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Linear regression with double exponential errors

Consider the regression model

yi = x′iβ + εi, εi|λi, σ2 ∼ N(0, λiσ
2),

where xi = (1, xi1, . . . , xiq)
′ is a p-dimensional vector of regressors (constant plus q attributes or

characteristics) and the following hierarchical prior for the scale-mixing variables λi:

λ1, . . . , λn iid Exponential(1/2).

Questions:

PART A) Show that

p(εi|σ2) =
∫ ∞
0

p(εi|λi, σ2)p(λi)dλi =
1

2σ
exp

{
−|εi|
σ

}
,

a double exponential or Laplace distribution with scale parameter σ.

Hint: You might want to use the following result from Andrews and Mallows (1974)1∫ ∞
0

exp
{
−0.5

(
a2u2 + b2u−2

)}
du =

√
π

2a2
exp{−|ab|}.

PART B) Let y = (y1, . . . , yn)′ and X = (x1, . . . , xn)′. Describe a posterior simulator for fitting
the above linear regression with double exponential errors, using independent priors for β and
σ2 of the form N(β0, V0) and IG(ν0/2, ν0σ

2
0/2). More specifically, show that the MCMC that

samples from
p(β, σ2, λ1, . . . , λn|Dn),

where D = {y,X} is the data, cycles through the following full conditional distributions:
1Andrews and Mallows (1974) Scale mixtures of normal distributions. Journal of the Royal Statistical Society,

Series B, 36, 99-102.



• [β|{λi}, σ2,D] ∼ N(β1, V1), where

V1 = (X ′Λ−1X/σ2 + V −10 )−1 and β1 = V1(X
′Λ−1y/σ2 + V −10 β0).

• [σ2|Λ, β,D] ∼ IG(ν1/2, ν1σ
2
1/2), where

ν1 = ν0 + n and ν1σ
2
1 = ν0σ

2
0 + (y −Xβ)′Λ−1(y −Xβ).

• Scale-mixing variables λi

p(λi|β, σ2, yi, xi) ∝ λ−1/2 exp

−0.5

λi +

(
yi − x′iβ

σ

)2

λ−1i ,

 . (1)

so you can go ahead and use a simple Metropolis-Hastings step to draw λi.

Hint I: It is easy (well, not so obviously easy!) to show that the above distribution (1) is of
the generalized inverse Gaussian (GIG) form. One can draw from a GIG by inverting a draw
from its cousing inverse Gaussian distribution. More specifically, if

1/λi ∼ invGauss(1, |σ/(yi − x′iβ)|),

then λi is a draw from (1). See Hint II below. Well, how to draw from the inverse Gaussian
distribution? See Hint III below.

Hint II: A random variables x ∼ invGauss(ψ, µ) if

p(x|ψ, µ) ∝ x−3/2 exp

{
−ψ(x− µ)2

2xµ2

}
, x > 0.

Now, let z = 1/x. It follows by a change of variables that

p(z|ψ, µ) ∝ z−1/2 exp

{
−ψ

2

[
z + µ−2z−1

]}
.

Hint III: If x ∼ invGauss(ψ, µ), then ψ(x− µ)2/(xµ2) ∼ χ2
1 (Shuster, 1968). Also, Michael et

al. (1976) show that when ν0 ∼ χ2
1, the roots (x1, x2) of ν0 = ψ(x− µ)2/(xµ2) can be used to

sample from an invGauss(ψ, µ):

x1 = µ+
µ2ν0
2ψ
− µ

2ψ

√
4µψν0 + µ2ν20 ,

x2 = µ2/x1.

They show that a draw x from invGauss(ψ, µ) can be obtained by setting x = x1 with proba-
bility µ/(µ+ x1) and x = x2 with probability x1/(µ+ x1).
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PART C) Simulate n = 200 observations from the above linear regression with double exponential
errors model, where β = (0, 1, 2, 3)′, σ2 = 1 and xij ∼ N(0, 1). Implement the above MCMC
scheme and produce posterior summaries of the main parameters. Would the simple MH
algorithm to sample λi be reasonable for your simulated data or the full-fledge Gibbs sampler
performs better?

3


