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Introduction



Time series of counts arise in a wide range of applications
such as econometrics, public policy and environmental studies.

Traditional time series models consider continuously valued
processes. In count scenarios, continuous time series models
are not suitable for analyzing discrete data.

We WILL NOT pursue the well known class of generalized
dynamic linear models.

We assume here a special autoregressive structure for discrete
variables [Alzaid and Al-Osh, 1987, McKenzie, 1985].

We consider some mixture models on the innovation process
as a means to improve forecasting accuracy.



INAR(1) process

Consider a Markov process {Yt}t∈N represented by the following
functional form [McKenzie, 1985, Alzaid and Al-Osh, 1987]:

Yt︸︷︷︸
Count at time t

= α ◦ Yt−1︸ ︷︷ ︸
Survivors from t − 1

+ Zt︸︷︷︸
Innovation at time t

,

where

Mt = α ◦ Yt−1 =

Yt−1∑
i=1

Bi (t),

is refereed to here as maturation at time t, and {Bi (t)} is a
collection of independent Bernoulli(α) random variables.

The original formulation assumes that Zt follows a parametric
model, usually a Poisson or a Geometric distribution.



Our contributions

1 Model Zt via a Poisson-Geometric mixture to account for
over-dispersion in time series of counts.

2 Develop a semi-parametric model based on the Dirichlet
Process in order to learn the patters of heterogeneity in time
series of counts.

3 Investigate the Pitman-Yor process to robustify inference for
the number of clusters.



The AdINAR(1) Model



The AdINAR(1) model is defined such that Zt is a mixture of
a Geometric and a Poisson distributions

zt | θ, λ,w ∼ w Geometric(θ) + (1− w)Poisson(λ)

t = 2, . . . ,T ,w ∈ [0, 1].

As w becomes large, the innovation is contaminated by the
Geometric distribution in the mixture, increasing variability of
the process.
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Figure: Typical simulated series for w = 0.1 and w = 0.9.



The joint distribution of (Y1, . . . ,YT ), given α and λ, can be
written as

p(y1, . . . , yT | α, θ, λ,w) =
T∏
t=2

p(yt | yt−1, α, θ, λ,w).

The likelihood function of y = (y2, . . . , yT ) is directly derived:
Hence, the AdINAR(1) model likelihood function is given by

Ly (α, θ, λ,w) =
T∏
t=2

min{yt−1, yt}∑
mt=0

(
yt−1

mt

)
αmt (1− α)yt−1−mt×

(
w × θ(1− θ)yt−mt + (1− w)× e−λλyt−mt

(yt −mt)!

)
.
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Ly (α, θ, λ,w) =
T∏
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min{yt−1, yt}∑
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yt−1

mt

)
αmt (1− α)yt−1−mt×

(
w × θ(1− θ)yt−mt + (1− w)× e−λλyt−mt

(yt −mt)!

)
.



Reparameterizaton

Let us introduce some new items.

Let M = (M2, . . . ,MT ) be the set of maturations.

Let the model be augmented by the latent varables

u = (u2, . . . , uT )

such that
ut = 1, if zt | θ ∼ Geometric(θ)

or
ut = 0, if zt | λ ∼ Poisson(λ),

for t = 2, . . . ,T .



Conditionally conjugate priors

Thinning: α ∼ Beta(a
(α)
0 , b

(α)
0 )

Weight: w ∼ Beta(a
(w)
0 , b

(w)
0 )

Geometric: θ ∼ Beta(a
(θ)
0 , b

(θ)
0 )

Poisson: λ ∼ Gamma(a
(λ)
0 , b

(λ)
0 )



Simpler conditional distributions

Postulate that:

p(yt | mt , ut = 1) = θ(1− θ)yt−mt I{mt ,mt+1,...}(yt),

p(yt | mt , ut = 0) =
e−λλyt−mt

(yt −mt)!
I{mt ,mt+1,...}(yt),

p(mt | α, yt−1) =

(
yt−1

mt

)
αmt (1− α)yt−1−mt .

for t = 2, . . . ,T .

It is possible to show that using these conditional
distributions, we recover the original likelihood.



Full conditionals

The full conditional distributions are simply derived:

(α | . . .) ∼ Beta

(
a

(α)
0 +

T∑
t=2

mt , b
(α)
0 +

T∑
t=2

(yt−1 −mt)

)

(w | . . .) ∼ Beta

(
a

(w)
0 +

T∑
t=2

ut , b
(w)
0 + (T − 1)−

T∑
t=2

ut

)

(θ | . . .) ∼ Beta

a
(θ)
0 +

T∑
t=2

ut , b
(θ)
0 +

∑
{t:ut=1}

(yt −mt)



(λ | . . .) ∼ Gamma

a
(λ)
0 +

∑
{t:ut=0}

(yt −mt), b
(λ)
0 + (T − 1)−

T∑
t=2

ut





Full conditionals

Additionally,

Pr {Ut = 1 | . . .} ∝ w θ(1− θ)yt−mt ;

Pr {Ut = 0 | . . .} ∝ (1− w)
e−λλyt−mT

(yt −mt)!
,

and

Pr {Mt = mt | . . .}

∝


1

(yt−1 −mt)! mt !

(
α

(1− θ)(1− α)

)mt

if ut = 1

1

(yt −mt)! (yt−1 −mt)! mt !

(
α

λ (1− α)

)mt

if ut = 0

for t = 2, . . . ,T , mt = 0, 1, . . . ,min{yt , yt−1}.
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This mixture distribution allows the model to account for
overdispersion in a time series of counts and accommodate
inflation of zeros.

In what follows, we extend the 2-component mixture of
distributions by a generalized, DP-based version of the
INAR(1) model.



Learning the latent pattern of heterogeneity
in time series of counts



The Dirichlet Process

Given a measurable space (X , B) and a probability space
(Ω, F , Pr), a random probability measure G is a mapping
G : B × Ω→ [0, 1].

Definition (Ferguson, 1973): Let α be a finite non-null measure
on (X , B). We say G is a Dirichlet process if, for every
measurable partition {B1, . . . ,Bk} of X , the random vector
(P(B1), . . . ,P(Bk)) follows a Dirichlet distribution with parameter
vector (α(B1), . . . , α(Bk)).

Let τ = α(X ) be the concentration parameter and, for every
B ∈ B, G0(B) = α(B)/α(X ) the base measure which leads to a
suitable parametrization in terms of a probability measure.
Under this formulation, we denote G ∼ DP(τ G0).



The Dirichlet Process

1 E(G(B)) = G0(B).

2 Var(G(B)) = G0(B)(1−G0(B))
τ+1 .

3 Assume that, given a Dirichlet process G with parameter α,
X1, . . . ,Xn are conditionally independent and identically
distributed such that P(Xi ∈ B | G) = G(B) i = 1, . . . , n,
then G | X1, . . . ,Xn ∼ DP(β), where
β(C ) = α(C ) +

∑n
i=1 IC (Xi ).

4 As shown by [Blackwell and MacQueen, 1973] the predictive
distribution of Xn+1, n ≥ 1, given X1, . . . ,Xn may be obtained
integrating out G, which entails that

Xn+1 | X1, . . . ,Xn ∼
τ

τ + n
G0 +

1

τ + n

n∑
i=1

δXi
,

where δx denotes a point mass on x .



Dirichlet and Pitman-Yor Processes

The discrete parcel in the predictive distribution implies the
clustering property of the Dirichlet process, which induces a
probability distribution on the number of distinct values in
(X1, . . . ,Xn), which we denote by k .

[Pitman and Yor, 1997] generalized the Dirichlet process
introducing a discount parameter σ, The predictive
distribution for the Pitman-Yor process is given by:

Xn+1 | X1, . . . ,Xn ∼
τ + kσ

τ + n
G0 +

1

τ + n

n∑
i=1

(
1− σ

ni

)
δXi
,

where ni is the number of elements in (X1, . . . ,Xn) equal to
Xi , σ ∈ [0, 1].



The Pitman-Yor process with high σ induces less informative
prior distributions for K
[Pitman and Yor, 1997, De Blasi et al., 2013].
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In the INAR(1) structure, we now assume the innovation
process is time-varying, i.e., E (Zt) = λt .

From a realization of the process y1, . . . , yT , we want to learn
the distribution of each λt and represent our uncertainties
about the future steps YT+1, . . . ,YT+h in order to forecast
them.

We create clusters of innovation rates as a means to learn the
latent patterns of heterogeneity in the count time series.



DAG

τ G

λ2 λ3 . . . λT−1 λT

Y1 Y2 Y3 YT−1 YT. . .
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Let y = (y1, . . . , yT ) and m = (m2, . . . ,mT ). To obtain the
posterior p(α, λ,m) we integrate out the random distribution P.
From the parametric part in the graph, we have that:

p(y ,m, α, λ) =

∫
p(y ,m, α, λ | G ) dµG(G )

=

{
T∏
t=2

p(yt | mt , λt) p(mt | yt−1, α)

}
×

π(α)×
∫ T∏

t=2

p(λt | G ) dµG(G ).

The random vector (λ2, . . . , λT ) has an exchangeable
distribution.



Therefore, the Pólya-Blackwell-MacQueen urn process yiels the full
conditional distribution of λt as the mixture

λt | all others ∼ w0 × Gamma(yt −mt + a
(G0)
0 , b

(G0)
0 + 1)

+
∑
r 6=t

λyt−mt
r e−λr δ{λr},

in which w0 =
τ ·(b(G0)

0 )a
(G0)
0 Γ(yt−mt+a

(G0)
0 )

Γ(a
(G0)
0 )(b

(G0)
0 +1)yt−mt+a

(G0)
0

and δ{λr} denotes a point

mass at λr .

Recall that the full conditional of λt is a combination of the
joint prior p(λ2, . . . , λT ) with p(yt | mt , λt).

The weights in the expression above are not normalized.



Choice of prior parameters

[Dorazio, 2009] choose the parameters a
(τ)
0 and b

(τ)
0 of the τ prior

by minimizing the Kullback-Leibler divergence between the prior
distribution of the number of clusters K and a uniform discrete
distribution on a suitable range.

The marginal probability function of K can be computed as

π(k) =

∫ ∞
0

Pr{K = k | τ}π(τ) dτ =
b

(τ)
0 S(T − 1, k)

Γ(a
(τ)
0 )

I (a
(τ)
0 , b

(τ)
0 ; k),

for k = 1, . . . ,T − 1, in which

I (a
(τ)
0 , b

(τ)
0 ; k) =

∫ ∞
0

τk+a
(τ)
0 −1 e−b

(τ)
0 τ Γ(τ)

Γ(τ + T − 1)
dτ.



Choice of prior parameters

Let q be the probability function of a uniform discrete distribution
on {1, . . . ,T − 1}, that is

q(k) =
1

T − 1
I{1,...,T−1}(k),

we find, by numerical integration and optimization, the values of

a
(τ)
0 and b

(τ)
0 that minimize the Kullback-Leibler divergence

KL[π ‖ q] =
T−1∑
k=1

q(k) log

(
q(k)

π(k)

)
.



Choice of prior parameters

Similarly, we choose the hyperparameters a
(G0)
0 and b

(G0)
0 of the

base probability density g0 minimizing the Kullback-Leibler
divergence between g0 and a uniform distribution on a suitable
range [0, λmax], where λmax is chosen by taking into consideration
the available information on the studied phenomena.



Choice of prior parameters

Let h be a uniform density on [0, λmax], that is

h(λ) =

(
1

λmax

)
I[0,λmax](λ),

we find, by numerical optimization, the values of a
(G0)
0 and b

(G0)
0

that minimize the Kullback-Leibler divergence

KL[g0 ‖ h] =

∫ λmax

0

(
1

λmax

)
log

(
1/λmax

g0(λ)

)
dλ

= − log λmax − a
(G0)
0 log b

(G0)
0 + log Γ(a

(G0)
0 )−

(a
(G0)
0 − 1)(log λmax − 1) +

b
(G0)
0 λmax

2
.

Choosing the parameters for the α prior is more straightforward,

with a
(α)
0 = b

(α)
0 = 1 being a natural choice.



Pitman-Yor case

The full conditional of each λt is slightly modified:

λt | all others ∼w∗0 × Ga(yt −mt + a
(G0)
0 (b

(G0)
0 + 1)

+
∑
i 6=t

(
1− σ

ni

)
λyt−mt

i e−λi δ{λi},

w∗0 =
(τ+k\t σ)·(b(G0)

0 )a
(G0)
0 Γ(yt−mt+a

(G0)
0 )

Γ(a
(G0)
0 )(b

(G0)
0 +1)yt−mt+a

(G0)
0

.



To improve efficiency, we remix the vector of distinct rates λ∗

after every step of the sampler [Escobar and West, 1998].

Let (λ∗1, . . . , λ
∗
k) be the k unique values among (λ2, . . . , λT ).

Let ct =
∑k

j=1 j · I{λ∗j }(λt) be the cluster indicator of λt , and

define the number of occupants of cluster j by
nj =

∑T
t=2 I{j}(ct):

λ∗j | all others ∼ Gamma

a
(G0)
0 +

T∑
t=2
ct=j

(yt −mt), b
(G0)
0 + nj

 .

for j = 1, . . . , k .



Also, the full conditionals for α and mt are:

α | all others ∼ Beta

(
a

(α)
0 +

T∑
t=2

mt , b
(α)
0 +

T∑
t=2

(yt−1 −mt)

)
.

p(mt | all others) ∝ 1

mt !(yt −mt)!(yt−1 −mt)!

(
α

λt(1− α)

)mt

I{0,1,...,min {yt−1,yt}}(mt).

This Gibbs sampler yields, marginally, a sample
{α(n), λ(n)}Nn=1 from the posterior distribution.



The DP-INAR(1) Model

We extend [Freeland, 1998] original INAR(1) model.

Proposition

The probability function of Yt+h given Yt = yt and
θ = (α, λt+1, . . . , λt+h), can be writen as the convolution of a
Bin(yt , α

h) distribution and a Poisson(µh) distribution.

p(yt+h | yt , θ) =

min{yt ,yt+h}∑
m=0

(
yt
m

)
(αh)m(1− αh)yt−m×(

µ
yt+h−m
h e−µh

(yt+h −m)!

)
,

in which µh =
∑h

i=1 α
h−iλt+i .



Pólya-Blackwell-MacQueen urn

Using [Blackwell and MacQueen, 1973] urn process recursively, for

n = 1 . . . ,N, we draw a sample {λ(n)
T+1, . . . , λ

(n)
T+h}

N
n=1 from∏h

i=1 p(λT+i | λ2, . . . , λT+i−1) sequentially as follows:

λ
(n)
T+1 ∼

τ

τ + T
G0 +

1

τ + T

T∑
t=2

δ{λ(n)
t }

;

λ
(n)
T+2 ∼

τ

τ + T + 1
G0 +

1

τ + T + 1

T+1∑
t=2

δ{λ(n)
t }

;

...

λ
(n)
T+h ∼

τ

τ + T + h − 1
G0 +

1

τ + T + h − 1

T+h−1∑
t=2

δ{λ(n)
t }
.



DP-INAR(1) posterior predictive

Combining these elements, we approximate the integral
representation of the h-steps-ahead posterior predictive
probability function by the Monte Carlo average

p(yT+h | y1, . . . , yT ) ≈ 1

N

N∑
n=1

p(yT+h | yT , α(n), λ
(n)
T+1, . . . , λ

(n)
T+h),

for yT+h ≥ 0.

As a pointwise forecast, we compute the generalized median of
the h-steps-ahead posterior predictive distribution, defined by

ŷT+h = arg min
yT+h≥0

∣∣∣∣∣0.5−
yT+h∑
r=0

p(r | y1, . . . , yT )

∣∣∣∣∣ .



Monthly counts of burglary events

We analyze monthly time series of burglary events in Pittsburgh,
USA, from January 1990 to December 2001. In this dataset, each
time series has a length of 144 months and corresponds to a certain
patrol area. The Figure below shows the series for patrol area 58.
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Posterior distributions - AdINAR(1)

For the AdINAR(1) model hyperparameters, we make the choices
aα = 1, bα = 1, aλ = 1, bλ = 0.01, aθ = 1, bθ = 1, aw = 1, and
bw = 1, which correspond to reasonably flat priors.

Figure 2 displays the marginal posterior distributions of the
AdINAR(1) model parameters.

The posterior distribution of the thinning parameter α is fairly
concentrated, with posterior mean 0.31, showing that the
autoregressive component is not negligible for this patrol area. The
posterior mean of λ is 6.78, while the posterior mean of θ is 0.12.
Also, the posterior distribution of w , with posterior mean 0.38,
shows that the geometric component of the mixture has less
weight for this patrol area.



Posterior distributions - AdINAR(1)
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Figure: Marginal posterior distributions of the AdINAR(1) model
parameters α, θ, λ, and w for patrol area 58.



Posterior distributions - AdINAR(1)

Figure: Markov chains associated with the AdINAR(1) model marginal
posterior distributions of parameters α, θ, λ, and w for patrol area 58.



Posterior distributions - DP-INAR(1)

For the DP-INAR(1) model, we specify the hyperparameters as
follows. To determine aτ and bτ , the optimization procedure
described, with kmin = 1 and kmax = 143, yields aτ = 0.519 and
bτ = 0.003. Note that these values of kmin and kmax correspond,
within our scheme, to the most spread choice for the prior
distribution of the number of clusters K .

We control the support of G0 by choosing the value of λmax to be
the maximum observed count. The level curves of KL[g0 ‖ h] are

given below. The minimum is attained at a
(G0)
0 = 1.778 and

b
(G0)
0 = 0.096.

For the thinning parameter α, we adopt a uniform prior, choosing

a
(α)
0 = b

(α)
0 = 1.
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Figure: Level curves of the Kullback-Leibler divergence associated with
the optimization of the base measure hyperparameters for patrol area 58.



Posterior distributions - DP-INAR(1)

The marginal posterior distributions of parameters α, λ3, λ18, and
λ96 are displayed below. The posterior distribution of the thinning
parameter α is reasonably concentrated, with posterior mean 0.19,
showing that the autoregressive component is not negligible. The
posterior distributions of λ3, λ18 and λ96 are fairly concentrated as
well, with posterior means equal to 6.50, 13.61 and 32.01,
respectively, showing that different regimes of innovation rates
were captured in the learning process.



Posterior distributions - DP-INAR(1)
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Figure: Marginal posterior distributions of parameters α, λ3, λ18, and
λ96, for patrol area 58.



Posterior distributions - DP-INAR(1)

The posterior means of the innovation rates follow the same
pattern of heterogeneity of the series.
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Figure: Posterior means of the innovation rates (in grey) and the
observed counts for patrol area 58 (in red).



The Markov chains in Figure 7 indicate that proper mixing is
achieved by the Gibbs sampler.

Figure: Markov chains associated with the marginal posterior
distributions of parameters α, λ3, λ18, and λ96, for patrol area 58. The
gray rectangles indicate the burn-in periods.



Cross-validation procedure for time series

We use a form of cross-validation to evaluate the forecasting
performance of the model.

For an observed time series y1, . . . , yT , pick some T ∗ < T :

1 Treat the counts yT∗ , . . . , yT as a test sample

2 For t ≥ T ∗,train the model using the values of y1, . . . , yt−1

making an h-steps-ahead prediction ŷt+h.

3 Compute the median deviation |ŷt+h − yt+h|

4 Take the average over all predictions.



Illustration of the 2-step ahead forecasting

time



Forecasting performance

In terms of forecasting performance:

The AdINAR(1) and the DP-INAR(1) models outperform the
INAR(1) model in 75% of the patrol areas

The AdINAR(1) model and the DP-INAR(1) model produce
substantial relative gains in the mean absolute deviations,
with the exception of five areas in which the INAR(1)
performs better, but with smaller relative gains.



In terms of learning K , we fixed τ such that the prior
expected number of clusters is equal to {3, 8, 13}.

The Dirichlet Process is highly influenced by the prior
specification of τ .

Robustness is achieved in the Pitman-Yor case specifying high
values for σ.

DP Pitman-Yor
σ = 0 σ

0 0.25 0.50 0.75
E (K ) = 3 4.67 5.76 6.41 7.44
E (K ) = 8 9.37 8.37 7.89 7.31
E (K ) = 13 13.93 10.76 9.25 7.15



Future work



Future work

Extend the DP-INAR(1) and PY-INAR(1) to higher order
Markov process.

Generalize these ideas for multivariate time series by using
Hierarchical Dirichlet Processes.

Incorporate covariates in the model.

Multivariate extensions (work with Refik Soyer)

Dynamic modeling extensions (with Refik as well)
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