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Sparsity in Economics
We revisit the paper Economic predictions with big data: the illusion of sparsity
by Giannone, Lenza and Primiceri, whose July 2020 abstract says:

We compare sparse and dense representations of predictive models in
macroeconomics, microeconomics and finance. To deal with a large
number of possible predictors, we specify a prior that allows for both
variable selection and shrinkage. The posterior distribution does not
typically concentrate on a single sparse model, but on a wide set of
models that often include many predictors.

They conclude the paper saying:

In economics, there is no theoretical argument suggesting that predictive
models should in general include only a handful of predictors. As a
consequence, the use of low-dimensional model representations can be
justified only when supported by strong statistical evidence.

They add that:

Empirical support for low-dimensional models is generally weak. Predic-
tive model uncertainty seems too pervasive to be treated as statistically
negligible. The right approach to scientific reporting is thus to assess
and fully convey this uncertainty, rather than understating it through the
use of dogmatic (prior) assumptions favoring low dimensional models.



Our contribution

We proposes a revision of the methods adopted by Giannone, Lenza and
Primiceri.

I We analyze the posterior distribution of the included coefficients of the
linear model. This was not explored by Giannone, Lenza and Primiceri.

I We add bogus predictors and observe correct exclusion only in a subset of
the data sets.

I We extend their analysis with Student’s t prior for the regression
coefficients. The heavier-tailed distribution was more restrictive in selecting
possible predictors, and results once again corroborate with the thesis that
the original Spike-and-Slab prior is unable to correctly allow and distinguish
between shrinkage or sparsity.

I We developed a simulation exercise to check the performance of the original
model and with the t-student modification in a totally controlled
environment. Posterior inference reinforces the belief that their prior
incorrectly induces shrinkage.

Overall conclusion: Their Spike-and-Slab approach does not seem to be robust,
leading to the illusion that sparsity is nonexistent, when it might in fact exist.
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Ridge and lasso regressions
Throughout, we consider the standard Gaussian linear model,

yt = β1x1t + β2x2t + · · ·+ βqxqt + νt ,

where RSS= (y − Xβ)′(y − Xβ) is the residual sum of squares.

I Ridge regression Hoerl and Kennard [1970] - `2 penalty on β:

β̂ridge = arg min
β

RSS + λ2
r

q∑
j=1

β2
j

 , λ2
r ≥ 0,

leading to β̂ridge = (X ′X + λ2
r Iq)−1X ′y .

I Lasso regression Tibshirani [1996] - `1 penalty on β:

β̂lasso = arg min
β

RSS + λl

q∑
j=1

|βj |

 , λl ≥ 0,

which can be solved by a coordinate gradient descent algorithm.



Ridge and lasso estimates are posterior modes!

The posterior mode or the maximum a posteriori (MAP) is given by

β̃mode = arg min
β
{−2 log p(y |β)− 2 log p(β)}

The β̂ridge estimate equals the posterior mode of the normal linear model with

p(βj) ∝ exp{−0.5λ2
rβ

2
j },

which is a Gaussian distribution with location 0 and scale 1/λ2
r , N(0, 1/λ2

r ).
The mean is 0, the variance is 1/λ2

r and the excess kurtosis is 0.

The β̂lasso estimate equals the posterior mode of the normal linear model with

p(βj) ∝ exp{−0.5λl |βj |},

which is a Laplace distribution with location 0 and scale 2/λl , Laplace(0, 2/λl).
The mean is 0, the variance is 8/λ2

l and excess kurtosis is 3.



Spike and slab model (or scale mixture of normals)

Ishwaran and Rao [2005] define a spike and slab model as a Bayesian model
specified by the following prior hierarchy:

(yt |xt , β, σ2) ∼ N(x ′tβ, σ
2), t = 1, . . . , n

(β|ψ) ∼ N(0, diag(ψ))

ψ ∼ π(dψ)

σ2 ∼ µ(dσ2)

They go to say that

“Lempers [1988] and Mitchell and Beauchamp [1988] were among the
earliest to pioneer the spike and slab method. The expression ‘spike and
slab’ referred to the prior for β used in their hierarchical formulation.”



Spike and slab model (or scale mixture of normals model)

Regularization and variable selection are done by assuming independent prior
distributions from the SMN class to each coefficient βj :

βj |ψj ∼ N(0, ψj) and ψj ∼ p(ψj)

so

p(βj) =

∫
p(βj |ψj)p(ψj)dψj .

Mixing density p(ψj) Marginal density p(βj) V (βj) Ex.kurtosis(βj)

ψj = 1/λ2
r N(0, 1/λ2

r ) - (ridge) 1/λ2
r 0

IG(η/2, ητ 2/2) tη(0, τ
2) η/(η − 2)τ 2 6/(η − 4)

G(1, λ2
l /8) Laplace(0, 2/λl) - (blasso) 8/λ2

l 3

G(ζ, 1/(2γ2)) NG(ζ, γ2) 2ζγ2 3/ζ

Griffin and Brown [2010] Normal-Gamma prior:

p(β|ζ, γ2) =
1√

π2ζ−1/2γζ+1/2Γ(ζ)
|β|ζ−1/2Kζ−1/2(|β|/γ),

where K is the modified Bessel function of the 3rd kind.



Illustration
Ridge: λ2

r = 0.01 ⇒ Excess kurtosis=0
Student’s t: η = 5, τ 2 = 60 ⇒ Excess kurtosis=6
Blasso: λ2

l = 0.08 ⇒ Excess kurtosis=3
NG: ξ = 0.5, γ2 = 100 ⇒ Excess kurtosis=6
All variances are equal to 100.
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Stochastic search variable selection (SSVS) prior
SSVS George and McCulloch [1993]: For small τ > 0 and c >> 1,

β|ω, τ 2, c2 ∼ (1− ω)N(0, τ 2)︸ ︷︷ ︸
spike

+ωN(0, c2τ 2)︸ ︷︷ ︸
slab

.

SMN representation: β|ψ ∼ N(0, ψ) and

ψ|ω, τ 2, c2 ∼ (1− ω)δτ 2 (ψ) + ωδc2τ 2 (ψ)



Scaled SSVS prior = normal mixture of IG prior
NMIG prior of Ishwaran and Rao [2005]: For υ0 � υ1,

β|K , τ 2 ∼ N(0,Kτ 2),

K |ω, υ0, υ1 ∼ (1− ω)δυ0 (K ) + ωδυ1 (K ),

τ 2 ∼ IG (aτ , bτ ).

(1)

I Large ω implies non-negligible effects.
I The scale ψ = Kτ 2 ∼ (1− ω)IG (aτ , υ0bτ ) + ωIG (aτ , υ1bτ ).
I p(β) is a two component mixture of scaled Student’s t distributions.



Other mixture priors
Frühwirth-Schnatter and Wagner [2011]: absolutely continuous priors

β ∼ (1− ω)pspike(β) + ωpslab(β), (2)

Let Q > 0 a scale parameter and

r =
Varspike(β)

Varslab(β)
� 1,

then the mixing densities for ψ,

1. IG: ψ ∼ (1− ω)IG (ν, rQ) + ωIG (ν,Q),

2. Exp: ψ ∼ (1− ω)Exp(1/2rQ) + ωExp(1/2Q),

3. Gamma: ψ ∼ (1− ω)G (a, 1/2rQ) + ωG (a, 1/2Q),

leads to the marginal densities for β,

1. Scaled-t: β ∼ (1− ω)t2ν(0, rQ/ν) + ωt2ν(0,Q/ν),

2. Laplace: β ∼ (1− ω)Lap(
√
rQ) + ωLap(

√
Q),

3. NG: β ∼ (1− ω)NG (a, r ,Q) + ωNG (a,Q).



Inverted-Gamma prior for the variance of β
It is easy to see that, for a constant c ,

Varspike(β) = cQr and Varslab(β) = cQ.

Therefore, when

vβ = Var(β) = (1− ω) Varspike(β) + ω Varslab(β) ∼ IG (c0,C0),

the implied distribution of Q is

Q ∼ IG

(
c0,

C0

c((1− ω)r + ω)

)
.

Spike-and-slab priors:

Prior Spike Slab p(β) Constant c

SSVS ψ = rQ ψ = Q (1− ω)N(0, rQ) + ωN(0,Q) 1
NMIG IG (ν, rQ) IG (ν,Q) (1− ω)t2ν(0, rQ/ν) + ωt2ν(0,Q/ν) 1/(ν − 1)
Laplaces Exp(1/2rQ) Exp(1/2Q) (1− ω)Lap(

√
rQ) + ωLap(

√
Q) 2

Normal-Gammas G (a, 1/2rQ) G (a, 1/2Q) (1− ω)NG (βj |a, r ,Q) + ωNG (βj |a,Q) 2a
Laplace-t Exp(1/2rQ) IG (ν,Q) (1− ω)Lap(

√
rQ) + ωt2ν(0,Q/ν) c1 = 2, c2 = 1/(ν − 1)



Toy example: R package Bayeslm

For observation i = 1, . . . , n = 68 and predictor j = 1, . . . , k = 16, we simulate

xij ∼ N(0, 1) and ε∗i ∼ N(0, 1)

We also fix β1 = −0.86, β2 = 0.64 and β3 = 0.89, while the response variable is:

y
(s)
i = β1xi1 + β2xi2 + β3xi3 + σ(s)

ε ε∗i ,

and σ
(s)
ε = 0.75s, for s = 1, 2.

MCMC set-up: N = 2000 draws, burnin= 10000 burn-in

Monte Carlo error: R = 20 replicates



Ridge, Laplace and horseshoe priors
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Toy example: R script
install.packages("bayeslm");library("bayeslm")
n=68;k=16;betas=c(-0.86,0.64,0.89,rep(0,k-3));sigs=c(0.75,1.5)
N=2000;burnin=10000;R=20
qs=c(0.025,0.5,0.975)
J=length(sigs);quants=array(0,c(R,J,3,k,3))
set.seed(54321)
for (r in 1:R){

for (j in 1:J){
X = matrix(rnorm(n*k),n,k)
y = rnorm(n,X%*%betas,sigs[j])
fit.hs = bayeslm(y,x,prior=’horseshoe’,N=N,burnin=burnin,icept=FALSE)
fit.ridge = bayeslm(y,x,prior=’ridge’,N=N,burnin=burnin,icept=FALSE)
fit.lasso = bayeslm(y,x,prior=’laplace’,N=N,burnin=burnin,icept=FALSE)
quants[r,j,1,,] = t(apply(fit.hs$beta,2,quantile,qs))
quants[r,j,2,,] = t(apply(fit.ridge$beta,2,quantile,qs))
quants[r,j,3,,] = t(apply(fit.lasso$beta,2,quantile,qs))

}
}
method = c("horseshoe","ridge","lasso")
par(mfrow=c(2,3))
for (i in 1:2)

for (j in c(2,3,1)){
boxplot(quants[,i,j,,1],names=1:k,ylim=c(-1.5,1.5),outline=FALSE,col=gray(0.8),

xlab="Variable",main=paste(method[j],"\n sig=",sigs[i],sep=""))
abline(h=0,col=4,lwd=2)
for (l in 3:2)

boxplot(quants[,i,j,,l],names=rep("",k),outline=FALSE,col=l,add=TRUE)
points(1:3,betas[1:3],col=5,pch=16)

}



A few additional references
Park and Casella (2008) The Bayesian lasso. JASA, 103(482), 681-686.

Carvalho, Polson and Scott (2010) The horseshoe estimator for sparse signals. Biometrika,
97(2)465-480.

Polson and Scott (2010) Shrink globally, act locally: Sparse Bayesian regularization and
prediction, Bayesian Statistics, Volume 9, 501–538.
Polson and Scott (2012) Local shrinkage rules, Lévy processes and regularized regression,
JRSS-B, 74(2), 287-311.

van der Pas, Kleijn and van der Vaart (2014) The horseshoe estimator: Posterior concentration
around nearly black vectors. Electronic Journal of Statistics, 8, 2585-2618.

Bhattacharya, Pati, Pillai and Dunson (2015) Dirichlet–Laplace priors for optimal shrinkage,
JASA, 110, 1479–1490.

Makalic and Schmidt (2016) A Simple Sampler for the Horseshoe Estimator. IEEE Signal
Processing Letters, 23(1), 179-182.

Bhadra, Datta, Polson and Willard (2017) The Horseshoe+ Estimator of Ultra-Sparse Signals,
Bayesian Analysis, 12(4), 1105–1131.

Rocková and George (2018) The Spike-and-Slab LASSO, JASA, 113(521), 431-444.

Hahn, He and Lopes (2019) Efficient sampling for Gaussian linear regression with arbitrary
priors, JCGS, 28, 142-154.
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GLP spike-and-slab prior

Let yt be the response variable and xt the k-dimensional vector of potential
explanatory variables. The Gaussian linear model is

yt = x ′tβ + εt , εt ∼ N(0, σ2)

The prior specification for σ2 is

p(σ2) ∝ 1

σ2

and the prior for βi is

βi |σ2, γ2, q ∼
{

N(0, σ2γ2) with prob. q
0 with prob. 1− q

i = 1, . . . , k.

q governs the degree of sparsity.

γ governs the degree of shrinkage.



Hyperprior of (q, γ2)

Instead of setting a hyperprior for (q, γ2), GLP defined a prior for the pair
(q,R2), where

R2(γ2, q) ≡ qkγ2

qkγ2 + 1
,

is the coefficient of determination.

The hyperprior distributions are:

q ∼ Beta(1, 1)

and
R2 ∼ Beta(1, 1)



Marginal prior of γ: p(γ|k)

20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of variables

ga
m

m
a



p(1− q|γ) and p(γ)

Pr(q|gamma,k=20)
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p(β|k , σ = 1)
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GLP Macro and finance data sets
Table 1: Description of the datasets.

Dependent variable Possible predictors Sample

Macro 1 Monthly growth rate of
US industrial production 130 lagged macroeco-

nomic indicators
659 monthly time-
series observations,
from February 1960 to
December 2014

Macro 2 Average growth rate of
GDP over the sample
1960-1985

60 socio-economic,
institutional and ge-
ographical character-
istics, measured at
pre-60s value

90 cross-sectional coun-
try observations

Finance 1 US equity premium
(S&P 500) 16 lagged financial and

macroeconomic indica-
tors

68 annual time-series
observations, from 1948
to 2015

Finance 2 Stock returns of US
firms 144 dummies classify-

ing stock as very low,
low, high or very high in
terms of 36 lagged char-
acteristics

1400k panel observa-
tions for an average of
2250 stocks over a span
of 624 months, from
July 1963 to June 2015

Source: [Giannone et al., 2020, p. 15]



GLP Micro data sets

Table 1: Description of the datasets.
Dependent variable Possible predictors Sample

Micro 1 Per-capita crime (mur-
der) rates

Effective abortion rate
and 284 controls includ-
ing possible covariate of
crime and their transfor-
mations

576 panel observations
for 48 US states over
a span of 144 months,
from January 1986 to
December 1997

Micro 2 Number of pro-plaintiff
eminent domain deci-
sions in a specific circuit
and in a specific year

Characteristics of judi-
cial panels capturing as-
pects related to gen-
der, race, religion, po-
litical affiliation, educa-
tion and professional his-
tory of the judges, to-
gether with some inter-
actions among the latter,
for a total of 138 regres-
sors

312 panel circuit/year
observations, from 1975
to 2008

Source: [Giannone et al., 2020, p. 15]



Their main remarks

The conclusion is that a clear pattern of sparsity is found only on the Micro 1
data set, in which only one variable is included most of the times.

For all other data sets, one is incapable of determining which variables should be
included, as many have a high estimated probability of inclusion ⇒ dense models.

Their conclusion: Ssparsity cannot be assumed for any economic data set, unless
in the presence of strong statistical evidence, and suggest an ”illusion of sparsity”
when using statistical models that assume (and force) sparsity.



An important drawback
Finance 1 data set -

Inc: Probability of inclusion. G0: Probability above zero.



A drawback of their approach

The spike-and-slab prior, as defined, seems to be inducing shrinkage by including
predictors with a near-zero coefficient.

Example: β5 and (β9, β12, β16)

I Probability of inclusion near 0.5, but also about 0.4/0.6 probability
above/below zero.

I It could be, for example, that an economist trying to make inference on the
regression would very easily exclude variable 5, but keep, for example,
variables 9, 12 and 16.
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I. Adding meaningless variables

We re-run the estimation algorithm for all the five datasets but now include two
additional regressors that were completely randomly generated.

Micro 1: 1.6% and 3.9%
Macro 1: 12.2% and 21.1%

Micro 2: 20.0% and 18.7%
Macro 2 56.1% and 55.2% (57th and 58th most included out of 62)
Finance 1: 71.0% and 48.4% (3rd and 18th most included out of 18)



I. Adding meaningless variables
Finance 1 data set (n = 68): Here x17 and x18 are meaningless.

Similar shapes: β18 and (β4, β5, β15).
High inclusion: x17 included 71% of times.



II. Fatter tails via Student’s t

New prior:

βi |σ2, γ2, λ2
i , q ∼

{
N(0, σ2γ2λ2

i ) with prob. q
0 with prob. 1− q

i = 1, . . . , k ,

with an Inverse-Gamma prior for λ2
i :

λ2
i ∼ IG

(ν
2
,
ν

2

)
Therefore, βi follows a Student’s t distribution:

βi |σ2, γ2, q ∼
{

tν(0, σ2γ2) with prob. q
0 with prob. 1− q

i = 1, . . . , k ,

where
V (βi |σ2, γ2, q) =

ν

ν − 2
σ2γ2



II. Fatter tails via Student’s t - Macro 1

x72 and x90 are both relevant for ν > 10.

Only x90 for ν <= 10 (sparsity reemerges).

Prob. inclusion ↓ as ν ↑.

Argument: Spike-and-Slab, as originally defined, induces selection and shrinkage,
since for ν = 4 only 7 of 130 available predictors are relevant - that is, included
more than 50% of the times.



II. Fatter tails via Student’s t - Micro 2

Gaussian: no pattern of variable selection.
106 of 138 predictors are selected more than 50% of the times.

Student’s t: Sparsity in action.
For ν = 4, only 30 predictors are selected.
For ν = 10, only 34 predictors are selected.



II. Fatter tails via Student’s t - Macro 2 & Finance 1

Similarity across ν



III. A simulation exercise

For observation i = 1, . . . , n = 68 and predictor j = 1, . . . , k = 16, we simulate

xij ∼ N(0, 1) and ε∗i ∼ N(0, 1)

We also fix β1 = −0.86, β2 = 0.64 and β3 = 0.89, while the response variable is:

y
(s)
i = β1xi1 + β2xi2 + β3xi3 + σ(s)

ε ε∗i ,

and σ
(s)
ε = 0.75s, for s = 1, 2, 3.

The prior for β are Gaussian or Student’s t with ν = 4 degrees of freedom.

We replicate the above simulation R = 20 times.



III. Probability of inclusion
I σ ↑: inclusion of x1, x2, x3 decreases. More so for the Student’s t case.
I σ ↑: inclusion of x4, . . . , x16 increases. More so for the Gaussian case.
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III. Probability above zero
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III. Proportion of β4, . . . , β16 classified as relevant
For σ large, Student’s t prior performs better at shrinking towards zero.
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