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Motivation 1: Dynamic linear regression
Consider the (univariate) normal dynamic linear model (NDLM) expressed by

yt = x ′tβt + νt , νt ∼ N(0,Vt) (1)

βt = Gtβt−1 + ωt , ωt ∼ N(0,Wt), (2)

where βt is q-dimensional.

I Static regression model: Gt = Iq and Wt = 0 for all t.

I Dynamic regression model: Gt = Iq for all t.
Frühwirth-Schnatter and Wagner [2010], Chan et al. [2012]

Multivariate: dim(yt) = m

I TVP-VAR(k) model: dim(yt) = m and q = dim(xt) = mk .
Koop and Korobilis [2013], Belmonte, Koop, and Korobilis [2014]

I Dynamic factor model: dim(yt) = m, βt factors and xt loadings.
Lopes and Carvalho [2007], Lopes, Salazar, and Gamerman [2008b]



Motivation 2: Time-varying Cholesky decomposition

Let
yt = (y1t , . . . , ymt)

′ ∼ N(0,Σt).

Then
Σt = LtDtL

′
t and Σ−1

t = T ′tD
−1
t Tt ,

where Tt = L−1
t is a unit lower triangular matrix and Dt = diag(σ2

1t , . . . , σ
2
mt).

It is easy to see that Ttyt = εt ∼ N(0,Dt).

By assuming that the entries of Tt are −βijt , it follows that y1t ∼ N(0, σ2
1t), and

yit = βi1ty1t + βi2ty2t + · · ·+ βi,i−1,tyi−1,t + εit (qi = i − 1),

where εit ∼ N(0, σ2
it) and i = 2, . . . ,m.

Lopes, McCulloch, and Tsay [2008a] Cholesky stochastic volatility model.
Carvalho, Lopes, and McCulloch [2018] Long run volatility of stocks.



A few references

I Lopes, McCulloch, and Tsay [2008a]

I Frühwirth-Schnatter and Wagner [2010]

I Chan, Koop, Leon-Gonzalez, and Strachan [2012]∗

I Nakajima and West [2013]

I Belmonte, Koop, and Korobilis [2014]∗

I Kalli and Griffin [2014]∗

I Bitto and Frühwirth-Schnatter [2016]∗

I Rocková and McAlinn [2018]∗

I Kowal, Matteson, and Ruppert [2018]

∗ Forecasting US inflation rate.
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Ridge and lasso regressions
Let us consider the static regression,

yt = β1x1t + β2x2t + · · ·+ βqxqt + νt ,

and RSS= (y − Xβ)′(y − Xβ).

I Ridge regression Hoerl and Kennard [1970] - `2 penalty on β:

β̂ridge = arg min
β
{RSS + λ2

r

q∑
j=1

β2
j }, λ2

r ≥ 0,

leading to β̂ridge = (X ′X + λ2
r Iq)−1X ′y .

I Lasso regression Tibshirani [1996] - `1 penalty on β:

β̂lasso = arg min
β
{RSS + λl

q∑
j=1

|βj |}, λ ≥ 0,

which can be solved by a coordinate gradient descent algorithm.



Ridge and lasso estimates are posterior modes!

The posterior mode or the maximum a posteriori (MAP) is given by

β̃mode = arg min
β
{−2 log p(y |β)− 2 log p(β)}

The β̂ridge estimate equals the posterior mode of the normal linear model with

p(βj) ∝ exp{−0.5λ2
rβ

2
j },

which is a Gaussian distribution with location 0 and scale 1/λ2
r , N(0, 1/λ2

r ).
The mean is 0, the variance is 1/λ2

r and the excess kurtosis is 0.

The β̂lasso estimate equals the posterior mode of the normal linear model with

p(βj) ∝ exp{−0.5λl |βj |},

which is a Laplace distribution with location 0 and scale 2/λl , Laplace(0, 2/λl).
The mean is 0, the variance is 8/λ2

l and excess kurtosis is 3.



Spike and slab model (or scale mixture of normals)

Ishwaran and Rao [2005] define a spike and slab model as a Bayesian model
specified by the following prior hierarchy:

(yt |xt , β, σ2) ∼ N(x ′tβ, σ
2), t = 1, . . . , n

(β|ψ) ∼ N(0, diag(ψ))

ψ ∼ π(dψ)

σ2 ∼ µ(dσ2)

They go to say that

“Lempers [1988] and Mitchell and Beauchamp [1988] were among the
earliest to pioneer the spike and slab method. The expression ‘spike and
slab’ referred to the prior for β used in their hierarchical formulation.”



Spike and slab model (or scale mixture of normals model)

Regularization and variable selection are done by assuming independent prior
distributions from the SMN class to each coefficient βj :

βj |ψj ∼ N(0, ψj) and ψj ∼ p(ψj)

so

p(βj) =

∫
p(βj |ψj)p(ψj)dψj .

Mixing density p(ψj) Marginal density p(βj) V (βj) Ex.kurtosis(βj)

ψj = 1/λ2
r N(0, 1/λ2

r ) - (ridge) 1/λ2
r 0

IG(η/2, ητ 2/2) tη(0, τ 2) η/(η − 2)τ 2 6/(η − 4)

G(1, λ2
l /8) Laplace(0, 2/λl) - (blasso) 8/λ2

l 3

G(ζ, 1/(2γ2)) NG(ζ, γ2) 2ζγ2 3/ζ

Griffin and Brown [2010] Normal-Gamma prior:

p(β|ζ, γ2) =
1√

π2ζ−1/2γζ+1/2Γ(ζ)
|β|ζ−1/2Kζ−1/2(|β|/γ),

where K is the modified Bessel function of the 3rd kind.



Illustration
Ridge: λ2

r = 0.01 ⇒ Excess kurtosis=0
Student’s t: η = 5, τ 2 = 60 ⇒ Excess kurtosis=6
Blasso: λ2

l = 0.08 ⇒ Excess kurtosis=3
NG: ξ = 0.5, γ2 = 100 ⇒ Excess kurtosis=6
All variances are equal to 100.
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Frühwirth-Schnatter and Lopes [2018] Sparse BFA when the number of factors is unknown
Kastner, Frühwirth-Schnatter, and Lopes [2017] Efficient Bayesian inference for multivariate factor SV models



Stochastic search variable selection (SSVS) prior

SSVS George and McCulloch [1993]: For small τ > 0 and c >> 1,

β|ω, τ 2, c2 ∼ (1− ω)N(0, τ 2)︸ ︷︷ ︸
spike

+ωN(0, c2τ 2)︸ ︷︷ ︸
slab

.

SMN representation: β|ψ ∼ N(0, ψ) and

ψ|ω, τ 2, c2 ∼ (1− ω)δτ 2 (ψ) + ωδc2τ 2 (ψ)



Scaled SSVS prior = normal mixture of IG prior

NMIG prior of Ishwaran and Rao [2005]: For υ0 � υ1,

β|K , τ 2 ∼ N(0,Kτ 2),

K |ω, υ0, υ1 ∼ (1− ω)δυ0 (K ) + ωδυ1 (K ),

τ 2 ∼ IG (aτ , bτ ).

(3)

I Large ω implies non-negligible effects.
I The scale ψ = Kτ 2 ∼ (1− ω)IG (aτ , υ0bτ ) + ωIG (aτ , υ1bτ ).
I p(β) is a two component mixture of scaled Student’s t distributions.



Other mixture priors
Frühwirth-Schnatter and Wagner [2011]: absolutely continuous priors

β ∼ (1− ω)pspike(β) + ωpslab(β), (4)

Let Q > 0 a scale parameter and

r =
Varspike(β)

Varslab(β)
� 1,

then the mixing densities for ψ,

1. IG: ψ ∼ (1− ω)IG (ν, rQ) + ωIG (ν,Q),

2. Exp: ψ ∼ (1− ω)Exp(1/2rQ) + ωExp(1/2Q),

3. Gamma: ψ ∼ (1− ω)G (a, 1/2rQ) + ωG (a, 1/2Q),

leads to the marginal densities for β,

1. Scaled-t: β ∼ (1− ω)t2ν(0, rQ/ν) + ωt2ν(0,Q/ν),

2. Laplace: β ∼ (1− ω)Lap(
√
rQ) + ωLap(

√
Q),

3. NG: β ∼ (1− ω)NG (a, r ,Q) + ωNG (a,Q).



Inverted-Gamma prior for the variance of β
It is easy to see that, for a constant c ,

Varspike(β) = cQr and Varslab(β) = cQ.

Therefore, when

vβ = Var(β) = (1− ω) Varspike(β) + ω Varslab(β) ∼ IG (c0,C0),

the implied distribution of Q is

Q ∼ IG

(
c0,

C0

c((1− ω)r + ω)

)
.

Spike-and-slab priors:

Prior Spike Slab p(β) Constant c

SSVS ψ = rQ ψ = Q (1− ω)N(0, rQ) + ωN(0,Q) 1
NMIG IG (ν, rQ) IG (ν,Q) (1− ω)t2ν(0, rQ/ν) + ωt2ν(0,Q/ν) 1/(ν − 1)
Laplaces Exp(1/2rQ) Exp(1/2Q) (1− ω)Lap(

√
rQ) + ωLap(

√
Q) 2

Normal-Gammas G (a, 1/2rQ) G (a, 1/2Q) (1− ω)NG (βj |a, r ,Q) + ωNG (βj |a,Q) 2a
Laplace-t Exp(1/2rQ) IG (ν,Q) (1− ω)Lap(

√
rQ) + ωt2ν(0,Q/ν) c1 = 2, c2 = 1/(ν − 1)
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Sparsity in dynamic regressions
Recall,

yt = β1tx1t + β2tx2t + · · ·+ βqtxqt + νt ,

for large q, say 100, 500 or 1000.

I Two main obstacles:
1. Time-varying parameters (states), and
2. A large number of predictors q.

I Two sources of sparsity:
1. Horizontal/static sparsity: βjt = 0, ∀t for some coefficients j .
2. Vertical/dynamic sparsity: βjt = 0 for several js at time t.

Illustration: q = 5 and T = 12

jan feb mar apr may jun jul aug sep oct nov dec
x1 β1,1 β1,2 β1,3 β1,4 β1,5 β1,6 β1,7 β1,8 β1,9 β1,10 β1,11 β1,12

x2 0 0 0 0 0 0 0 0 0 0 0 0
x3 β3,1 β3,2 β3,3 β3,4 β3,5 0 0 0 β3,9 β3,10 β3,11 β3,12

x4 0 0 β4,3 β4,4 β4,5 β4,6 β4,7 β4,8 β4,9 β4,10 β4,11 0
x5 β5,1 β5,2 β5,3 β5,4 β5,5 0 0 0 β5,9 β5,10 β5,11 β5,12



Horizontal sparsity
Belmonte, Koop, and Korobilis [2014] used a non-centered parametrization:

yt = x ′tβ +

q∑
j=1

ψ
1/2
j β̃jtxjt + νt

β̃jt = β̃j,t−1 + ujt ,

(5)

where β̃jt = ψ
−1/2
j βjt and ujt ∼ N(0, 1) for j = 1, . . . , q.

I βj : Laplace prior Park and Casella [2008]

βj |τ 2
j ∼ N(0, τ 2

j ), τ 2
j ∼ Exp(λ2/2).

I βj1, . . . , βjT : Laplace prior on standard deviations ψ
1/2
j

ψ
1/2
j |ξ

2
j ∼ N(0, ξ2

j ), ξ2
j ∼ Exp(κ2/2).

Bitto and Frühwirth-Schnatter [2016] adopt a similar strategy by using the

Normal-Gamma prior to shrink both βj and ψ
1/2
j .



Vertical sparsity
Nakajima and West [2013] - Latent threshold DLMs
For t = 1, . . . ,T ,

yt = x1tb1t + . . .+ xktbkt + εt ,

where, for i = 1, . . . , k, bit = βitsit , sit = I (|βit | ≥ di ), and

βit |βi,t−1, µi , ϕi , ψi ∼ N(µi + ϕi (βit−1 − µi ), (1− ϕ2
i )ψi ).

Key sparsity prior parameters: Pr(bit = 0)

di |µi , ϕi , ψi ∼ U (0, |µi |+ Kψi )



Vertical sparsity
Kalli and Griffin [2014] - NGAR process
For t = 1, . . . ,T ,

yt = x1tβ1t + . . .+ xktβkt + εt ,

the normal-gamma autoregressive process models βjt as follows:

βjt ∼ N
(

(ψjt/ψj,t−1)1/2ϕjβj,t−1, (1− ϕ2
j )ψjt)

)
ψjt |κj,t−1 ∼ G

(
λj + κj,t−1,

λj
γj(1− ρj)

)
κj,t−1|ψj,t−1 ∼ P

(
ρjλjψj,t−1

γj(1− ρj)

)
,

where βj1 ∼ N(0, ψj1) and ψj,1 ∼ G (λj , λj/γj).

ρj : autoregressive parameter for ψjt

γj : controls the overall relevance of βjt

E (ψjt |ψj,t−1) = γj(1− ρj) + ρjψj,t−1

V (βjt) = γj and κ(βjt) = 3/λj



Vertical sparsity

Rocková and McAlinn [2018]
{β1, . . . , βT} follows a dynamic spike-and-slab (DSS) prior:

βt |βt−1, θt ∼ (1− θt)
(

0.9

2
exp{−|βt |0.9}

)
+ θt

(
1√

2π(0.99)
exp

{
− 1

2(0.99)
(βt − 0.98βt−1)2

})
,

where

θt =
0.02

(
0.9
2

exp{−|βt−1|0.9}
)

0.02
(

0.9
2

exp{−|βt−1|0.9}
)

+ 0.98

(
1√

2π(25)
exp

{
− 1

2(25)
β2
t−1

})

They develop an optimization approach for dynamic variable selection.



Vertical sparsity

Kowal, Matteson, and Ruppert [2018]
As before, a given time-varying regression coefficient, βt , is such that

βt ∼ N(0, ψt),

with dynamic shrinkage process

logψt = µ+ φ(logψt−1 − µ) + ηt , ηt ∼ Z (α, β, 0, 1),

so

p(ηt) ∝ {eηt}α{1 + eηt}−(α+β)

eηt ∼ inverted-Beta.

They name dynamic horseshoe process the above locally adaptive shrinkage.



Vertical sparsity: our proposal

Our contribution is defining as a spike-and-slab prior that not only shrinks
time-varying coefficients in dynamic regression problems but allows for dynamic
variable selection.

We use a non-centered parametrization:

yt = x ′t β̃t + νt , νt ∼ N(0, σ2
t )

β̃t = Gt β̃t−1 + ωt , ωt ∼ N(0,Wt),
(6)

with β1 ∼ N(0, ψ1), where

β̃t =
(
ψ
−1/2
1t β1,t , . . . , ψ

−1/2
qt βqt

)′
Gt = diag(ϕ1, . . . , ϕq)

Wt = diag((1− ϕ2
1), . . . , (1− ϕ2

q)),

x ′t = (ψ
1/2
1t x1t , . . . , ψ

1/2
qt xqt).



Vertical sparsity: our proposal

We place independent priors for each ψt = τ 2kt :

(kt |kt−1 = υi )
ind∼ (1− ω1i )δr (υi ) + ω1iδ1(υi ),

where υi ∈ {r , 1}, ω1i = p (kt = 1|kt−1 = υi ), and p(k1 = υi ) = 1/2.

In addition,

r =
Varspike(β)

Varslab(β)
� 1,

and p(τ 2) is one of priors from the previous table.



Vertical sparsity: our proposal



MCMC sampling scheme I
Unsurprisingly, posterior inference is done via a customized MCMC scheme.

Full conditional distributions:

1. Draw kts using the algorithm of Gerlach, Carter, and Kohn [2000].

I They proposed an efficient sampling algorithm, for dynamic mixture models,
which samples kt from p(kt |y1:T , ks 6=t) without conditioning on β̃1:T .

2. Draw β̃1, . . . , β̃T , jointly and conditionally on k1, . . . , kT , via forward
filtering backward sampling (FFBS).

3. Draw σ2:

(σ2|θ\σ2 , y) ∼ IG

(
aσ +

T

2
, bσ +

1

2

T∑
t=1

(yt − x ′tβt)
2

)
.



MCMC sampling scheme II

4. Draw τ 2
j s:

I Assuming the NMIG prior:

(τ 2|θ\τ2 , y) ∼ IG

ν +
T

2
,Q +

1

2

T∑
t=1

(
βt − k

1/2
t k

−1/2
t−1 ϕβt−1

)2

kt(1− ϕ2)

 .

I Assuming mixture of Laplaces or normal-gammas:

(τ 2|θ\τ2 , y) ∼ GIG(p, g , h),

where

g = 1/Q, h =
T∑
t=1

(
βt − k

1/2
t k

−1/2
t−1 ϕβt−1

)2

kt(1− ϕ2)
, p = aτ − T/2.



MCMC sampling scheme III
5. Draw each ϕj using Metropolis Hastings step as its full conditional

p(ϕj |θ\ϕj
, y) ∝ p(ϕj |aϕ, bϕ)p(β|k , σ2, τ 2, ϕ)

∝ ϕ(aϕ−1)
j (1− ϕj)

(bϕ−1) exp

−
T∑
t=1

(
βt −

√
ψt

ψt−1
ϕjβt−1

)2

2ψt(1− ϕ2
j )

 ,

has no close form. We use a Beta proposal density q
(
ϕ∗j |ϕ(m−1)

)
as

ϕ∗j ∼ B
(
α, ξ

(
ϕ

(m−1)
j

))
, ξ

(
ϕ

(m−1)
j

)
= α

(
1− ϕ(m−1)

j

ϕ
(m−1)
j

)
,

where α is a tuning parameter and the acceptance distribution is

A
(
ϕ∗j |ϕ

(m−1)
j

)
= min

1,
p(ϕ∗j |θ\ϕj

, y)q
(
ϕ

(m−1)
j |ϕ∗

)
p(ϕ

(m−1)
j |θ\ϕj

, y)q
(
ϕ∗j |ϕ(m−1)

)
 .



MCMC sampling scheme IV

6. Update the transition probabilities from the latent Markov process:

(ω11|θ\ω11
, y) ∼ B(aω + #{t : υ1 → υ1}, bω + #{t : υ1 → υ0}),

(ω00|θ\ω00
, y) ∼ B(aω + #{t : υ0 → υ0}, bω + #{t : υ0 → υ1}),

with υ0 = r and υ1 = 1.

7. Drawing Q:

I NMIG prior: GIG(p, g , h), with p = ν − c0, g = 2τ−2 and h = 2[C0/s
∗],

I Mixture of Normal-Gammas: IG(c0 + aτ , τ
2/2 + [C0/s

∗]),

I Mixture of Laplaces: IG(c0 + aτ , τ
2/2 + [C0/s

∗]), with aτ = 1.
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Example 1: Simulated dynamic regression
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Figure 1: True βt (black); posteriors means of βt using dynamic NMIG
(red), NG (blue) and Laplace (green) mixtures.



Example 2: Simulated Cholesky SV
We consider T = 240 and q = 10.
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Figure 2: Coefficients for the last equation of the Cholesky recursive
equations using dynamic Laplace prior.



Example 3: Inflation data

I Data: inflation data obtained from FRED database, Federal Reserve Bank
of St.Louis, University of Michigan Consumer Survey database, Federal
Reserve Bank of Philadelphia, and Institute of Supply Management with
independent variable as the US quarterly inflation measure based on the
Gross Domestic Product (GDP).

I The data includes 31 predictors, from activity and term structure variables
to survey forecasts and previous lags. The sample period is from the second
quarter of 1965 to first quarter of 2011 with T = 182 observations.

I The results (the mean of the coefficients βj,t) were compared to results from
the NGAR process defined from Kalli and Griffin [2014] (MATLAB code).



Inflation Data

Name Description

GDP Difference in logs of real gross domestic product
PCE Difference in logs of real personal consumption expenditure
GPI Difference in logs of real gross private investment
RGEGI Difference in logs of real government consumption expenditure and gross investment
IMGS Difference in logs of imports of goods and services
NFP Difference in logs non-farm payroll
M2 Difference in logs M2 (commercial bank money)
ENERGY Difference in logs of oil price index
FOOD Difference in logs of food price index
MATERIALS Difference in logs of producer price index (PPI) industrial commodities
OUTPUT GAP Difference in logs of potential GDP level
GS10 Difference in logs of 10yr Treasury constant maturity rate
GS5 Difference in logs of 5yr Treasury constant maturity rate
GS3 Difference in logs 3yr Treasury constant maturity rate
GS1 Difference in logs 1yr Treasury constant maturity rate
PRIVATE EMPLOYMENT Log difference in total private employment
PMI MANU Log difference in PMI-manufacturing index
AHEPNSE Log difference in average hourly earnings of private non management employees
DJIA Log difference in Dow Jones Industrial Average Returns
M1 Log difference in M1 (narrow-commercial bank money)
ISM SDI Institute for Supply Management (ISM) Supplier Deliveries Inventory
CONSUMER University of Michigan consumer sentiment (level)
UNRATE Log of the unemployment rate
TBILL3 3m Treasury bill rate
TBILL SPREAD Difference between GS10 and TBILL3
HOUSING STARTS Private housing (in thousands of units)
INF EXP University of Michigan inflation expectations (level)
LAG1, LAG2, LAG3, LAG4 The first, second, third and fourth lag
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Figure 3: 16 most relevant predictors using dynamic NMIG prior.
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Final remarks

I Test a Gamma prior for the parameter Q instead of the Inverted-Gamma or
a Normal prior for

√
Q, following Frühwirth-Schnatter and Wagner [2010]

which criticizes the use of the Inverse-Gamma because the posterior values
are strongly influenced by the hyperparameters.

I Construct other mixture priors such as a dynamic mixture of Student’s-t and
Laplace densities for the coefficients.

I Allow for time-varying observational variances using stochastic volatility
models.

I Allow for static coefficients besides time-varying coefficients as in Belmonte,
Koop, and Korobilis [2014] and Bitto and Frühwirth-Schnatter [2016].

I Compare predictive performance with other existing methods.
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Sylvia Frühwirth-Schnatter and Helga Wagner. Bayesian variable selection for random intercept modeling of gaussian and non-gaussian data. Bayesian
Statistics 9, 9:165, 2011.

Edward I George and Robert E McCulloch. Variable selection via gibbs sampling. Journal of the American Statistical Association, 88(423):881–889, 1993.

Richard Gerlach, Chris Carter, and Robert Kohn. Efficient bayesian inference for dynamic mixture models. Journal of the American Statistical
Association, 95(451):819–828, 2000.

Jim Griffin and Philip Brown. Inference with normal-gamma prior distributions in regression problems. Bayesian Analysis, 5(1):171–188, 2010.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and bayesian strategies. Annals of Statistics, pages 730–773, 2005.

Maria Kalli and Jim E Griffin. Time-varying sparsity in dynamic regression models. Journal of Econometrics, 178(2):779–793, 2014.
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