On Some Mixture Models for INAR(1) Processes

Helton Graziadei, Paulo Marques and Hedibert Lopes

IME-USP \& Insper
February 2021

- Marques, Graziadei and Lopes (2020)

Bayesian generalizations of the INAR model. Journal of Applied Statistics. https://doi.org/10.1080/02664763.2020.1812544.

- Graziadei, Lijoi, Lopes, Marques and Prunster (2020) Prior sensitivity analysis in a semi-parametric INAR model.
Entropy, 22, 69
https://doi.org/10.3390/e22010069

Outline

1 Introduction

2 The AdINAR(1) Model

3 Learning the latent pattern of heterogeneity in time series of counts

4 Future work

Introduction

- Time series of counts arise in a wide range of applications such as econometrics, public policy and environmental studies.
- Traditional time series models consider continuously valued processes. In count scenarios, continuous time series models are not suitable for analyzing discrete data.

■ We WILL NOT pursue the well known class of generalized dynamic linear models.

■ We assume here a special autoregressive structure for discrete variables [Alzaid and Al-Osh, 1987, McKenzie, 1985].

■ We consider some mixture models on the innovation process as a means to improve forecasting accuracy.

INAR(1) process

Consider a Markov process $\left\{Y_{t}\right\}_{t \in \mathbb{N}}$ represented by the following functional form [McKenzie, 1985, Alzaid and Al-Osh, 1987]:

where

$$
M_{t}=\alpha \circ Y_{t-1}=\sum_{i=1}^{Y_{t-1}} B_{i}(t)
$$

is refereed to here as maturation at time t, and $\left\{B_{i}(t)\right\}$ is a collection of independent Bernoulli (α) random variables.

The original formulation assumes that Z_{t} follows a parametric model, usually a Poisson or a Geometric distribution.

Our contributions

1 Model Z_{t} via a Poisson-Geometric mixture to account for over-dispersion in time series of counts.

2 Develop a semi-parametric model based on the Dirichlet Process in order to learn the patters of heterogeneity in time series of counts.

3 Investigate the Pitman-Yor process to robustify inference for the number of clusters.

The AdINAR（1）Model

- The $\operatorname{AdINAR}(1)$ model is defined such that Z_{t} is a mixture of a Geometric and a Poisson distributions

$$
\begin{aligned}
& z_{t} \mid \theta, \lambda, w \sim w \operatorname{Geometric}(\theta)+(1-w) \operatorname{Poisson}(\lambda) \\
t= & 2, \ldots, T, w \in[0,1] .
\end{aligned}
$$

- As w becomes large, the innovation is contaminated by the Geometric distribution in the mixture, increasing variability of the process.

Figure: Typical simulated series for $w=0.1$ and $w=0.9$.

■ The joint distribution of $\left(Y_{1}, \ldots, Y_{T}\right)$, given α and λ, can be written as

$$
p\left(y_{1}, \ldots, y_{T} \mid \alpha, \theta, \lambda, w\right)=\prod_{t=2}^{T} p\left(y_{t} \mid y_{t-1}, \alpha, \theta, \lambda, w\right)
$$

■ The joint distribution of $\left(Y_{1}, \ldots, Y_{T}\right)$, given α and λ, can be written as

$$
p\left(y_{1}, \ldots, y_{T} \mid \alpha, \theta, \lambda, w\right)=\prod_{t=2}^{T} p\left(y_{t} \mid y_{t-1}, \alpha, \theta, \lambda, w\right)
$$

- The likelihood function of $y=\left(y_{2}, \ldots, y_{T}\right)$ is directly derived: Hence, the $\operatorname{AdINAR}(1)$ model likelihood function is given by

$$
\begin{aligned}
L_{y}(\alpha, \theta, \lambda, w) & =\prod_{t=2}^{T} \sum_{m_{t}=0}^{\min \left\{y_{t-1}, y_{t}\right\}}\binom{y_{t-1}}{m_{t}} \alpha^{m_{t}}(1-\alpha)^{y_{t-1}-m_{t}} \times \\
& \left(w \times \theta(1-\theta)^{y_{t}-m_{t}}+(1-w) \times \frac{e^{-\lambda} \lambda^{y_{t}-m_{t}}}{\left(y_{t}-m_{t}\right)!}\right) .
\end{aligned}
$$

Reparameterizaton

Let us introduce some new items.
■ Let $M=\left(M_{2}, \ldots, M_{T}\right)$ be the set of maturations.

- Let the model be augmented by the latent varables

$$
u=\left(u_{2}, \ldots, u_{T}\right)
$$

such that

$$
u_{t}=1, \text { if } z_{t} \mid \theta \sim \operatorname{Geometric}(\theta)
$$

or

$$
u_{t}=0, \text { if } z_{t} \mid \lambda \sim \operatorname{Poisson}(\lambda),
$$

for $t=2, \ldots, T$.

Conditionally conjugate priors

Thinning: $\alpha \sim \operatorname{Beta}\left(a_{0}^{(\alpha)}, b_{0}^{(\alpha)}\right)$
Weight: $w \sim \operatorname{Beta}\left(a_{0}^{(w)}, b_{0}^{(w)}\right)$
Geometric: $\theta \sim \operatorname{Beta}\left(a_{0}^{(\theta)}, b_{0}^{(\theta)}\right)$

$$
\text { Poisson: } \lambda \sim \operatorname{Gamma}\left(a_{0}^{(\lambda)}, b_{0}^{(\lambda)}\right)
$$

Simpler conditional distributions

- Postulate that:

$$
\begin{aligned}
p\left(y_{t} \mid m_{t}, u_{t}=1\right) & =\theta(1-\theta)^{y_{t}-m_{t}} \mathbb{I}_{\left\{m_{t}, m_{t+1}, \ldots\right\}}\left(y_{t}\right), \\
p\left(y_{t} \mid m_{t}, u_{t}=0\right) & =\frac{e^{-\lambda} \lambda^{y_{t}-m_{t}}}{\left(y_{t}-m_{t}\right)!} \mathbb{I}_{\left\{m_{t}, m_{t+1}, \ldots\right\}}\left(y_{t}\right), \\
p\left(m_{t} \mid \alpha, y_{t-1}\right) & =\binom{y_{t-1}}{m_{t}} \alpha^{m_{t}}(1-\alpha)^{y_{t-1}-m_{t}}
\end{aligned}
$$

for $t=2, \ldots, T$.

- It is possible to show that using these conditional distributions, we recover the original likelihood.

Full conditionals

The full conditional distributions are simply derived:

$$
\begin{aligned}
& (\alpha \mid \ldots) \sim \operatorname{Beta}\left(a_{0}^{(\alpha)}+\sum_{t=2}^{T} m_{t}, b_{0}^{(\alpha)}+\sum_{t=2}^{T}\left(y_{t-1}-m_{t}\right)\right) \\
& (w \mid \ldots) \sim \operatorname{Beta}\left(a_{0}^{(\omega)}+\sum_{t=2}^{T} u_{t}, b_{0}^{(\omega)}+(T-1)-\sum_{t=2}^{T} u_{t}\right) \\
& (\theta \mid \ldots) \sim \operatorname{Beta}\left(a_{0}^{(\theta)}+\sum_{t=2}^{T} u_{t}, b_{0}^{(\theta)}+\sum_{\left\{t: u_{t}=1\right\}}\left(y_{t}-m_{t}\right)\right) \\
& (\lambda \mid \ldots) \sim \operatorname{Gamma}\left(a_{0}^{(\lambda)}+\sum_{\left\{t: u_{t}=0\right\}}\left(y_{t}-m_{t}\right), b_{0}^{(\lambda)}+(T-1)-\sum_{t=2}^{T} u_{t}\right)
\end{aligned}
$$

Full conditionals

Additionally,

$$
\begin{aligned}
& \operatorname{Pr}\left\{U_{t}=1 \mid \ldots\right\} \propto w \theta(1-\theta)^{y_{t}-m_{t}} \\
& \operatorname{Pr}\left\{U_{t}=0 \mid \ldots\right\} \propto(1-w) \frac{e^{-\lambda} \lambda^{y_{t}-m_{T}}}{\left(y_{t}-m_{t}\right)!}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left\{M_{t}\right. & \left.=m_{t} \mid \ldots\right\} \\
& \propto \begin{cases}\frac{1}{\left(y_{t-1}-m_{t}\right)!m_{t}!}\left(\frac{\alpha}{(1-\theta)(1-\alpha)}\right)^{m_{t}} & \text { if } u_{t}=1 \\
\frac{1}{\left(y_{t}-m_{t}\right)!\left(y_{t-1}-m_{t}\right)!m_{t}!}\left(\frac{\alpha}{\lambda(1-\alpha)}\right)^{m_{t}} & \text { if } u_{t}=0\end{cases}
\end{aligned}
$$

for $t=2, \ldots, T, m_{t}=0,1, \ldots, \min \left\{y_{t}, y_{t-1}\right\}$.

Direct acyclic graph

- This mixture distribution allows the model to account for overdispersion in a time series of counts and accommodate inflation of zeros.

■ In what follows, we extend the 2-component mixture of distributions by a generalized, DP-based version of the INAR(1) model.

Learning the latent pattern of heterogeneity in time series of counts

The Dirichlet Process

Given a measurable space (\mathscr{X}, \mathscr{B}) and a probability space $(\Omega, \mathscr{F}, \operatorname{Pr})$, a random probability measure \mathbb{G} is a mapping $\mathbb{G}: \mathscr{B} \times \Omega \rightarrow[0,1]$.
Definition (Ferguson, 1973): Let α be a finite non-null measure on $(\mathscr{X}, \mathscr{B})$. We say \mathbb{G} is a Dirichlet process if, for every measurable partition $\left\{B_{1}, \ldots, B_{k}\right\}$ of \mathscr{X}, the random vector $\left(P\left(B_{1}\right), \ldots, P\left(B_{k}\right)\right)$ follows a Dirichlet distribution with parameter vector $\left(\alpha\left(B_{1}\right), \ldots, \alpha\left(B_{k}\right)\right)$.

Let $\tau=\alpha(\mathscr{X})$ be the concentration parameter and, for every $B \in \mathscr{B}, G_{0}(B)=\alpha(B) / \alpha(\mathscr{X})$ the base measure which leads to a suitable parametrization in terms of a probability measure. Under this formulation, we denote $\mathbb{G} \sim D P\left(\tau G_{0}\right)$.

The Dirichlet Process

$1 \mathrm{E}(\mathbb{G}(B))=G_{0}(B)$.
$2 \operatorname{Var}(\mathbb{G}(B))=\frac{G_{0}(B)\left(1-G_{0}(B)\right)}{\tau+1}$.
3 Assume that, given a Dirichlet process \mathbb{G} with parameter α, X_{1}, \ldots, X_{n} are conditionally independent and identically distributed such that $P\left(X_{i} \in B \mid \mathbb{G}\right)=\mathbb{G}(B) \quad i=1, \ldots, n$, then $\mathbb{G} \mid X_{1}, \ldots, X_{n} \sim D P(\beta)$, where $\beta(C)=\alpha(C)+\sum_{i=1}^{n} \mathbb{I}_{C}\left(X_{i}\right)$.

4 As shown by [Blackwell and MacQueen, 1973] the predictive distribution of $X_{n+1}, n \geq 1$, given X_{1}, \ldots, X_{n} may be obtained integrating out \mathbb{G}, which entails that

$$
X_{n+1} \mid X_{1}, \ldots, X_{n} \sim \frac{\tau}{\tau+n} G_{0}+\frac{1}{\tau+n} \sum_{i=1}^{n} \delta_{X_{i}}
$$

where δ_{x} denotes a point mass on x.

Dirichlet and Pitman-Yor Processes

- The discrete parcel in the predictive distribution implies the clustering property of the Dirichlet process, which induces a probability distribution on the number of distinct values in $\left(X_{1}, \ldots, X_{n}\right)$, which we denote by k.
- [Pitman and Yor, 1997] generalized the Dirichlet process introducing a discount parameter σ, The predictive distribution for the Pitman-Yor process is given by:

$$
X_{n+1} \mid X_{1}, \ldots, X_{n} \sim \frac{\tau+k \sigma}{\tau+n} G_{0}+\frac{1}{\tau+n} \sum_{i=1}^{n}\left(1-\frac{\sigma}{n_{i}}\right) \delta_{X_{i}}
$$

where n_{i} is the number of elements in $\left(X_{1}, \ldots, X_{n}\right)$ equal to $X_{i}, \sigma \in[0,1]$.

■ The Pitman-Yor process with high σ induces less informative prior distributions for K [Pitman and Yor, 1997, De Blasi et al., 2013].

$\sigma=0.5$

- In the $\operatorname{INAR}(1)$ structure, we now assume the innovation process is time-varying, i.e., $E\left(Z_{t}\right)=\lambda_{t}$.

■ From a realization of the process y_{1}, \ldots, y_{T}, we want to learn the distribution of each λ_{t} and represent our uncertainties about the future steps Y_{T+1}, \ldots, Y_{T+h} in order to forecast them.

- We create clusters of innovation rates as a means to learn the latent patterns of heterogeneity in the count time series.

DAG

Let $y=\left(y_{1}, \ldots, y_{T}\right)$ and $m=\left(m_{2}, \ldots, m_{T}\right)$. To obtain the posterior $p(\alpha, \lambda, m)$ we integrate out the random distribution P. From the parametric part in the graph, we have that:

$$
\begin{aligned}
p(y, m, \alpha, \lambda) & =\int p(y, m, \alpha, \lambda \mid G) d \mu_{\mathbb{G}}(G) \\
& =\left\{\prod_{t=2}^{T} p\left(y_{t} \mid m_{t}, \lambda_{t}\right) p\left(m_{t} \mid y_{t-1}, \alpha\right)\right\} \times \\
& \pi(\alpha) \times \int \prod_{t=2}^{T} p\left(\lambda_{t} \mid G\right) d \mu_{\mathbb{G}}(G)
\end{aligned}
$$

■ The random vector $\left(\lambda_{2}, \ldots, \lambda_{T}\right)$ has an exchangeable distribution.

Therefore, the Pólya-Blackwell-MacQueen urn process yiels the full conditional distribution of λ_{t} as the mixture

$$
\begin{gathered}
\lambda_{t} \mid \text { all others } \sim w_{0} \times \operatorname{Gamma}\left(y_{t}-m_{t}+a_{0}^{\left(G_{0}\right)}, b_{0}^{\left(G_{0}\right)}+1\right) \\
+\sum_{r \neq t} \lambda_{r}^{y_{t}-m_{t}} e^{-\lambda_{r}} \delta_{\left\{\lambda_{r}\right\}}
\end{gathered}
$$

in which $w_{0}=\frac{\tau \cdot\left(b_{0}^{\left(\sigma_{0}\right)}\right)^{a_{0}^{\left(G_{0}\right)}} \Gamma\left(y_{t}-m_{t}+a_{0}^{\left(G_{0}\right)}\right)}{\Gamma\left(a_{0}^{\left(G_{0}\right)}\right)\left(b_{0}^{\left(\sigma_{0}\right)}+1\right)^{y_{t}-m_{t}+a_{0}^{\left(G_{0}\right)}}}$ and $\delta_{\left\{\lambda_{r}\right\}}$ denotes a point mass at λ_{r}.

■ Recall that the full conditional of λ_{t} is a combination of the joint prior $p\left(\lambda_{2}, \ldots, \lambda_{T}\right)$ with $p\left(y_{t} \mid m_{t}, \lambda_{t}\right)$.

- The weights in the expression above are not normalized.

Choice of prior parameters

[Dorazio, 2009] choose the parameters $a_{0}^{(\tau)}$ and $b_{0}^{(\tau)}$ of the τ prior by minimizing the Kullback-Leibler divergence between the prior distribution of the number of clusters K and a uniform discrete distribution on a suitable range.

The marginal probability function of K can be computed as

$$
\pi(k)=\int_{0}^{\infty} \operatorname{Pr}\{K=k \mid \tau\} \pi(\tau) d \tau=\frac{b_{0}^{(\tau)} S(T-1, k)}{\Gamma\left(a_{0}^{(\tau)}\right)} I\left(a_{0}^{(\tau)}, b_{0}^{(\tau)} ; k\right)
$$

for $k=1, \ldots, T-1$, in which

$$
I\left(a_{0}^{(\tau)}, b_{0}^{(\tau)} ; k\right)=\int_{0}^{\infty} \frac{\tau^{k+a_{0}^{(\tau)}-1} e^{-b_{0}^{(\tau)} \tau} \Gamma(\tau)}{\Gamma(\tau+T-1)} d \tau
$$

Choice of prior parameters

Let q be the probability function of a uniform discrete distribution on $\{1, \ldots, T-1\}$, that is

$$
q(k)=\frac{1}{T-1} \mathbb{I}_{\{1, \ldots, T-1\}}(k),
$$

we find, by numerical integration and optimization, the values of $a_{0}^{(\tau)}$ and $b_{0}^{(\tau)}$ that minimize the Kullback-Leibler divergence

$$
\mathrm{KL}[\pi \| q]=\sum_{k=1}^{T-1} q(k) \log \left(\frac{q(k)}{\pi(k)}\right)
$$

Choice of prior parameters

Similarly, we choose the hyperparameters $a_{0}^{\left(G_{0}\right)}$ and $b_{0}^{\left(G_{0}\right)}$ of the base probability density g_{0} minimizing the Kullback-Leibler divergence between g_{0} and a uniform distribution on a suitable range $\left[0, \lambda_{\max }\right]$, where $\lambda_{\max }$ is chosen by taking into consideration the available information on the studied phenomena.

Choice of prior parameters

Let h be a uniform density on [$0, \lambda_{\text {max }}$], that is

$$
h(\lambda)=\left(\frac{1}{\lambda_{\max }}\right) \mathbb{I}_{\left[0, \lambda_{\max }\right]}(\lambda)
$$

we find, by numerical optimization, the values of $a_{0}^{\left(G_{0}\right)}$ and $b_{0}^{\left(G_{0}\right)}$ that minimize the Kullback-Leibler divergence

$$
\begin{aligned}
& \mathrm{KL}\left[g_{0} \| h\right]=\int_{0}^{\lambda_{\max }}\left(\frac{1}{\lambda_{\max }}\right) \log \left(\frac{1 / \lambda_{\max }}{g_{0}(\lambda)}\right) d \lambda \\
& \quad=-\log \lambda_{\max }-a_{0}^{\left(G_{0}\right)} \log b_{0}^{\left(G_{0}\right)}+\log \Gamma\left(a_{0}^{\left(G_{0}\right)}\right)- \\
& \left(a_{0}^{\left(G_{0}\right)}-1\right)\left(\log \lambda_{\max }-1\right)+\frac{b_{0}^{\left(G_{0}\right)} \lambda_{\max }}{2} .
\end{aligned}
$$

Choosing the parameters for the α prior is more straightforward, with $a_{0}^{(\alpha)}=b_{0}^{(\alpha)}=1$ being a natural choice.

Pitman-Yor case

The full conditional of each λ_{t} is slightly modified:

$$
\begin{aligned}
& \lambda_{t} \mid \text { all others } \sim w_{0}^{*} \times \mathrm{Ga}\left(y_{t}-m_{t}+a_{0}^{\left(G_{0}\right)}\left(b_{0}^{\left(G_{0}\right)}+1\right)\right. \\
& +\sum_{i \neq t}\left(1-\frac{\sigma}{n_{i}}\right) \lambda_{i}^{y_{t}-m_{t}} e^{-\lambda_{i}} \delta_{\left\{\lambda_{i}\right\}}, \\
& w_{0}^{*}=\frac{(\tau+k \backslash t) \cdot\left(b_{0}^{\left(G_{0}\right)}\right)^{a_{0}^{\left(G G_{0}\right)}} \Gamma\left(y_{t}-m_{t}+a_{0}^{\left(G_{0}\right)}\right)}{\Gamma\left(a_{0}^{\left(G_{0}\right)}\right)\left(\left(_{0}^{\left(G_{0}\right)}+1\right)^{y_{t}-m_{t}+a_{0}^{\left(G_{0}\right)}} .\right.}
\end{aligned}
$$

■ To improve efficiency, we remix the vector of distinct rates λ^{*} after every step of the sampler [Escobar and West, 1998].
■ Let $\left(\lambda_{1}^{*}, \ldots, \lambda_{k}^{*}\right)$ be the k unique values among $\left(\lambda_{2}, \ldots, \lambda_{T}\right)$. Let $c_{t}=\sum_{j=1}^{k} j \cdot \mathbb{I}_{\left\{\lambda_{j}^{*}\right\}}\left(\lambda_{t}\right)$ be the cluster indicator of λ_{t}, and define the number of occupants of cluster j by $n_{j}=\sum_{t=2}^{T} \mathbb{I}_{\{j\}}\left(c_{t}\right)$:
$\lambda_{j}^{*} \mid$ all others $\sim \operatorname{Gamma}\left(a_{0}^{\left(G_{0}\right)}+\sum_{\substack{t=2 \\ c_{t}=j}}^{T}\left(y_{t}-m_{t}\right), b_{0}^{\left(G_{0}\right)}+n_{j}\right)$.
for $j=1, \ldots, k$.

■ Also, the full conditionals for α and m_{t} are:

$$
\begin{aligned}
& \alpha \mid \text { all others } \sim \operatorname{Beta}\left(a_{0}^{(\alpha)}+\sum_{t=2}^{T} m_{t}, b_{0}^{(\alpha)}+\sum_{t=2}^{T}\left(y_{t-1}-m_{t}\right)\right) . \\
& p\left(m_{t} \mid \text { all others }\right) \propto \frac{1}{m_{t}!\left(y_{t}-m_{t}\right)!\left(y_{t-1}-m_{t}\right)!}\left(\frac{\alpha}{\lambda_{t}(1-\alpha)}\right)^{m_{t}} \\
& \mathbb{I}_{\left\{0,1, \ldots, \min \left\{y_{t-1}, y_{t}\right\}\right\}}\left(m_{t}\right) .
\end{aligned}
$$

- This Gibbs sampler yields, marginally, a sample $\left\{\alpha^{(n)}, \lambda^{(n)}\right\}_{n=1}^{N}$ from the posterior distribution.

The DP-INAR(1) Model

We extend [Freeland, 1998] original INAR(1) model.

Proposition

The probability function of Y_{t+h} given $Y_{t}=y_{t}$ and $\theta=\left(\alpha, \lambda_{t+1}, \ldots, \lambda_{t+h}\right)$, can be writen as the convolution of a $\operatorname{Bin}\left(y_{t}, \alpha^{h}\right)$ distribution and a Poisson $\left(\mu_{h}\right)$ distribution.

$$
\begin{array}{r}
p\left(y_{t+h} \mid y_{t}, \theta\right)=\sum_{m=0}^{\min \left\{y_{t}, y_{t+h}\right\}}\binom{y_{t}}{m}\left(\alpha^{h}\right)^{m}\left(1-\alpha^{h}\right)^{y_{t}-m} \times \\
\left(\frac{\mu_{h}^{y_{t+h}-m} e^{-\mu_{h}}}{\left(y_{t+h}-m\right)!}\right)
\end{array}
$$

in which $\mu_{h}=\sum_{i=1}^{h} \alpha^{h-i} \lambda_{t+i}$.

Pólya-Blackwell-MacQueen urn

Using [Blackwell and MacQueen, 1973] urn process recursively, for $n=1 \ldots, N$, we draw a sample $\left\{\lambda_{T+1}^{(n)}, \ldots, \lambda_{T+h}^{(n)}\right\}_{n=1}^{N}$ from $\prod_{i=1}^{h} p\left(\lambda_{T+i} \mid \lambda_{2}, \ldots, \lambda_{T+i-1}\right)$ sequentially as follows:

$$
\begin{aligned}
\lambda_{T+1}^{(n)} & \sim \frac{\tau}{\tau+T} G_{0}+\frac{1}{\tau+T} \sum_{t=2}^{T} \delta_{\left\{\lambda_{t}^{(n)}\right\}} \\
\lambda_{T+2}^{(n)} & \sim \frac{\tau}{\tau+T+1} G_{0}+\frac{1}{\tau+T+1} \sum_{t=2}^{T+1} \delta_{\left\{\lambda_{t}^{(n)}\right\}} \\
& \vdots \\
\lambda_{T+h}^{(n)} & \sim \frac{\tau}{\tau+T+h-1} G_{0}+\frac{1}{\tau+T+h-1} \sum_{t=2}^{T+h-1} \delta_{\left\{\lambda_{t}^{(n)}\right\}}
\end{aligned}
$$

DP-INAR(1) posterior predictive

■ Combining these elements, we approximate the integral representation of the h-steps-ahead posterior predictive probability function by the Monte Carlo average
$p\left(y_{T+h} \mid y_{1}, \ldots, y_{T}\right) \approx \frac{1}{N} \sum_{n=1}^{N} p\left(y_{T+h} \mid y_{T}, \alpha^{(n)}, \lambda_{T+1}^{(n)}, \ldots, \lambda_{T+h}^{(n)}\right)$,
for $y_{T+h} \geq 0$.

- As a pointwise forecast, we compute the generalized median of the h-steps-ahead posterior predictive distribution, defined by

$$
\hat{y}_{T+h}=\arg \min _{y_{T+h} \geq 0}\left|0.5-\sum_{r=0}^{y_{T+h}} p\left(r \mid y_{1}, \ldots, y_{T}\right)\right| .
$$

Monthly counts of burglary events

We analyze monthly time series of burglary events in Pittsburgh, USA, from January 1990 to December 2001. In this dataset, each time series has a length of 144 months and corresponds to a certain patrol area. The Figure below shows the series for patrol area 58.

http://www.forecastingprinciples.com/index.php/crimedata

Posterior distributions - AdINAR(1)

For the $\operatorname{AdINAR}(1)$ model hyperparameters, we make the choices $a_{\alpha}=1, b_{\alpha}=1, a_{\lambda}=1, b_{\lambda}=0.01, a_{\theta}=1, b_{\theta}=1, a_{w}=1$, and $b_{w}=1$, which correspond to reasonably flat priors.

Figure 2 displays the marginal posterior distributions of the AdINAR(1) model parameters.

The posterior distribution of the thinning parameter α is fairly concentrated, with posterior mean 0.31 , showing that the autoregressive component is not negligible for this patrol area. The posterior mean of λ is 6.78 , while the posterior mean of θ is 0.12 . Also, the posterior distribution of w, with posterior mean 0.38 , shows that the geometric component of the mixture has less weight for this patrol area.

Posterior distributions - AdINAR(1)

Posterior distributions - AdINAR(1)

Posterior distributions - DP-INAR(1)

For the DP-INAR(1) model, we specify the hyperparameters as follows. To determine a_{τ} and b_{τ}, the optimization procedure described, with $k_{\text {min }}=1$ and $k_{\max }=143$, yields $a_{\tau}=0.519$ and $b_{\tau}=0.003$. Note that these values of $k_{\min }$ and $k_{\max }$ correspond, within our scheme, to the most spread choice for the prior distribution of the number of clusters K.

We control the support of G_{0} by choosing the value of $\lambda_{\max }$ to be the maximum observed count. The level curves of $\mathrm{KL}\left[g_{0} \| h\right]$ are given below. The minimum is attained at $a_{0}^{\left(G_{0}\right)}=1.778$ and $b_{0}^{\left(G_{0}\right)}=0.096$.

For the thinning parameter α, we adopt a uniform prior, choosing $a_{0}^{(\alpha)}=b_{0}^{(\alpha)}=1$.

Figure: Level curves of the Kullback-Leibler divergence associated with the optimization of the base measure hyperparameters for patrol area 58.

Posterior distributions - DP-INAR(1)

The marginal posterior distributions of parameters $\alpha, \lambda_{3}, \lambda_{18}$, and λ_{96} are displayed below. The posterior distribution of the thinning parameter α is reasonably concentrated, with posterior mean 0.19 , showing that the autoregressive component is not negligible. The posterior distributions of $\lambda_{3}, \lambda_{18}$ and λ_{96} are fairly concentrated as well, with posterior means equal to $6.50,13.61$ and 32.01 , respectively, showing that different regimes of innovation rates were captured in the learning process.

Posterior distributions - DP-INAR(1)

Figure: Marginal posterior distributions of parameters $\alpha, \lambda_{3}, \lambda_{18}$, and λ_{96}, for patrol area 58.

Posterior distributions - DP-INAR(1)

The posterior means of the innovation rates follow the same pattern of heterogeneity of the series.

Figure: Posterior means of the innovation rates (in grey) and the observed counts for patrol area 58 (in red).

The Markov chains in Figure 7 indicate that proper mixing is achieved by the Gibbs sampler.

Figure: Markov chains associated with the marginal posterior distributions of parameters $\alpha, \lambda_{3}, \lambda_{18}$, and λ_{96}, for patrol area 58. The gray rectangles indicate the burn-in periods.

Cross-validation procedure for time series

- We use a form of cross-validation to evaluate the forecasting performance of the model.
■ For an observed time series y_{1}, \ldots, y_{T}, pick some $T^{*}<T$:
1 Treat the counts $y_{T^{*}}, \ldots, y_{T}$ as a test sample
2 For $t \geq T^{*}$, train the model using the values of y_{1}, \ldots, y_{t-1} making an h-steps-ahead prediction \hat{y}_{t+h}.

3 Compute the median deviation $\left|\hat{y}_{t+h}-y_{t+h}\right|$
4 Take the average over all predictions.

Illustration of the 2-step ahead forecasting

Forecasting performance

In terms of forecasting performance:

- The $\operatorname{AdINAR}(1)$ and the DP-INAR(1) models outperform the INAR(1) model in 75\% of the patrol areas
- The $\operatorname{AdINAR}(1)$ model and the DP-INAR(1) model produce substantial relative gains in the mean absolute deviations, with the exception of five areas in which the $\operatorname{INAR}(1)$ performs better, but with smaller relative gains.

■ In terms of learning K, we fixed τ such that the prior expected number of clusters is equal to $\{3,8,13\}$.

- The Dirichlet Process is highly influenced by the prior specification of τ.

■ Robustness is achieved in the Pitman-Yor case specifying high values for σ.

	DP	Pitman-Yor		
	$\sigma=0$	σ		
	0	0.25	0.50	0.75
$E(K)=3$	4.67	5.76	6.41	7.44
$E(K)=8$	9.37	8.37	7.89	7.31
$E(K)=13$	13.93	10.76	9.25	7.15

Future work

Future work

- Extend the DP-INAR(1) and PY-INAR(1) to higher order Markov process.

■ Generalize these ideas for multivariate time series by using Hierarchical Dirichlet Processes.

■ Incorporate covariates in the model.
■ Multivariate extensions (work with Refik Soyer)
■ Dynamic modeling extensions (with Refik as well)

References I

R Alzaid, A. and Al-Osh, M. (1987).
First-order integer-valued autoregressive (inar(1)) processes. Journal of Time Series Analysis.

- Blackwell, D. and MacQueen, J. B. (1973).

Ferguson distributions via polya urn schemes.
Annals of Statistics, 1(2).
國 De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I., and Ruggiero, M. (2013).
Are gibbs-type priors the most natural generalization of the dirichlet process?
IEEE transactions on pattern analysis and machine intelligence, 37(2):212-229.

References II

E Dorazio, R. M. (2009).
On selecting a prior for the precision parameter of dirichlet process mixture models.
Journal of Statistical Planning and Inference.
E- Escobar, M. and West, M. (1998).
Computing nonparametric hierarchical models.
In Dey, D., Müller, P., and Sinha, D., editors, Practical
nonparametric and semiparametric Bayesian statistics,
chapter 1, pages 1-22. Springer-Verlag.
(R) Freeland, R. K. (1998).

Statistical analysis of discrete time series with application to the analysis of workers' compensation data.
PhD thesis, University of British Columbia, Vancouver.

References III

囲 McKenzie, E. (1985).
Some simple models for discrete variate time series.
JAWRA Journal of the American Water Resources Association, 21(4):645-650.

圕 Pitman, J. and Yor, M. (1997).
The two-parameter poisson-dirichlet distribution derived from
a stable subordinator.
Annals of Probability, 25:855-900.

