Take home midterm exam

PhD in Business Economics
Course: Bayesian Econometrics
Professor: Hedibert Freitas Lopes
Start: 8:30am, February 13th, 2020.
End: 8:30pm, February 15th, 2020.

Linear regression with double exponential errors

Consider the regression model

$$
y_{i}=x_{i}^{\prime} \beta+\epsilon_{i}, \quad \epsilon_{i} \mid \lambda_{i}, \sigma^{2} \sim N\left(0, \lambda_{i} \sigma^{2}\right)
$$

where $x_{i}=\left(1, x_{i 1}, \ldots, x_{i q}\right)^{\prime}$ is a p-dimensional vector of regressors (constant plus q attributes or characteristics) and the following hierarchical prior for the scale-mixing variables λ_{i} :

$$
\lambda_{1}, \ldots, \lambda_{n} \text { iid Exponential(1/2). }
$$

Questions:

PART A) Show that

$$
p\left(\epsilon_{i} \mid \sigma^{2}\right)=\int_{0}^{\infty} p\left(\epsilon_{i} \mid \lambda_{i}, \sigma^{2}\right) p\left(\lambda_{i}\right) d \lambda_{i}=\frac{1}{2 \sigma} \exp \left\{-\frac{\left|\epsilon_{i}\right|}{\sigma}\right\},
$$

a double exponential or Laplace distribution with scale parameter σ.

Hint: You might want to use the following result from Andrews and Mallows (1974)¹

$$
\int_{0}^{\infty} \exp \left\{-0.5\left(a^{2} u^{2}+b^{2} u^{-2}\right)\right\} d u=\sqrt{\frac{\pi}{2 a^{2}}} \exp \{-|a b|\}
$$

PART B) Let $y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ and $X=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$. Describe a posterior simulator for fitting the above linear regression with double exponential errors, using independent priors for β and σ^{2} of the form $N\left(\beta_{0}, V_{0}\right)$ and $I G\left(\nu_{0} / 2, \nu_{0} \sigma_{0}^{2} / 2\right)$. More specifically, show that the MCMC that samples from

$$
p\left(\beta, \sigma^{2}, \lambda_{1}, \ldots, \lambda_{n} \mid \mathcal{D}_{n}\right)
$$

where $\mathcal{D}=\{y, X\}$ is the data, cycles through the following full conditional distributions:

[^0]- $\left[\beta \mid\left\{\lambda_{i}\right\}, \sigma^{2}, \mathcal{D}\right] \sim N\left(\beta_{1}, V_{1}\right)$, where

$$
V_{1}=\left(X^{\prime} \Lambda^{-1} X / \sigma^{2}+V_{0}^{-1}\right)^{-1} \quad \text { and } \quad \beta_{1}=V_{1}\left(X^{\prime} \Lambda^{-1} y / \sigma^{2}+V_{0}^{-1} \beta_{0}\right)
$$

- $\left[\sigma^{2} \mid \Lambda, \beta, \mathcal{D}\right] \sim I G\left(\nu_{1} / 2, \nu_{1} \sigma_{1}^{2} / 2\right)$, where

$$
\nu_{1}=\nu_{0}+n \quad \text { and } \quad \nu_{1} \sigma_{1}^{2}=\nu_{0} \sigma_{0}^{2}+(y-X \beta)^{\prime} \Lambda^{-1}(y-X \beta) .
$$

- Scale-mixing variables λ_{i}

$$
\begin{equation*}
p\left(\lambda_{i} \mid \beta, \sigma^{2}, y_{i}, x_{i}\right) \propto \lambda^{-1 / 2} \exp \left\{-0.5\left(\lambda_{i}+\left(\frac{y_{i}-x_{i}^{\prime} \beta}{\sigma}\right)^{2} \lambda_{i}^{-1},\right)\right\} . \tag{1}
\end{equation*}
$$

so you can go ahead and use a simple Metropolis-Hastings step to draw λ_{i}.

Hint I : It is easy (well, not so obviously easy!) to show that the above distribution (1) is of the generalized inverse Gaussian (GIG) form. One can draw from a GIG by inverting a draw from its cousing inverse Gaussian distribution. More specifically, if

$$
1 / \lambda_{i} \sim \operatorname{invGauss}\left(1,\left|\sigma /\left(y_{i}-x_{i}^{\prime} \beta\right)\right|\right)
$$

then λ_{i} is a draw from (1). See Hint II below. Well, how to draw from the inverse Gaussian distribution? See Hint III below.

Hint II: A random variables $x \sim \operatorname{invGauss}(\psi, \mu)$ if

$$
p(x \mid \psi, \mu) \propto x^{-3 / 2} \exp \left\{-\frac{\psi(x-\mu)^{2}}{2 x \mu^{2}}\right\}, \quad x>0
$$

Now, let $z=1 / x$. It follows by a change of variables that

$$
p(z \mid \psi, \mu) \propto z^{-1 / 2} \exp \left\{-\frac{\psi}{2}\left[z+\mu^{-2} z^{-1}\right]\right\}
$$

Hint III: If $x \sim \operatorname{invGauss}(\psi, \mu)$, then $\psi(x-\mu)^{2} /\left(x \mu^{2}\right) \sim \chi_{1}^{2}$ (Shuster, 1968). Also, Michael et al. (1976) show that when $\nu_{0} \sim \chi_{1}^{2}$, the roots $\left(x_{1}, x_{2}\right)$ of $\nu_{0}=\psi(x-\mu)^{2} /\left(x \mu^{2}\right)$ can be used to sample from an $\operatorname{inv} \operatorname{Gauss}(\psi, \mu)$:

$$
\begin{aligned}
& x_{1}=\mu+\frac{\mu^{2} \nu_{0}}{2 \psi}-\frac{\mu}{2 \psi} \sqrt{4 \mu \psi \nu_{0}+\mu^{2} \nu_{0}^{2}}, \\
& x_{2}=\mu^{2} / x_{1} .
\end{aligned}
$$

They show that a draw x from $\operatorname{invGauss}(\psi, \mu)$ can be obtained by setting $x=x_{1}$ with probability $\mu /\left(\mu+x_{1}\right)$ and $x=x_{2}$ with probability $x_{1} /\left(\mu+x_{1}\right)$.

PART C) Simulate $n=200$ observations from the above linear regression with double exponential errors model, where $\beta=(0,1,2,3)^{\prime}, \sigma^{2}=1$ and $x_{i j} \sim N(0,1)$. Implement the above MCMC scheme and produce posterior summaries of the main parameters. Would the simple MH algorithm to sample λ_{i} be reasonable for your simulated data or the full-fledge Gibbs sampler performs better?

[^0]: ${ }^{1}$ Andrews and Mallows (1974) Scale mixtures of normal distributions. Journal of the Royal Statistical Society, Series B, 36, 99-102.

