Second homework assignment

PhD in Business Economics
Course: Econometrics III
Professor: Hedibert Freitas Lopes
Due date: 10h30, February 11th, 2020.

You can work individually or in pairs.
Use, preferably, Rmarkdown (via RStudio) to produce your report in PDF or HTML.

Problem: Fitting an ARMA(2,1) model

Let us assume that the data $\mathcal{D}_{n}=\left\{y_{1}, \ldots, y_{n}\right\}$ follows an $\operatorname{ARMA}(2,1)$ model

$$
y_{t}=\phi_{0}+\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}+\theta \varepsilon_{t-1}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. $N\left(0, \sigma^{2}\right)$. To simplify the problem, let us assume that $\varepsilon_{0}=0$ and that $y_{0}=y_{-1}=0$. Therefore, it is easy to see that $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ are deterministically obtained from $\left\{\varepsilon_{0}, y_{0}, y_{-1}, \phi_{0}, \phi_{1}, \phi_{2}, \theta, \sigma^{2}\right\}$ and the data \mathcal{D}_{n} :

$$
\begin{aligned}
\varepsilon_{1} & =y_{1}-\phi_{0} \\
\varepsilon_{2} & =y_{2}-\phi_{0}-\phi_{1} y_{1}-\theta \varepsilon_{1} \\
\varepsilon_{t} & =y_{t}-\phi_{0}-\phi_{1} y_{t-1}+\phi_{2} y_{t-2}-\theta \varepsilon_{t-1}, \quad t=3, \ldots, n .
\end{aligned}
$$

Likelihood and prior. To avoid overloading the notation, let us drop $\left\{\varepsilon_{0}, y_{0}, y_{-1}\right\}$ in what follows. The likelihood function is, therefore,

$$
\mathcal{L}\left(\Theta \mid \mathcal{D}_{n}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{-n / 2} \exp \left\{-\frac{\sum_{t=1}^{n} \varepsilon_{t}^{2}}{2 \sigma^{2}}\right\}
$$

where $\Theta=\left(\phi_{0}, \phi_{1}, \phi_{2}, \theta, \sigma^{2}\right)$. Let us assume the following prior for Θ :

$$
p(\Theta)=p\left(\phi_{0}\right) p\left(\phi_{1}\right) p\left(\phi_{2}\right) p(\theta) p\left(\sigma^{2}\right)
$$

and

$$
\begin{aligned}
\phi_{0} & \sim N(0,100) \quad \text { and } \quad\left(\phi_{1}, \phi_{2}\right) \sim U(\mathcal{A}) \\
\theta & \sim U(0,1) \quad \text { and } \quad \sigma^{2} \sim I G(0,0)
\end{aligned}
$$

where $\mathcal{A}=\left\{\left(\phi_{1}, \phi_{2}\right) \in \mathbb{R}^{2}\right.$, such that $\left.\left|\phi_{2}\right|<1, \phi_{1}+\phi_{2}<1, \phi_{2}-\phi_{1}\right\}$ is the $\operatorname{AR}(2)$ stationary region.

Data. Inspired by the Canadian Lynx data presented and analysed in class, let us simulate $n=100$ observations from the following ARMA $(2,1)$ model

$$
y_{t}=1.0+1.4 y_{t-1}-0.8 y_{t-2}+\varepsilon_{t}+0.8 \varepsilon_{t-1}, \quad \varepsilon_{t} \sim N(0,1)
$$

so $\Theta=(1.0,1.4,-0.8,0.8,1.0)$. Feel free to use my script to simulate some data:

```
set.seed(12345)
n = 100
sig = 1.0
eps = rnorm(n,0,sig)
y = rep (0,n)
y[1] = 1.0+eps[1]
y[2] = 1.0+1.4*y[1]+0.8*eps[1]+eps[2]
for (t in 3:n)
    y[t] = 1.0+1.4*y[t-1]-0.8*y[t-2]+0.8*eps[t-1]+eps[t]
ts.plot(y)
print(arima(y,order=c(2,0,1)))
```


Questions:

1. What are the ML estimates (MLE) of $\phi_{0}, \phi_{1}, \phi_{2}, \theta, \sigma^{2}$? Use the R function nlm to minimize $-\mathcal{L}\left(\Theta \mid \mathcal{D}_{n}\right)$. Are the results similar to the ones from the R function arima (y , order=c $(2,0,1)$)?
2. Use sampling importance resampling (SIR) to sample from the posterior of Θ

$$
p\left(\Theta \mid \mathcal{D}_{n}\right) \propto \mathcal{L}\left(\Theta \mid \mathcal{D}_{n}\right) p(\Theta)
$$

(a) Compute posterior means, medians and 95% credibility interval for all components of Θ. Are posterior means (and medians) similar to their MLE counterparts?
(b) Plot the posterior density of $\phi_{1}+\phi_{2}$, i.e. $p\left(\phi_{1}+\phi_{2} \mid \mathcal{D}_{n}\right)$. What is the posterior probability that $\phi_{1}+\phi_{2}>0.8$?
(c) Compute $E\left(y_{n+h} \mid \mathcal{D}_{n}\right)$ and $V\left(y_{n+h} \mid \mathcal{D}_{n}\right)$ for $h=1, \ldots, 20$.
3. Repeat 2(a)-(c), but replace the SIR algorithm by an MCMC algorithm. Notice that the full conditionals of ϕ_{0} and σ^{2} are the only ones of known form (Gaussian and Inverse Gamma, respectively).

