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FACTOR MODELS

by Hedibert Lopes
hedibert@im.ufrj.br

Factor models is certainly one of the most used
(useful) statistical techniques. Factor models are
mainly applied in two major situations: (i) data re-
duction and (ii) identifying underlying structures.

I would like to start this section by quoting
Bartholomew (1995) (Spearman and the origin and
development of factor analysis, British Journal of
Mathematical and Statistical Psychology, 48, 211-220),
who starts his paper’s abstract by saying that

Spearman [Charles Edward Spearman
F.R.S. 1863-1945] invented factor anal-
ysis but his almost exclusive concern
with the notion of a general factor pre-
vented him from realizing its full poten-
tial.

Fortunately, factor models potentials have been
discovered and are still being discovered, even af-
ter almost a century has passed since Spearman
wrote his seminal paper (’General Inteligente’ ob-
jectively determined and measured, American Jour-
nal of Psychology, 5, 201-293, 1904.)

I organized this annotated bibliography with the
idea of providing the reader with a modest (and
subjective) set of papers and books that would lead
him/her to the realm of (latent) factor models.

Factor analysis: estimation

1. Lawley (1940) The estimation of factor loadings
by the method of maximum likelihood, Proceed-
ings of the Royal Society of Edinburgh, 60, 64-82.
Lawley (1941) Further investigations in factor es-
timation, Proceedings of the Royal Society of Ed-
inburgh, 61, 176-185. Introduces maximum likeli-
hood factor model.

2. Jöreskog, K.G. (1967) Some contributions to max-
imum likelihood factor analysis, Psychometrika,
32, 443-382. Jöreskog, K.G. (1969) A general ap-
proach to confirmatory maximum likelihood factor
analysis, Psychometrika, 34, 183-220. Maximum
likelihood estimation is made feasible.

3. Martin, J.K. and McDonald, R.P. (1975) Bayesian
estimation in unrestricted factor analysis: a treat-
ment for Heywood cases, Psychometrika, 40, 505-
517. Treatment of the Heywood case (zero vari-
ances) by proper specification of the prior distribu-

tions.

4. Geweke, J.F. and Singleton, K.J. (1980) Interpret-
ing the likelihood ratio statistic in factor models
when sample size is small, Journal of the American
Statistical Association, 75, 133-137.
From Monte Carlo simulations and under certain
regularity conditions, asymptotic theory is appro-
priate when sample size is greater than 30. The
same is not true when the regularity conditions fail.

5. Bartholomew, D.J. (1981) Posterior analysis of
the factor model, British Journal of Mathematical
and Statistical Psychology, 34, 93-99. The posterior
analysis is restricted to the common factors upon
previous estimation of the model parameters (load-
ings and idiosyncrasies).

6. Lee, S-Y (1981) A Bayesian approach to confir-
matory factor analysis, Psychometrika, 46, 153-160.
A Newton-Raphson algorithm is implemented to
find the posterior mode for four different prior
specifications.

7. Rubin, D.B. and Thayer, D.T. (1982) EM algo-
rithms for ML factor analysis, Psychometrika, 47,
69-76. Bentler, P.M. and Tanaka, J.S. (1983) Prob-
lems with EM algorithms for ML factor analy-
sis, Psychometrika, 48, 247-251. Rubin, D.B. and
Thayer D.T. (1983) More on EM for factor analy-
sis, Psychometrika, 48, 253-257. The EM algorithm
is introduced as an alternative optimization algo-
rithm to Jöreskog’s (1967,1969) maximum likeli-
hood scheme.

8. Bartholomew, D.J. (1984) The foundations of fac-
tor analysis, Biometrika, 71, 221-232.

9. Bartholomew, D.J. (1985) Foundations of fac-
tor analysis: some practical implications, British
Journal of Mathematical and Statistical Psychology,
38, 1-10. With discussion on the British Journal of
Mathematical and Statistical Psychology, 38, 127-
229.

10. Anderson, T.W. and Amemiya, Y. (1988) The
asymptotic normal distribution of estimators in
factor analysis under general conditions. The An-
nals of Statistics, 16, 759-771. Amemiya, Y. and An-
derson, T.W. (1990) Asymptotic chi-square tests for
a large class of factor analysis models. The Annals
of Statistics, 18, 1453-1463. Asymptotic estimation
and hypothesis testing in factor analysis models.
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11. Press, S.J. and Shigemasu, K. (1989) Bayesian
inference in factor analysis, in Contributions to
Probability and Statistics: Essays in Honor of In-
gram Olkin, L.J. Gleser, M.D. Perlman, S.J.Press,
A.R.Sampson (Eds.), New York: Springer-Verlag,
271-287. Posterior large sample interval estimators
of common factors, factor loading and idiosyn-
cratic variances. Three step procedured: (1) esti-
mation of the common factors, (2) estimation of the
factor loadings given the common factors estimate,
and (3) estimation of the idiosyncratic variances
given both the common factors and factor loadings
estimates.

12. Bartholomew, D.J. (1995) Spearman and the
origin and development of factor analysis, British
Journal of Mathematical and Statistical Psychology,
48, 211-220. Historical account of the development
of factor models.

13. Ihara, M. and Kano, Y. (1995) Identifiabiliy
of full, marginal, and conditional factor analysis
models, Statistics and Probability Letters, 23, 343-
350. Conditions for full, marginal and conditional
model identification are discussed.

14. Schneeweiss, H. and Mathes, H. (1995) Fac-
tor analysis and principal components, Journal of
multivariate analysis, 55, 105-124. Similarities and
differences between the factor analysis and princi-
pal component analysis are discussed.

15. Yung, Y.-F. (1997) Finite mixtures in confirma-
tory factor-analysis models. Psychometrika, 62,
297-330. Finite mixture of factor models for han-
dling heterogeneity. Approximate-Scoring (AS)
and Expectation-Maximization (EM) methods are
developed.

16. Lee, S.E. and Press, S.J. (1998) Robustness of
Bayesian factor5analysis estimates, Communica-
tions in Statistics, Theory and Methods, 27, 1871-
1893. Posterior robustness of the loadings, com-
mon factors and idiosyncratic covariance.

17. Fokoué, E. and Titterington, D.M. (2000)
Bayesian sampling for mixtures of factor analy-
sers, Technical Report, Department of Statistics,
University of Glasgow. Gibbs sampler in mixture
of factor models where the number of components
and common factors are fixed and known.

18. Lopes, H.F. (2003) Expected posterior priors
in factor analysis. (Brazilian Journal of Probability

and Statistics, to appear), Technical report, Depart-
ment of Statistical Methods, Federal University of
Rio de Janeiro.

Factor analysis: model selection

19. Akaike, H. (1987) Factor analysis and AIC, Psy-
chometrika, 52, 317-332. Model selection through
the Akaike Information Criterion.

20. Press, S.J. and Shigemasu, K. (1994) Posterior
distribution for the number of factors, in American
Satistical Association Proceedings of the Section on
Bayesian Statistical Science, 75-77. Large sample is
assumed to approximate the factor model’s predic-
tive density, which is used for model comparison.

21. Polasek, W. (1997) Factor analysis and outliers:
A Bayesian Approach. Discussion paper, Univer-
sity of Basel. The number of factors is determined
by computing marginal likelihoods through Chib’s
(1995,JASA, 1313-1321) algorithm.

22. Bozdogan, H. and Shigemasu, K. (1998)
Bayesian factor analysis model and choosing the
number of factors using a new informational com-
plexity criterion. Technical report, Department of
Statistics, University of Tennessee.

23. Fokoué, E. and Titterington, D.M. (2000)
Stochastic model selection for Bayesian mixtures
of factor analysers, Technical Report, Department
of Statistics, University of Glasgow. A birth-death
marked Markov point process in continuous time
is used as a stochastic model selection algorithm
for Bayesian mixture of factor models.

24. Lopes, H.F. and West, M. (2003) Model assess-
ment in factor analysis. Statistica Sinica (to appear)
ISDS-Discussion Paper 98-38. A reversible jump
Markov chain Monte Carlo (RJMCMC) algorithm
is developed to fully account the uncertainty on
the number of common factors. Comparisons are
made to several additional algorithms that approx-
imate the predictive density.

25. West, M. (2002) Bayesian Factor Regression
Models in the ”Large p, Small n” Paradigm. Dis-
cussion paper #02-12, ISDS, Duke University. Fac-
tor models where the number of variables is ex-
tremely larger than the number of observations, a
situation commonly present in studies of gene ex-
pression.
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Factor analysis in time series

26. Peña, D. and Box, G.E.P. (1987) Identify-
ing a simplifying structure in time series. Jour-
nal of the American Statistical Association, 82,
836-843. Factor models with common (indepen-
dent/dependent) factors following ARMA pro-
cesses.

27. Engle, R. (1987) Multivariate ARCH with factor
structures – cointegration in variance, University of
California, San Diego, Dept. of Economics Discus-
sion Paper 87-27. One of the first papers to apply
common factors to model covariances in time se-
ries.

28. Diebold, F.X. and Nerlove, M. (1989) The dy-
namics of exchange rate volatility: a multivariate
latent ARCH model, Journal of Applied Econo-
metrics, 4, 1-21. Multivariate GARCH structures
through one latent factor.

30. Engle, R.F., NG, V.K. and Rothschild, M. (1990)
Asset pricing with a factor ARCH covariance struc-
ture: empirical estimates for treasury bills, Jour-
nal of Econometrics, 45, 213-238. Factor-ARCH to
model conditional covariance matrix of asset re-
turns.

31. Ng, V., Engle, R.F. and Rothschild, M. (1992)
A multi-dynamic factor model for stock returns.
Journal of Econometrics, 52, 245-266. Relates dy-
namic and static factors to porfolio allocation in
financial markets.

32. Lin, W-L. (1992) Alternative estimators for fac-
tor GARCH models - a Monte Carlo comparison,
Journal of Applied Econometrics, 7, 259-279. Com-
pares four frequentist estimators for factor GARCH
models: two-stage univariate GARCH (2SUE),
two-stage quasi-maximum likelihoo (2SML),
quasi-maximum likelihood with known factor
weights (RMLE) and quasi-maximum likelihood
with unknown factor weights (MLE).

33. Molenaar, P.C.M. and Gooijer, J.G.D. and
Schmitz, B. (1992) Dynamic factor analysis of non-
stationary multivariate time series. Factor models
with lagged common factors to account for the per-
sistance in time series trends.

34. Bollerslev, T. and Engle, R.F. (1993) Common
persistence in conditional variances, Econometrica,

61, 167-186. K-factor generalized autoregressive
conditional heteroscedasticity (GARCH) models
are discussed and conditions are given for covari-
ance stationarity. They also study co-persistence in
multivariate integrated GARCH models.

35. Harvey, A., Ruiz, E. and Shephard, N. (1994)
Multivariate stochastic variance models, Review of
Economic Studies, 61, 247-264. Common factors, as
multivariate random walk, are used to model per-
sistent movements in stochastic volatility models.

36. Escribano, A. and Peña, D. (1994) Cointegration
and common factors. Journal of time series analy-
sis, 15, 577-586. Cointegrated vectors are viewed as
Peña and Box’s (1987) dynamic factor models.

37. Geweke, J. and Zhou, G. (1996) Measuring the
pricing error of the arbitrage pricing theory. The
review of financial studies, 9, 557-587. First paper
to implement the Gibbs sampler for exact Bayesian
inference in (static) factor models.

38. Demos, A. and Sentana, E. (1998) An EM algo-
rithm for conditionall heterescedastic factor mod-
els, 16, 357-361. Application of the EM algorithm
to factor models with dynamic heterocedasticity in
the common factors.

39. Sentana, E. (1998) The relation between condi-
tionally heteroskedastic factor models and factor
GARCH models, Econometrics Journal, 1, 1-9. In-
vestigation of the similarities and differences of
Engle’s (1987) factor GARCH model and Diebold
and Nerlove’s (1989) latent factor ARCH model.

40. Pitt, M.K. and Shephard, N. (1999) Time vary-
ing covariances: A factor stochastic volatility ap-
proach (with discussion). In Bayesian statistics 6,
Ed. Bernardo, J.M., Berger, J.O., Dawid, A.P. and
Smith, A.F.M., 547–570. London: Oxford Univer-
sity Press. Univariate stochastic volatility struc-
tures is used to model the common factor vari-
ances through time. Sequential portfolio allocation
is made possible by particle filters.

41. Aguilar, O. and West, M. (2000) Bayesian dy-
namic factor models and variance matrix discount-
ing for portfolio allocation. Journal of Business
and Economic Statistics, 18, 338–357. Multivariate
stochastic volatility structure is used to model the
common factor variances through time.
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42. Chib, S., Nardari, F. and Shephard, N (2003)
Analysis of high dimensional multivariate stochas-
tic volatility models. Technical Report, Nuffield
College, University of Oxford. Feasible Bayesian
inference (through MCMC algorithms) for multi-
varite stochastic volatility models in highly dimen-
sional settings.
43. Vrontos, I.D., Dellaportas, P. and Politis, D.N.
(2002) A full-factor multivariate GARCH model
(2003). Classical and Bayesian estimation of a vari-
ant of the multivariate GARCH model with as
many factors as variables. The order of variable
problem is dealt with Bayesian model averaging.
44. Fiorentini, G., Sentana, E. and Shephard, N.
(2003) Likelihood-based estimation of latent gener-
alised ARCH structures. Technical Report, Nuffield
College, University of Oxford. Fast MCMC and
simulated EM algorithms for latent factor GARCH
model.

Books

42. Lawley, D.N. an Maxwell, A.E. (1971) Factor
analysis as a statistical method (2nd edition). Lon-
don: Butterworths.

43. Anderson, T.W. (1984) An introduction to mul-
tivariate statistical analysis (2nd edition). New
York: John Wiley & Sons, Inc.

44. Krzanowski, W.J. and Marriott, F.H.C. (1995)
Multivariate analysis - Part 2: classification, co-
variance structures and repeated measurements.
Kendall’s Library of Statistics 2. London: Arnold.

45. Bartholomew, D.J. and Knott, M. (1999) Latent
variable models and factor analysis (2nd edition).
Kendall’s Library of Statistics 7. London: Arnold.

46. Basilevsky, A. (19??) Statistical factor analy-
sis and related methods: theory and applications.
New York: John Wiley & Sons, Inc.

47. Press, S.J. (1982) Applied multivariate analysis:
using Bayesian and frequentist methods of infer-
ence (2nd edition). New York: Krieger

48. Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979)
Multivariate Analysis. London: Academic Press.

STUDENT’S CORNER

by Lilla Di Scala and Luca La Rocca
lilla@dimat.unipv.it luca@dimat.unipv.it

Dear Members of ISBA, we would like to use
this Student’s Corner as an opportunity to send out
a request to all of you. As some may already be
aware of, we are running a survey on the following
topic:

”Which groundbreaking/essential papers do
you believe that a graduate student with a serious
interest in Bayesian statistics should not miss read-
ing?”

In other words, if you had to decide on next
years’ choices for a Journal Club, which Bayesian
papers would you include? We would very much
appreciate if you could spare five minutes of your
time and make a list of 3 or 4 such papers, whether
methodological or computational, whether your
own or the product of other distinguished authors.
Please keep in mind that it would be very useful for
students to have such a hit-list of papers which are
considered a must from those within the field. We
welcome all replies and hope these will be copious,
looking forward to featuring the results in the next
issues of the Bulletin. Finally, a note of thanks goes
to all of you who have already responded!

➤ Phd Thesis

Let us now introduce this issue’s two doctorate
thesis abstracts.

The first one is from the Department of Mathe-
matics at the University of Pavia, Italy. The PhD
in Mathematics and Statistics (which actually fore-
sees two distinct curricula) is a three-year program
with an extensive course offering during its first
half. The Mathematical Statistics graduate pro-
gram is relatively new and is currently going into
its seventh year. On the other hand, the University
of Pavia is one of the oldest places of study in Italy.
The town very much resembles an over-seas cam-
pus as the university and its population of students
are the center of most of the town’s activity.

Igor Pruenster - igor@eco.unipv.it
Department of Political Economics and Quantita-
tive Methods University of Pavia, Italy
Thesis title: Random probability measures derived from
increasing additive processes and their application to
Bayesian statistics
Advisor: Eugenio Regazzini.
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