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PhD in Business Economics
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Professor: Hedibert Freitas Lopes
Start: 8:30am, February 13th, 2020.
End: 8:30pm, February 15th, 2020.

Linear regression with double exponential errors
Consider the regression model
yi = 7,8 + e, €ilXi, 0 ~ N(0, Xio?),

where z; = (1,z,...,2;,) is a p-dimensional vector of regressors (constant plus ¢ attributes or
characteristics) and the following hierarchical prior for the scale-mixing variables \;:

ALy, Ay iid Exponential(1/2).

Questions:

PART A) Show that
p(eilo?) = /Oop(ﬁ‘|/\' o2)p(\)dN; = iexp _@
K 0 K (2 7 '3 20_ pn ,
a double exponential or Laplace distribution with scale parameter o.

Hint: You might want to use the following result from Andrews and Mallows (1974 )]

/OOO exp {—0.5 <a2u2 + bQu_Z) } du = \/;exp{—|ab|}.

PART B) Let y = (y1,...,yn) and X = (z1,...,2,)". Describe a posterior simulator for fitting
the above linear regression with double exponential errors, using independent priors for § and
o2 of the form N(fy, Vo) and IG(vo/2,v908/2). More specifically, show that the MCMC that
samples from

p(ﬁv 02) )\la s 7)\n|Dn)7
where D = {y, X} is the data, cycles through the following full conditional distributions:

! Andrews and Mallows (1974) Scale mixtures of normal distributions. Journal of the Royal Statistical Society,
Series B, 36, 99-102.



o [Bl{\i},0% D] ~ N(By, V1), where
Vi=(X'A'X/o?+ Vi) and B = Vi(X'A Ty 0?4+ Vo Bo).
o [0%|A,3,D] ~ IG(v1/2,1v10%/2), where
vi=1+n and vo; =vyop+ (y— XB)A 1y — XB).

e Scale-mixing variables \;

JoN 2
p()\iW,UQ,yi,iUi) o A2 €xXp {—0-5 <)\z‘ + <W> )‘ila) } . (1>

o

so you can go ahead and use a simple Metropolis-Hastings step to draw \;.

Hint I: Tt is easy (well, not so obviously easy!) to show that the above distribution (1) is of
the generalized inverse Gaussian (GIG) form. One can draw from a GIG by inverting a draw
from its cousing inverse Gaussian distribution. More specifically, if

1/ ~ invGauss(1, |o/(y; — z;5)])

)

then \; is a draw from (1). See Hint II below. Well, how to draw from the inverse Gaussian
distribution? See Hint I1I below.

Hint II: A random variables z ~ invGauss(¢, u) if

p(xft, 1) oc 2732 exp {—W} , x>0

Now, let z = 1/z. It follows by a change of variables that

p(z|ap, 1) oc 272 exp {_15 [z + #—2,2—1]} )

Hint III: If © ~ invGauss(, u), then (x — w)?/(xp?) ~ x3 (Shuster, 1968). Also, Michael et
al. (1976) show that when vy ~ x3, the roots (z1,x2) of vy = ¥(x — pu)?/(zp?) can be used to
sample from an invGauss(, p):
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o p
o=ty —@\/w%w%&,

Ty = P/

They show that a draw z from invGauss(i, ) can be obtained by setting x = x; with proba-
bility /(1 + x1) and x = x9 with probability =1 /(1 + x1).
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PART C) Simulate n = 200 observations from the above linear regression with double exponential
errors model, where 8 = (0,1,2,3)", 0> = 1 and 2;; ~ N(0,1). Implement the above MCMC
scheme and produce posterior summaries of the main parameters. Would the simple MH
algorithm to sample \; be reasonable for your simulated data or the full-fledge Gibbs sampler
performs better?



