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Bayesian paradigm: an overview

I Combination of different sources/levels of information

I Sequential update of beliefs

I A single, coherent framework for
I Statistical inference/learning
I Model comparison/selection/criticism
I Predictive analysis and decision making

I Drawback: Computationally challenging

3



Example 1: Is Diego ill?

I Diego claims some discomfort and goes to his doctor.

I His doctor believes he might be ill (he may have the flu).

I θ = 1: Diego is ill.

I θ = 0: Diego is not ill.

I θ is the “state of nature” or “proposition”
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Adding some modeling

The doctor can take a binary and imperfect “test” X in order to
learn about θ:{

P(X = 1|θ = 0) = 0.40, false positive
P(X = 0|θ = 1) = 0.05, false negative

These numbers might be based, say, on observed frequencies over
the years and over several hospital in a given region.
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X = 1 is observed

Data collection
The doctor performs the test and observes X = 1.

Decision making
How should the doctor proceed?

Maximum likelihood argument
X = 1 is more likely from a ill patient than from a healthy one

P(X = 1|θ = 1)

P(X = 1|θ = 0)
=

0.95

0.40
= 2.375

The maximum likelihood estimator of θ is θ̂MLE = 1.
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Bayesian learning

Suppose the doctor claims that

P(θ = 1) = 0.70

This information can be based on the doctor’s sole experience or
based on existing health department summaries or any other piece
of existing historical information.

Overall rate of positives
The doctor can anticipate the overall rate of positive tests:

P(X = 1) = P(X = 1|θ = 0)P(θ = 0)

+ P(X = 1|θ = 1)P(θ = 1)

= (0.4)(0.3) + (0.95)(0.7) = 0.785
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Turning the Bayesian crank

Once X = 1 is observed, i.e. once Diego is submitted to the test X
and the outcome is X = 1, what is the probability that Diego is ill?

Common (and wrong!) answer: P(X = 1|θ = 1) = 0.95

Correct answer: P(θ = 1|X = 1)

Simple probability identity (Bayes’ rule):

P(θ = 1|X = 1) = P(θ = 1)

{
P(X = 1|θ = 1)

P(X = 1)

}
= 0.70× 0.95

0.785
= 0.70× 1.210191

= 0.8471338
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Combining both pieces of information

By combining

existing information (prior) + model/data (likelihood)

the updated (posterior) probability that Diego is ill is 85%.

More generally,

posterior =
prior× likelihood

predictive
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What if instead X = 0?
Maximum likelihood:
X = 0 is more likely from a healthy patient than from an ill one

P(X = 0|θ = 0)

Pr(X = 0|θ = 1)
=

0.60

0.05
= 12,

so MLE of θ is θ̂MLE = 0.

Bayes:
Similarly, it is easy to see that

P(θ = 0|X = 0) = P(θ = 0)

{
P(X = 0|θ = 0)

P(X = 0)

}
= 0.3× 0.60

0.215
= 0.3× 2.790698

= 0.8373093
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Sequential learning

The doctor is still not convinced and decides to perform a second
more reliable test (Y ):

P(Y = 0|θ = 1) = 0.01 versus P(X = 0|θ = 1) = 0.05

P(Y = 1|θ = 0) = 0.04 versus P(X = 1|θ = 0) = 0.40

Overall rate of positives
Once again, the doctor can anticipate the overall rate of positive
tests, but now conditioning on X = 1:

P(Y = 1|X = 1) = P(Y = 1|θ = 0)P(θ = 0|X = 1)

+ P(Y = 1|θ = 1)P(θ = 1|X = 1)

= (0.04)(0.1528662) + (0.99)(0.8471338)

= 0.8447771
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Y = 1 is observed

Once again, Bayes rule leads to

P(θ = 1|X = 1,Y = 1) = P(θ = 1|X = 1)

{
P(Y = 1|θ = 1)

P(Y = 1|X = 1)

}
= 0.8471338× 0.99

0.8447771
= 0.8471338× 1.171907

= 0.992762

Bayesian sequential learning:

P(θ = 1|H) =


70% ,H: before X and Y
85% ,H: after X = 1 and before Y
99% ,H: after X = 1 and Y = 1

Note: It is easy to see that Pr(θ = 1|Y = 1) = 98.2979%.
Conclusion: Don’t consider test X , unless it is “cost” free.
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Example 2: Gaussian measurement error
Goal: Learn θ, a physical quantity.

Measurement: X
Model: (X |θ) ∼ N(θ, (40)2)
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p(x |θ) for θ ∈ {600, 700, . . . , 1000}
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Large and small prior experience
Prior A: Physicist A (large experience): θ ∼ N(900, (20)2)

Prior B: Physicist B (not so experienced): θ ∼ N(800, (80)2)
Joint density: p(x , θ) = p(x |θ)p(θ)
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Bayesian computation: predictive
Prior: θ ∼ N(θ0, τ

2
0 ) (Physicist A: θ0 = 900, τ0 = 20)

Model: x |θ ∼ N(θ, σ2)

Predictive:

p(x) =

∫ ∞
−∞

p(x |θ)p(θ)dθ

Therefore,

p(x) =

∫ ∞
−∞

1√
2πσ2

e−
(x−θ)2

2σ2
1√

2πτ2
0

e
− (θ−θ0)2

2τ2
0 dθ

=
1√

2π(σ2 + τ2
0 )

e
− (x−θ)2

2(σ2+τ2
0

)

or
x ∼ N(θ0, σ

2 + τ2
0 )
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Predictive densities
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Bayesian computation: posterior

p(θ|x) =
p(x |θ)p(θ)

p(x)
∝ p(x |θ)p(θ)

such that

p(θ|x) ∝ (2πσ2)−1/2e−
(x−θ)2

2σ2 (2πτ2
0 )−1/2e

− (θ−θ0)2

2τ2
0

∝ exp

{
−1

2

[
(θ2 − 2θx)/σ2 + (θ2 − 2θθ0)/τ2

0 )
]}

∝ exp

{
− 1

2τ2
1

(θ − θ1)2

}
.

Therefore,
θ|x ∼ N(θ1, τ

2
1 )

where

θ1 =

(
σ2

σ2 + τ2
0

)
θ0 +

(
τ2

0

σ2 + τ2
0

)
x and τ2

1 = τ2
0

(
σ2

σ2 + τ2
0

)
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Combination of information

Let

π =
σ2

σ2 + τ2
0

∈ (0, 1)

Therefore,
E (θ|x) = πE (θ) + (1− π)x

and
V (θ|x) = πV (θ)

When τ2
0 is much larger than σ2, π ≈ 0 and the posterior collapses

at the observed value x!
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Observation: X = 850

Physicist A

x

θ

500 700 900 1100

60
0

70
0

80
0

90
0

10
00

Physicist B

x

θ

500 700 900 1100
60

0
70

0
80

0
90

0
10

00

39



Posterior (updated) densities

Physicist A

Prior: θ ∼ N(900, (20)2)
Posterior: (θ|X = 850) ∼ N(890, (17.9)2)

Physicist B

Prior: θ ∼ N(800, (40)2)
Posterior: (θ|X = 850) ∼ N(840, (35.7)2)
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Priors and posteriors
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Summary

Deriving the posterior (via Bayes rule)

p(θ|x) ∝ p(x |θ)p(θ)

and computing the predictive

p(x) =

∫
Θ
p(x |θ)p(θ)dθ

can become very challenging!

Bayesian computation was done on limited, unrealistic models until
the Monte Carlo revolution (and the computing revolution) of the
late 1980’s and early 1990’s.
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A more conservative physicist

Prior A: Physicist A (large experience): θ ∼ N(900, 400)

Prior B: Physicist B (not so experienced): θ ∼ N(800, 1600)

Prior C: Physicist C (largeR experience): θ ∼ t5(900, 240)

V (Prior C) =
5

5− 2
240 = 400 = V (Prior A)
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Prior densities
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Closer look at the tails
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Predictive and posterior of physicist C

For model x |θ ∼ N(θ, σ2) and prior of θ ∼ tν(θ0, τ
2),

p(x) =

∫ ∞
−∞

1√
2πσ2

e−
(x−θ)2

2σ2
Γ(ν+1

2 )

Γ(ν
2 )
√
πντ 2

0

(
1 +

1

ν

(
θ − θ0

τ0

)2
)− ν+1

2

dθ

is not analytically available.

Similarly,

p(θ|x) ∝ exp

{
−(x − θ)2

2σ2

}(
1 +

1

ν

(θ − θ0)2

τ2
0

)− ν+1
2

is of no known form.
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Predictives
Monte Carlo approximation2 to p(x) for physicist C.
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Log predictives
Physicist C has similar knowledge as physicist A, but does not rule
out smaller values for x .
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Posteriors for θ
Monte Carlo approximation3 to p(θ|x) for physicist C.
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Log posteriors
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Monte Carlo: a toy example
In what follows, we will see how to approximate integrals and
sample from unknown distributions via the well known Monte
Carlo method.

Let us think about calculating π = 3.141593 . . .

We could sample a bunch (i = 1, . . . ,M) of pairs (xi , yi ) in the
unit square (0, 1)× (0, 1) and compute the fraction α of those
pairs satisfying the condition x2

i + y2
i < 1. In this case, pi = 4α.

M = 1000

x = runif(M)

y = runif(M)

cond = (x^2+y^2)<1

par(mfrow=c(1,2))

plot(x,y)

plot(x[cond],y[cond])

pi.mc = 4*sum(cond)/M
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πmc = 3.196
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Monte Carlo: Let us play with M

set.seed(12345)

M = 10000

x = runif(M)

y = runif(M)

cond = (x^2+y^2)<1

pi.mc = 4*cumsum(cond)/(1:M)

plot(1:M/1000,pi.mc,ylim=c(2.7,3.3),type="l",

xlab="thousands of draws",ylab="pi approx.")

abline(h=pi,col=2)

for (i in 1:20){

x = runif(M)

y = runif(M)

cond = (x^2+y^2)<1

pi.mc = 4*cumsum(cond)/(1:M)

lines(1:M/1000,pi.mc,col=i)

}
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MC error
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