First homework assignment

PhD in Business Economics
Professor: Hedibert Freitas Lopes
You can work individually or in pairs.

Course: Econometrics III Due date: January 31th, 2020.

Problem 1: The following is taken from Ender's (1995) page 6 ${ }^{1}$.
To illustrate a typical moving average process, supposed you win $\$ 1$ if a fair coin shows a head and lose $\$ 1$ if it shows a tail. Denote the outcome of the toss t by ϵ_{t} (i.e., for toss t, ϵ_{t} is either $+\$ 1$ or $-\$ 1$). If you wish to keep track of your "hot streaks", you might want to calculate your average winnings on the last four tosses. for each coin toss t, your average winnings of the last four tosses are $x_{t}=1 / 4 \epsilon_{t}+1 / 4 \epsilon_{t-1}+1 / 4 \epsilon_{t-2}+1 / 4 \epsilon_{t-3}$. Although the $\left\{\epsilon_{t}\right\}$ sequence is a white-noise process, the construct $\left\{x_{t}\right\}$ sequence will not be a white-noise noise.
A. Find the expected value of x_{t}. Find the expected value given that $\epsilon_{t-3}=\epsilon_{t-2}=0$.
B. Find $\operatorname{var}\left(x_{t}\right)$. Find $\operatorname{var}\left(x_{t}\right)$ conditional on $\epsilon_{t-3}=\epsilon_{t-2}=1$.
C. Find
i. $\operatorname{cov}\left(x_{t}, x_{t-1}\right)$
ii. $\operatorname{cov}\left(x_{t}, x_{t-2}\right)$
iii. $\operatorname{cov}\left(x_{t}, x_{t-5}\right)$

Problems 2-6: Exercises 1.1 to 1.5 (pages 25 to 28) of Tsay (2010)

Problems 7-9: Exercises 2.1, 2.2 and 2.4 (pages 104 to 105) of Tsay (2010)
Problem 10: Exercise 2.15 (pages 107) of Tsay (2010)

[^0]
[^0]: ${ }^{1}$ Enders (1995) Applied Econometric Time Series, Wiley.

