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Monte Carlo: a toy example
In what follows, we will see how to approximate integrals and
sample from unknown distributions via the well known Monte
Carlo method.

Let us think about calculating m = 3.141593.. ..
We could sample a bunch (i = 1,..., M) of pairs (x;, y;) in the

unit square (0,1) x (0,1) and compute the fraction « of those
pairs satisfying the condition x? + y? < 1. In this case, pi = 4a.

M = 1000
x = runif (M)
y = runif (M)

cond = (x"2+y~2)<1
par (mfrow=c(1,2))
plot(x,y)
plot(x[cond],y[cond])
pi.mc = 4*sum(cond) /M
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Monte Carlo: Let us play with M

set.seed(12345)

M = 20000
x = runif (M)
y = runif (M)

cond = (x"2+y~2)<1

pi.mc = 4*xcumsum(cond)/(1:M)

plot(1:M/1000,pi.mc,ylim=c(2.7,3.3),type="1",
xlab="thousands of draws",ylab="pi approx.")

abline (h=pi,col=2)

for (i in 1:20){
x = runif (M)
y = runif (M)
cond = (x"2+y~2)<1
pi.mc = 4xcumsum(cond)/(1:M)
lines(1:M/1000,pi.mc,col=1)
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pi approx.
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MC in the 40s and 50s

Stan Ulam soon realized that computers could be used in this
fashion to answer questions of neutron diffusion and mathematical
physics;

He contacted John Von Neumann and they developed many Monte
Carlo algorithms (importance sampling, rejection sampling, etc);

In the 1940s Nick Metropolis and Klari Von Neumann designed
new controls for the state-of-the-art computer (ENIAC);

Metropolis and Ulam (1949) The Monte Carlo method. Journal of the American Statistical Association.
Metropolis et al. (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics.



70s and 80s

Metropolis-Hastings:

Hastings (1970) and his student Peskun (1973) showed that
Metropolis and the more general Metropolis-Hastings algorithm are
particular instances of a larger family of algorithms.

Gibbs sampler:

Besag (1974) Spatial Interaction and the Statistical Analysis of Lattice Systems.

Geman and Geman (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
Pearl (1987) Evidential reasoning using stochastic simulation.

Tanner and Wong (1987). The calculation of posterior distributions by data augmentation.

Gelfand and Smith (1990) Sampling-based approaches to calculating marginal densities.



A few references
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MC integration (Geweke, 1989)

Rejection methods (Gilks and Wild, 1992)

SIR (Smith and Gelfand, 1992)
Metropolis-Hastings algorithm (Hastings, 1970)
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Simulated annealing (Metropolis et al., 1953)
Gibbs sampler (Gelfand and Smith, 1990)

v



Two main tasks

1. Compute high dimensional integrals:

E.[h(0)] = / h(0)r(0)d6

2. Obtain
a sample {01, ...,0,} from w(0)
when only
a sample {0y, ...,0,} from q(f)
is available.

q(0) is known as the proposal/auxiliary density.

10



Bayes via MC

MC methods appear frequently, but not exclusively, in modern
Bayesian statistics.

Posterior and predictive densities are hard to sample from:

f(x|6)p(f)
f(x)

Predictive : f(x) = / £(x|0)p(6)d0

Posterior : 7(0) =

Other important integrals and/or functionals of the posterior and
predictive densities are:

» Posterior modes: maxy 7(6);

> Posterior moments: E;[g(0)];

> Density estimation: 7(g(0));

> Bayes factors: f(x|Mo)/f(x|M1);

> Decision: maxy [ U(d,8)m(6)d6. 1



Monte Carlo integration

The integrals
Eop{g(0)} = / £(0)p(0]x)d0
Enoy(p(x0)} = / p(x10)p(0)d6 = p(x)

can be approximated, respectively, by

19 1 Y :
M;gw(')) and M;p(xw“),
where

{0 0M1 < p(A]x) and {AD) ... dM} ~ p(o)
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Monte Carlo simulation via SIR

Sampling importance resampling (SIR) is a well-known MC tool
that resamples draws from a candidate density g(-) to obtain draws
from a target density 7(-).
SIR Algorithm:

1. Draws {0()}M from candidate density q(-)

2. Compute resampling weights: w() oc 7(6())/q(6())

3. Sample {1}, from {#D}M with weights {w()}} .

Result: {61, ... 6N} ~ 7(6)
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Bayesian bootstrap

When ...
> the target density is the posterior p(f|x), and
> the candidate density is the prior p(6), then
> the weight is the likelihood p(x|60):

) o POD)p(x100) _
p(67)

w! p(x[6")

Note: We used M = 10° and N = 0.1M in the previous two plots.
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MC is expensive!

Exact solution

-/
—00

exp{—0.50%}df = V21 = 2.506628275
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MC is expensive!
Exact solution

| = / exp{—0.50%}df = V21 = 2.506628275

—0o0

Let us assume that

o 5
l—/ exp{—0.592}d6—/ exp{—0.50%}d6
5

—00 —

16



MC is expensive!
Exact solution

| = / exp{—0.50%}df = V21 = 2.506628275

—0o0

Let us assume that

o 5
l—/ exp{—0.592}d6—/ exp{—0.50%}d6
5

—00 —

Grid approximation (less than 0.01 seconds to run)
For1 =—-560,=-5+ A, ...,01000 =5 and A =0.01,

1001
Inist = Y _ exp{—0.567} A = 2.506626875
i=1

17



MC integration

It is easy to see that

5
/ exp{—0.50%}d0

-5

5
1
/ 10 exp{—0.50%} —db
5 10

Ey(—s5) [10 exp{—0.502}]
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MC integration

It is easy to see that

Therefore, for {#()1 M

= Ey

1™ U(_5v 5)v

M

5

/_55 exp{—0.56°}df = /_

1
10 exp{—0.50%} —db
5 10

(—s5.5) [10 exp{—0.502}]

o 1 ;
= 7§ : —0.50(1)2
IMC = M 10 exp{ 0.50 }

i=1

M

Imc

MC error

1,000
10,000
100,000

2.505392026
2.507470696
2.506948869

0.10640840352
0.03380205878
0.01067906810

To improve on digital point, one needs M? draws!

It takes about 0.02 seconds to run.
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Monte Carlo methods

> They are expensive.

> They are scalable.

» Readily available MC error bounds.
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Why not simply use deterministic approximations?

Let us consider the bidimensional integral, for 6 = (01, 62, 63),

| = / exp{—0.50'0}d0 = (2x)*/? = 15.74960995

Grid approximation (20 seconds)

1001 1001 1001

Tise = > 33 exp{—0.5(62 + 03 + 03,)} A = 15.74958355

i=1 j=1 k=1

Monte Carlo approximation (0.02 seconds)

M

Imc

MC error

1,000
10,000
100,000

15.75223328
15.72907660
15.75368350

2.2768286659
0.7515860214
0.2236006764
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Gibbs sampler

The Gibbs sampler is the most famous of the Markov chain Monte

Carlo methods.

Roughly speaking, one can sample from the joint posterior of
(01,02,03)
p(01,02,03]y)

by iteratively sampling from the full conditional distributions

p(61]62,63,y)
p(621601,63,y)
p(63]61,61,y)

After a warm up phase, the draws will behave as coming from
posterior distribution.
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Taget distribution: bivariate normal with p = 0.6

(x.y) 1 { X2 —2pxy—y2}
X,y) = ————exp § —
P 2m\/1— p2 21— 2)

-4 -2 0 2 4



Full conditional distributions
Easy to see that x|y ~ N(py,1 — p?) and y|x ~ N(px,1 — p?).
Initial value: x(©) = 4

M=10 M=20
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Posterior draws

Running the Gibbs sampler for 11,000 iterations and discarding the
first 1,000 draws.
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Marginal posterior distributions
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Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is, in fact, more general than
the Gibbs sampler and older (1950's).

One can sample from the joint posterior p(61,02,03]y) by
iteratively sampling 6] from a proposal density gi(-) and accepting
the draw with probability

. f . p(81,02,03]y) q1(61) }
min < 1,
{ p(01,02,03ly) q1(67)

with A and 603 fixed at the final draws from the previous iteration.
The steps are repeated for 65 and 05.

After a warm up phase, the draws will behave as coming from
posterior distribution.
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Random-walk Metropolis algorithm
The proposals are x* ~ N(x° 0.25) and y* ~ N(y°, 0.25)

M=10 M=50
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Posterior draws
Running the Metropolis-Hastings algorithm for 11,000 iterations
and discarding the first 1,000 draws.
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Marginal posterior distributions
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Markov chains and autocorrelation
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Want to learn more?
hedibert.org has a link to book webpage.

Texts in Statistical Science

Markov Chain
Monte Carlo

Stochastic Simulation for Bayesian Inference

Second Edition

™ Ty
I |
Mg s e My W

Dani Gamerman and Hedibert F. Lopes

* Chapman & Hall/CRC
Toor s Francis Group,
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