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Sparsity in macro, micro and finance

We revisit Giannone, Lenza and Primiceri's (GLP) Economic predictions with big
data: the illusion of sparsity, whose abstract says *:

1. We compare sparse and dense representations of predictive models in
macroeconomics, microeconomics and finance.

2. To deal with a large number of possible predictors, we specify a prior that
allows for both variable selection and shrinkage.

3. The posterior distribution does not typically concentrate on a single sparse
model, but on a wide set of models that often include many predictors.

They conclude:
» No reason predictive models should include only a handful of predictors.

» Low-dimensional models justified only with strong statistical evidence.

Ihttps://faculty.wcas.northwestern.edu/~gep575/illusiond-2.pdf


https://faculty.wcas.northwestern.edu/~gep575/illusion4-2.pdf

GLP datasets

Dependent variable

Possible predictors

Sample

1960-1985

characteristics, measured at
pre-1960s value

Macro 1 Monthly growth rate of | 130 lagged macroeconomic 659 monthly time-series
US industrial indicators observations, from
production February 1960 to

December 2014

Macro 2 | Average growth rate of | 60 socio 1 [ 90 ional country

GDP over the sample and geographical observations

Finance 1

US equity premium
(S&P 500)

16 lagged financial and
macroeconomic indicators

68 annual time-series
observations, from 1948 to
2015

Finance 2

Stock returns of US
firms

144 dummies classifying stock
as very low, low, high or very
high in terms of 36 lagged
characteristics

1400k panel observations
for an average of 2250
stocks over a span of 624
months, from January
1963 to May 2014

Micro 1

Per-capita crime
(murder) rates

Effective abortion rate and 284
controls including possible
covariate of crime and their
transformations

576 panel observations for
48 US states over a span
of 144 months, from 1986
to 1997

Micro 2

Number of pro-plaintiff
eminent domain
decisions in a specific
circuit and in a specific
year

Characteristics of judicial
panels capturing aspects
related to gender, race, religion,
political affiliation, education
and professional history of the
judges, together with some
interactions among the latter,
for a total of 138 regressors

312 panel observations for
12 circuits over a span of
26 years, from 1979 to
2004

TABLE 1.

Description of the datasets.
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GLP spike-and-slab prior

They consider a standard Gaussian linear model:

}/t:ﬁlxt1+"'+ﬁkxtk+€t7 €t ~ N(Oaaz)-

The prior for 8; accommodates sparsity and/or shrinkage:

N(0,0%42) with prob. g
. 2 2 ~J ’
Bilo*,7%,q { 0 with prob. 1 —g¢q

q governs the degree of sparsity.

~2 governs the degree of shrinkage.

i=1,...



Alternative representation

An alternative way of writing the prior for 3; is

Bilo®, v, q,v; ~ N(0,0°+?v;) and v; ~ Ber(q).

The Bayesian lasso, horseshoe and elastic net methods can instead be obtained
by replacing the Bernoulli for v; with an exponential, a half-Cauchy, or a
transformation of a truncated Gamma, respectively.

None of the these priors admit a truly sparse representation with positive
probability.

We will get back to this representation soon!



Hyperprior of (g,+?)

Instead of setting a hyperprior for (g,~v2), GLP defined a prior for the pair
(g, R?), where
R2( 2 ) = qk~?

is the coefficient of determination.

The hyperprior distributions are:

q ~ Beta(1,1)

and
R? ~ Beta(1,1)



Marginal prior of v: p(v|k)
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GLP: p(q,~|data) - Macro 1, Macro 2 and Financel

Negative correlation:
higher the probability of inclusion, lower prior variance of a non-zero coefficient.

Macro 1: Prior Macro 1: Posterior

25 85 -3 25 2
log log(~)
Macro 2: Posterior

Macro 2: Prior

2 - 2 -1
log(7) log()

Finance 1: Prior Finance 1: Posterior

log(~)



GLP: p(q,~|data) - Finance 2, Micro 1 and Micro

Micro 1 is the only case where p(qg|data) is concentrated around very low values.

Finance 2: Prior Finance 2: Posterior
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GLP: p(q|data)

Macro 1

Micro 1

Macro 2

0 0.2 0.4 06 0.8 1
q
N Finance 2
6
4
2
0
0 0.2 0.4 06 0.8 1
q
Micro 2

0

0.2 0.4 0.6 08




GLP: Probability of inclusion of each predictor

Macro 1
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Our contribution

v

We analyze the posterior distribution of the included coefficients of the
linear model. This was not explored by GLP

v

We add meaningless predictors and observe correct exclusion only in a
subset of the simulated data sets.

v

We consider a Student's t prior 3;|5 # 0.

> More restrictive in selecting possible predictors.

» We show, via simulations, that their prior incorrectly induces shrinkage.

Overall conclusion: Their Spike-and-Slab approach does not seem to be robust,
leading to the illusion that sparsity is nonexistent, when it might in fact exist.
Therefore, the illusion of the illusion :0)



Outline

Brief review of sparsity in linear models



Ridge and lasso regressions
Recall the standard Gaussian linear model,

Ve = Pixie + Poxor + - + BiXue + Vr,

where RSS= (y — X3)'(y — X) is the residual sum of squares.

> Ridge regression Hoerl and Kennard [1970] - ¢, penalty on f:

K
Bridge = argﬂmin RSS + )\f Z 5},2 ’ )\E >0,
j=1

leading to fBrigge = (X'X + A21,)~1X"y.

» Lasso regression Tibshirani [1996] - ¢; penalty on 3:

k

Blasso = argmin{ RSS+ N > B ¢, A >0,
B P
Jj=1

which can be solved by a coordinate gradient descent algorithm.



Ridge and lasso estimates are posterior modes!

The posterior mode or the maximum a posteriori (MAP) is given by

Bmode = argﬁmin{—2 log p(y|B) — 2log p(3)}

The B,,-dge estimate equals the posterior mode of the normal linear model with

p(B)) o exp{—0.5\27},
which is a Gaussian distribution with location 0 and scale 1/X2, N(0,1/A2).

The mean is 0, the variance is 1/)\? and the excess kurtosis is 0.

The B,asso estimate equals the posterior mode of the normal linear model with

p(B)) o< exp{=0.5M/[5;},

which is a Laplace distribution with location 0 and scale 2/, Laplace(0,2/A)).
The mean is 0, the variance is 8//\,2 and excess kurtosis is 3.



Spike and slab model (or scale mixture of normals)

Ishwaran and Rao [2005] define a spike and slab model as a Bayesian model
specified by the following prior hierarchy:

(velxe, B,0%) ~ N(x/3,07), t=1,...,n
(Bl) ~  N(0,diag(v))

(dv)

(do?)

~

0'2 ~

3

=

They go to say that

“Lempers [1988] and Mitchell and Beauchamp [1988] were among the
earliest to pioneer the spike and slab method. The expression ‘spike and
slab’ referred to the prior for B used in their hierarchical formulation.”



Spike and slab model (or scale mixture of normals model)

Regularization and variable selection are done by assuming independent prior
distributions from the SMN class to each coefficient f3;:

Bilwj ~ N(0,¢;)  and ¢ ~ p(iy)

so
p(Bj) = /P(@'Wj)p(?bj)d%-
Mixing density p(¢;) | Marginal density p(53;) V(8;) Ex.kurtosis(5;)
b =1/X N(0,1/X7) - (ridge) /X 0
IG(n/2,n7°/2) t, (0, 7%) n/(n—2)7" | 6/(n—4)
G(1,)7/8) Laplace(0,2/)/) - (blasso) | 8/)7 3
G(¢1/(27%) NG(C7?) 20y? 3/¢

Griffin and Brown [2010] Normal-Gamma prior:

1
p(BIC, ’Y2) = V2124 CH1/2F(()

182K _1/2(181/7);

where K is the modified Bessel function of the 3rd kind.



[llustration
Ridge: A2 =0.01

= Excess kurtosis=0

Student's t: 7 =5, 72 = 60 = Excess kurtosis=6

Blasso: /\,2 =0.08
NG: £ = 0.5, 42 = 100
All variances are equal to 100.
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Stochastic search variable selection (SSVS) prior
SSVS George and McCulloch [1993]: For small 7 > 0 and ¢ >> 1,

Blw, 72, c* ~ (1 —w) N(0,7%) +w N(0, *72) .
spike slab

SMN representation: S| ~ N(0,1) and
¢|UJ7 T2, C2 ~ (1 — UJ)6T2 (’(/}) —+ w6C2T2(w)

1.5

1.0

density

0.5

0.0
1




Scaled SSVS prior = normal mixture of IG prior
NMIG prior of Ishwaran and Rao [2005]: For vy < 1,
BIK, 7> ~ N(0, KT2),
Klw,vg,v1 ~ (1 — w)dy, (K) + wdy, (K),
7% ~ 1G(a,, by).
» Large w implies non-negligible effects.

» The scale ¢ = K72 ~ (1 — w)IG(a,,vob,) + wlG(ar,v1b,).
» p(B) is a two component mixture of scaled Student's t distributions.

density
! 1 !

0.00 0.02 004 0.06 0.08 0.10




R package Bayeslm
Bayeslm was written by Jingyu He and is based on Hahn, He and Lopes (2019)

Efficient sampling for Gaussian linear regression with arbitrary priors, Journal of
Computational and Graphical Statistics, 28, 142-154.

For observation i = 1,...,n =68 and predictor j = 1,..., k = 16, we simulate
xj ~ N(0,1) and & ~ N(0,1)
We also fix 81 = —0.86, 5, = 0.64 and 33 = 0.89, while the response variable is:
y,-(s) = Bixit + Baxia + Baxiz + oB)ek,
and 0% = 0.75s, for s = 1,2.

MCMC set-up: N = 2000 draws, burnin= 10000 burn-in

Monte Carlo error: R = 20 replicates



R script

install.packages("bayeslm") ;library("bayeslm")
n=68;k=16;betas=c(-0.86,0.64,0.89,rep(0,k-3)) ;sigs=c(0.75,1.5)
N=2000; burnin=10000;R=20
qs=c(0.025,0.5,0.975)
J=length(sigs) ;quants=array(0,c(R,J,3,k,3))
set.seed(54321)
for (r in 1:R){
for (j in 1:1){
X = matrix(rnorm(n*k),n,k)
y = rnorm(n,X%*/%betas,sigs[j])
fit.hs = bayeslm(y,x,prior=’horseshoe’,N=N,burnin=burnin,icept=FALSE)
fit.ridge = bayeslm(y,x,prior=’ridge’,N=N,burnin=burnin,icept=FALSE)
fit.lasso = bayeslm(y,x,prior=’laplace’,N=N,burnin=burnin,icept=FALSE)
quants([r,j,1,,] = t(apply(fit.hs$beta,2,quantile,qs))
quants[r,j,2,,] = t(apply(fit.ridge$beta,2,quantile,qgs))
quants[r,j,3,,] t(apply(fit.lasso$beta,2,quantile,qs))

}
}
method = c("horseshoe","ridge","lasso")
par (mfrow=c(2,3))
for (i in 1:2)
for (j in c(2,3,1)){
boxplot(quants[,i,j,,1],names=1:k,ylim=c(-1.5,1.5) ,outline=FALSE,col=gray(0.8),
xlab="Variable",main=paste(method[j],"\n sig=",sigs[i],sep=""))
abline(h=0,col=4,1lwd=2)
for (1 in 3:2)
boxplot(quants[,i,j,,1],names=rep("",k),outline=FALSE,col=1,add=TRUE)
points(1:3,betas[1:3],col=5,pch=16)
¥



Ridge, Laplace and horseshoe priors

ridge lasso horseshoe
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Various designs for X

1) p(xi,xj) = 0.0 for all i,

2) p(xi,xj) = 0.9 for all i,

3) Two common factors generate the k predictors

library(bayeslm)

set.seed(12345)

k = 18

n = 100

sig = 2.0

sig =1.0

tau =0.1

thetal = c(rnorm(k/2,1,0.1),rnorm(k/2,0,0.1))
beta = rep(0,k)

betalc(1:2,7:8,13:14)] = 1
theta2 = c(rnorm(k/3,0,0.1),rnorm(k/3,0.5,0.1) ,rnorm(k/3,1,0.1))
theta = cbind(thetal,theta2)

fac = matrix(rnorm(2*n),n,2)

xf = facY*%t (theta)+rnorm(n*xk,0,tau)
Vx = diag(apply(xf,2,var))

yf = xf%*%beta+rnorm(n,0,sig)

xi = matrix(rnorm(n*k),n,k)%*%sqrt (Vx)
yi = xi¥%*%beta+rnorm(n,0,sig)

Sigma = matrix(1,k,k)

rho =0.9

for (i in 1:k)
for (j in 1:k)
Sigmal[i,j] = rho~(abs(i-j))
xc = matrix(rnorm(n#k),n,k)%*%chol(Sigma)
yc = xcl*%betat+rnorm(n,0,sig)



Independent predictors

{ EE &g

1
0
Hh
#

-0.5
I

-1.0

T T T T T T T T T T T T T T T T T T T
(Intercept) xi2 xi3 x4 x5 Xi6 xi7 Xi8 Xi9  xi10 xill xi12 xi13 xil4 xil5 xi16 xil7 xi18



Correlated predictors

Corr X

(Intercept) xc2 xc3 xc4 xc5 xc6 xc7 xc8 xc9 xcl0 xcll xcl2 xcl3 xcl4 xcl5 xclé xcl7 xcl8



X matrices

factor X

T T T T T T T T T T T T T T T T T T T
(Intercept) xf2 xf3 xf4 xf5 xf6 xf7 xf8 xf9  xfl0 xfll xfl2 xf13 xfl4 xfl5 xfl6 xf17  xf18
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Recalling GLP main remarks

The conclusion is that a clear pattern of sparsity is found only on the Micro 1
data set, in which only one variable is included most of the times.

For all other data sets, one is incapable of determining which variables should be
included, as many have a high estimated probability of inclusion = dense models.

Their conclusion: Ssparsity cannot be assumed for any economic data set, unless
in the presence of strong statistical evidence, and suggest an "illusion of sparsity”
when using statistical models that assume (and force) sparsity.



Inclusion and tail probabilities
Finance 1
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An example: 617667/67 and /613

The spike-and-slab prior, as defined, seems to be inducing shrinkage by including
predictors with a near-zero coefficient.

Example: (1, 86, 87 and f13
» Probability of inclusion between 0.5 and 0.54, but also tail probability
between 0.2 and 0.4.
» It could be, for example, that an economist trying to make inference on the

regression would very easily exclude variable 1, but keep, for example,
variables 6, 7 and 13.
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|. Adding meaningless variables

We re-run the estimation algorithm for all the five datasets but now include two
additional regressors that were completely randomly generated.

Micro 1: 1.6% and 3.9%
Macro 1: 12.2% and 21.1%

Micro 2: 20.0% and 18.7%
Macro 2 56.1% and 55.2% (57th and 58th most included out of 62)
Finance 1: 71.0% and 48.4% (3rd and 18th most included out of 18)



|. Adding meaningless variables

Finance 1 data set (n = 68): Here x37 and x;g are meaningless.
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. i I I i i
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! ' ' ' !
0
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Similar shapes: (15 and (fs, Bs, f15)-
High inclusion: x;7 included 71% of times.



[I. Fatter tails via Student's t

New prior:

N(0,02v2)\2)  with prob. g
Bilo®, 7", A7 q { 0 with prob. 1 — g

v 16(35)

Therefore, 3; follows a Student’s t distribution:

2 t,(0,0292) with prob. g
filo®,7% q { 0 with prob. 1 —g¢

where

v
V(Bilo2. 7. q) = 2.2
(Bilo®7%,q) = ——50%




[I. Fatter tails via Student's t - Macro 1

x72 and xgg are both relevant for v > 10.
Only xgo for v <= 10 (sparsity reemerges).

Prob. inclusion | as v 1.

Macro 1 Prob. of

inclusion
nu = 4 - T T T e T O e T OO T (NN NENEENENENEEN NENNESNNNNNNNEE NENNE 1.00
075
nu =10 IO OO OO T (BERREN A NNERRNNENERE JRRRRNRNRR S RRRRRRRRRRRRRNE] (NENNNNSNENENEES SRRNNRNNNNNNNEN NN 050
nu = 30 - T T eI DTS T T @ T OO INENENENNENENEES SRENENENNNNNNEN SENND 0.25
0.00
nu =100 I OO OO e T INNE-NENNRNEENN e T OO INRNNRNNNNENEEE INNNRNRRNRNNNNE JNAN]
Cut-off
nu = 500 I T Te T TS T T T NN NENENENNES SRENENENNNNNNNE JNNND = p=0.90
| X pz075
Normal O T T T T WO BRRRRRRRANNE 5 NANRRNK BERRRRRRRNANANND RRRRRRRRERRNNED SRRRRRNRNRNANAR QRN o 050
p2
25 50 75 100 125 O p<050
Coefficients

Argument: Spike-and-Slab, as originally defined, induces selection and shrinkage,
since for v = 4 only 7 of 130 available predictors are relevant - that is, included
more than 50% of the times.



[I. Fatter tails via Student's t - Micro 2

Micro 2
SRRITIHIED TRNIRNRD HNY EEORAN N LT RARRMANERD |10 NORRAIRNNAD HUASD AT DO Hnnon : 11
VER[iEsssssss ansssssss asc scnnnun; T " \§ EEEEEEEREAS SES EEEEEES) TIT ‘:ED
il ] [T 1l ]
PVEYRetatacs aauaancas mar scnemsms mf amschochs § Rasmseamsf o § assmsasesnt Sccnssasar e sesssss aecae:
]
nu = 100 -CEITT s o T
|

nu =500
Normal

50 100

Coefficients

Gaussian: no pattern of variable selection.

106 of 138 predictors are selected more than 50% of the times.

Student's t: Sparsity in action.
For v = 4, only 30 predictors are selected.

For v = 10, only 34 predictors are selected.
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[I. Fatter tails via Student’'s t - Macro 2 & Finance 1

Similarity across v
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[11. More simulatons

For observation i = 1,...,n =68 and predictor j = 1,..., k = 16, we simulate
xj ~ N(0,1) and &7 ~ N(0,1)
We also fix 57 = —0.86, 3, = 0.64 and 33 = 0.89, while the response variable is:
= Bixi1 + Baxiz + Baxiz + o)}

and aés) =0.75s, for s =1,2,3.
The prior for 5 are Gaussian or Student's t with v = 4 degrees of freedom.

We replicate the above simulation R = 20 times.



I11. Probability of inclusion

» o 1 inclusion of xq, xp, x3 decreases. More so for the Student’s t case.
» o 1: inclusion of xg, ..., x5 increases. More so for the Gaussian case.
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I1l. Proportion of (34, ..., 816 classified as relevant
For o large, Student’s t prior performs better at shrinking towards zero.

Proportion classified as relevant

0.1 0.2 0.3 0.4 0.5 0.6

0.0

sigma small, Gaussian
sigma small, Student's t
sigmal large, Gaussian
sigma large, Student's t

0.70
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T T T
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cut-off of GO for classifying as relevant



Independent predictors

Normal
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Normal

nu=4

Normal
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Correlated predictors p = 0.8

B1=-0.86, B2 = 0.64, B3 = 0.89

sigma_eps = 0.75 sigma_eps = 1.5
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Final remarks

» Their illusion resides, in our view, mainly on the anticipated expectation
that sparsity would be as obvious in Economic applications as it has been in
various other fields, such as genomics and machine-learning (ML)
applications.

> A natural extension (they touch it briefly in the paper) is to allow for
common factors (or principal components) along with the multiple
regressors. See, for instance, Hahn, He and Lopes (2018) Bayesian factor
model shrinkage for linear IV regression with many instruments, Journal of
Business and Economic Statistics, 2018, 36(2), 278-287.

» The data sets used in GLP are diverse, but still represent a modest increase
compared to the vertiginous sizes of data sets found elsewhere, say in the
ML literature.

» Financial econometrics and micro-econometrics might be riper now for
implementations of such sparsity and shrinkage inducing priors.
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