%*%beta+rnorm(n,0,sig)
xi = matrix(rnorm(n*k),n,k)%*%sqrt(Vx)
yi = xi%*%beta+rnorm(n,0,sig)
Sigma = matrix(1,k,k)
rho = 0.9
for (i in 1:k)

for (j in 1:k)
Sigma[i,j] = rho^(abs(i-j))

xc = matrix(rnorm(n*k),n,k)%*%chol(Sigma)
yc = xc%*%beta+rnorm(n,0,sig)



Independent predictors
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Correlated predictors

(Intercept) xc2 xc3 xc4 xc5 xc6 xc7 xc8 xc9 xc10 xc11 xc12 xc13 xc14 xc15 xc16 xc17 xc18
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X matrices

(Intercept) xf2 xf3 xf4 xf5 xf6 xf7 xf8 xf9 xf10 xf11 xf12 xf13 xf14 xf15 xf16 xf17 xf18
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JRSS-B, 74(2), 287-311.

van der Pas, Kleijn and van der Vaart (2014) The horseshoe estimator: Posterior concentration
around nearly black vectors. Electronic Journal of Statistics, 8, 2585-2618.

Bhattacharya, Pati, Pillai and Dunson (2015) Dirichlet–Laplace priors for optimal shrinkage,
JASA, 110, 1479–1490.

Makalic and Schmidt (2016) A Simple Sampler for the Horseshoe Estimator. IEEE Signal
Processing Letters, 23(1), 179-182.

Bhadra, Datta, Polson and Willard (2017) The Horseshoe+ Estimator of Ultra-Sparse Signals,
Bayesian Analysis, 12(4), 1105–1131.
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Recalling GLP main remarks

The conclusion is that a clear pattern of sparsity is found only on the Micro 1
data set, in which only one variable is included most of the times.

For all other data sets, one is incapable of determining which variables should be
included, as many have a high estimated probability of inclusion ⇒ dense models.

Their conclusion: Ssparsity cannot be assumed for any economic data set, unless
in the presence of strong statistical evidence, and suggest an ”illusion of sparsity”
when using statistical models that assume (and force) sparsity.



Inclusion and tail probabilities
Finance 1
Inc: Probability of inclusion
G0: Tail (above zero) probability.



An example: β1, β6, β7 and β13

The spike-and-slab prior, as defined, seems to be inducing shrinkage by including
predictors with a near-zero coefficient.

Example: β1, β6, β7 and β13

I Probability of inclusion between 0.5 and 0.54, but also tail probability
between 0.2 and 0.4.

I It could be, for example, that an economist trying to make inference on the
regression would very easily exclude variable 1, but keep, for example,
variables 6, 7 and 13.
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I. Adding meaningless variables

We re-run the estimation algorithm for all the five datasets but now include two
additional regressors that were completely randomly generated.

Micro 1: 1.6% and 3.9%
Macro 1: 12.2% and 21.1%

Micro 2: 20.0% and 18.7%
Macro 2 56.1% and 55.2% (57th and 58th most included out of 62)
Finance 1: 71.0% and 48.4% (3rd and 18th most included out of 18)



I. Adding meaningless variables
Finance 1 data set (n = 68): Here x17 and x18 are meaningless.

Similar shapes: β18 and (β4, β5, β15).
High inclusion: x17 included 71% of times.



II. Fatter tails via Student’s t

New prior:

βi |σ2, γ2, λ2
i , q ∼

{
N(0, σ2γ2λ2

i ) with prob. q
0 with prob. 1− q

λ2
i ∼ IG

(ν
2
,
ν

2

)
.

Therefore, βi follows a Student’s t distribution:

βi |σ2, γ2, q ∼
{

tν(0, σ2γ2) with prob. q
0 with prob. 1− q

where
V (βi |σ2, γ2, q) =

ν

ν − 2
σ2γ2



II. Fatter tails via Student’s t - Macro 1

x72 and x90 are both relevant for ν > 10.

Only x90 for ν <= 10 (sparsity reemerges).

Prob. inclusion ↓ as ν ↑.

Argument: Spike-and-Slab, as originally defined, induces selection and shrinkage,
since for ν = 4 only 7 of 130 available predictors are relevant - that is, included
more than 50% of the times.



II. Fatter tails via Student’s t - Micro 2

Gaussian: no pattern of variable selection.
106 of 138 predictors are selected more than 50% of the times.

Student’s t: Sparsity in action.
For ν = 4, only 30 predictors are selected.
For ν = 10, only 34 predictors are selected.



II. Fatter tails via Student’s t - Macro 2 & Finance 1

Similarity across ν



III. More simulatons

For observation i = 1, . . . , n = 68 and predictor j = 1, . . . , k = 16, we simulate

xij ∼ N(0, 1) and ε∗i ∼ N(0, 1)

We also fix β1 = −0.86, β2 = 0.64 and β3 = 0.89, while the response variable is:

y
(s)
i = β1xi1 + β2xi2 + β3xi3 + σ(s)

ε ε∗i ,

and σ
(s)
ε = 0.75s, for s = 1, 2, 3.

The prior for β are Gaussian or Student’s t with ν = 4 degrees of freedom.

We replicate the above simulation R = 20 times.



III. Probability of inclusion
I σ ↑: inclusion of x1, x2, x3 decreases. More so for the Student’s t case.
I σ ↑: inclusion of x4, . . . , x16 increases. More so for the Gaussian case.
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III. Probability above zero
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III. Proportion of β4, . . . , β16 classified as relevant
For σ large, Student’s t prior performs better at shrinking towards zero.

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

cut−off of G0 for classifying as relevant

P
ro

po
rt

io
n 

cl
as

si
fie

d 
as

 r
el

ev
an

t

sigma small, Gaussian
sigma small, Student's t
sigmal large, Gaussian
sigma large, Student's t



Independent predictors



Correlated predictors ρ = 0.8
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Final remarks

I Their illusion resides, in our view, mainly on the anticipated expectation
that sparsity would be as obvious in Economic applications as it has been in
various other fields, such as genomics and machine-learning (ML)
applications.

I A natural extension (they touch it briefly in the paper) is to allow for
common factors (or principal components) along with the multiple
regressors. See, for instance, Hahn, He and Lopes (2018) Bayesian factor
model shrinkage for linear IV regression with many instruments, Journal of
Business and Economic Statistics, 2018, 36(2), 278-287.

I The data sets used in GLP are diverse, but still represent a modest increase
compared to the vertiginous sizes of data sets found elsewhere, say in the
ML literature.

I Financial econometrics and micro-econometrics might be riper now for
implementations of such sparsity and shrinkage inducing priors.
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