
Prior sensitivity analysis in a semi-parametric

integer-valued time series model

Helton Graziadei Antonio Lijoi

USP - São Paulo Bocconi - Milano

Hedibert F. Lopes Paulo C. Marques F. Igor Prünster

Insper - São Paulo Insper - São Paulo Bocconi - Milano

November 2019

Abstract

We examine issues of prior sensitivity in a semi-parametric hierarchical extension

of the INAR(p) model with innovation rates clustered according to a Pitman-Yor

process placed at the top of the model hierarchy. Our main finding is a graphical

criterion which guides the specification of the hyperparameters of the Pitman-Yor

process base measure. It is shown how the discount and concentration parameters

interact with the chosen base measure to yield a gain in terms of the robustness of

the inferential results.

1 Introduction

Integer-valued time series are relevant to many fields of knowledge, ranging from finance

and econometrics to ecology and meteorology. An extensive number of models for this

kind of data have been proposed since the introduction of the INAR(1) model in the

pioneering works of McKenzie [1] and Al-Osh and Alzaid [2] (see also the book by Weiss

[3]). A higher-order INAR(p) model was considered in the work of Du and Li [4].

In this paper, we generalize the Bayesian version of the INAR(p) model studied by

Neal and Kypraios [5]. In our model, the innovation rates are allowed to vary through

time, with the distribution of the innovation rates being modeled hierarchically by means

of a Pitman-Yor process [6]. In this way, we account for potential heterogeneities in

the innovation rates as the process evolves through time. The semi-parametric form of

the model demands a robustness analysis of our inferential conclusions as we vary the

hyperparameters of the Pitman-Yor process. We investigate this prior sensitivity issue

carefully and find ways to control the hyperparameters in order to achieve robust results.

1



The paper is organized as follows. In Section 2, we construct a generalized INAR(p)

model with variable innovation rates. The likelihood function of the generalized model

is derived and a data augmentation scheme is developed, which gives a specification of

the model in terms of conditional distributions. This data augmented representation of

the model enables the derivation in Section 4 of full conditional distributions in simple

analytical form, which are essential for the stochastic simulations in Section 5. Section

3 recollects the main properties of the Pitman-Yor process which are used to define the

PY-INAR(p) model in Section 4, including its clustering properties. In building the

PY-INAR(p), we propose a form for the prior distribution of the thinning parameters

vector which improves on the choice made for the Bayesian INAR(p) model studied in

[5]. In Section 5, we investigate the robustness of the inference with respect to changes

in the Pitman-Yor process hyperparameters. Using the full conditional distributions of

the innovation rates derived in Section 4, we inspect the behavior of the model as we

concentrate or spread the mass of the Pitman-Yor base measure. This leads us to a

graphical criterion which identifies an elbow in the posterior expectation of the number

of clusters as we vary the hyperparameters of the base measure. Once we have control

over the base measure, we study its interaction with the concentration and discount

hyperparameters, showing how to make choices that yield robust results. In the course

of this development we use geometrical tools to inspect the clustering of the innovation

rates produced by the model.

2 A generalization of the INAR(p) model

We begin by generalizing the original INAR(p) model of Du and Li [4] as follows.

Let {Yt}t≥1 be an integer-valued time series, and, for some integer p ≥ 1, let the

innovations {Zt}t≥p+1, given positive parameters {λt}t≥p+1, be a sequence of condition-

ally independent Poisson(λt) random variables. For a given vector of parameters α =

(α1, . . . , αp) ∈ [0, 1]p, let Fi = {Bij(t) : j ≥ 0, t ≥ 2} be a family of conditionally inde-

pendent and identically distributed Bernoulli(αi) random variables. For i 6= k, suppose

that Fi and Fk are conditionally independent, given α. Furthermore, assume that the

innovations {Zt}t≥p+1 and the families F1, . . . ,Fp are conditionally independent, given α

and λ. The generalized INAR(p) model is defined by the functional relation

Yt = α1 ◦ Yt−1 + · · ·+ αp ◦ Yt−p + Zt,

for t ≥ p + 1, in which ◦ denotes the binomial thinning operator, defined by αi ◦ Yt−i =∑Yt−i

j=1 Bij(t), if Yt−i > 0, and αi ◦ Yt−i = 0, if Yt−i = 0. In the homogeneous case, when

all the λt’s are assumed to be equal, we recover the original INAR(p) model.

When p = 1, this model can be interpreted as specifying a birth-and-death process,

in which, at epoch t, the number of cases Yt is equal to the new cases Zt plus the cases

that survived from the previous epoch; the role of the binomial thinning operator being
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to remove a random number of the Yt−1 cases present at the previous epoch t− 1 (see [7]

for an interpretation of the order p case as a birth-and-death process with immigration).

Let y = (y1, . . . , yT ) denote the values of an observed time series. For simplicity,

we assume that Y1 = y1, . . . , Yp = yp with probability one. The joint distribution of

Y1, . . . , YT , given parameters α and λ = (λp+1, . . . , λT ), can be factored as

Pr{Y1 = y1, . . . , YT = yT | α, λ} =
T∏

t=p+1

Pr{Yt = yt | Yt−1 = yt−1, . . . , Yt−p = yt−p, α, λt}.

Since, with probability one, αi ◦Yt−i ≤ Yt−i and Zt ≥ 0, the likelihood function of the

generalized INAR(p) model is given by

Ly(α, λ) =
T∏

t=p+1

min{yt, yt−1}∑
m1,t=0

· · ·
min{yt−

∑p−1
j=1 mj,t, yt−p}∑

mp,t=0

(
p∏
i=1

(
yt−i
mi,t

)
α
mi,t

i (1− αi)yt−i−mi,t

)
×

(
e−λtλ

yt−
∑p

j=1mj,t

t

(yt −
∑p

j=1mj,t)!

)
.

For some epoch t and i = 1, . . . , p, suppose that we could observe the values of the

latent maturations Mi,t. Postulate that

Mi,t | Yt−i = yt−i, αi ∼ Binomial(yt−i, αi),

so that the conditional probability function of Mi,t is given by

p(mi,t | yt−i, αi) = Pr{Mi,t = mi,t | Yt−i = yt−i, αi}

=

(
yt−i
mi,t

)
α
mi,t

i (1− αi)yt−i−mi,t I{0, ... , yt−i}(mi,t).

Furthermore, suppose that

p(yt | m1,t, . . . ,mp,t, λt) = Pr{Yt = yt |M1,t = m1,t, . . . ,Mp,t = mp,t, λt}

=
e−λtλ

yt−
∑p

j=1mj,t

t

(yt −
∑p

j=1mj,t)!
I{∑p

j=1mj,t,
∑p

j=1mj,t+1, ... }(yt).

Using the law of total probability and the product rule, we have that

p(yt | yt−1, . . . , yt−p, α, λt) =

yt−1∑
m1,t=0

· · ·
yt−p∑
mp,t=0

p(yt,m1,t, . . . ,mp,t | yt−1, . . . , yt−p, α, λt)

=

yt−1∑
m1,t=0

· · ·
yt−p∑
mp,t=0

p(yt | m1,t, . . . ,mp,t, λt)×
p∏
i=1

p(mi,t | yt−i, αi).
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Since

I{∑p
j=1mj,t,

∑p
j=1mj,t+1, ... }(yt) = I{0, ... , yt}

(∑p
j=1mj,t

)
= I{0, ... , yt}(m1,t)× · · · × I{0, ... , yt−∑p−1

j=1 mj,t}(mp,t)

and

I{∑p
j=1mj,t,

∑p
j=1mj,t+1, ... }(yt)× I{0, ... , yt−i}(mi,t) = I{0, 1, ... ,min{yt−

∑
j 6=imj,t, yt−i}}(mi,t),

we recover the original likelihood of the generalized INAR(p), showing that the intro-

duction of the latent maturations Mi,t with the specified distributions is a valid data

augmentation scheme (see [8, 9] for a general discussion of data augmentation techniques).

In the next section, we review the needed definitions and properties of the Pitman-Yor

process.

3 Pitman-Yor process

Let the random probability measure G ∼ DP(τ,G0) be a Dirichlet process [10, 11, 12]

with concentration parameter τ and base measure G0. If the random variables X1, . . . , Xn,

given G = G, are conditionally independent and identically distributed as G, then it

follows that

Pr{Xn+1 ∈ B | X1 = x1, . . . , Xn = xn} =
τ

τ + n
G0(B) +

1

τ + n

n∑
i=1

IB(xi),

for every Borel set B. If we imagine the sequential generation of the Xi’s, for i = 1, . . . , n,

the former expression shows that a value is generated anew from G0 with probability

proportional to τ , or we repeat one the previously generated values with probability

proportional to its multiplicity. Therefore, almost surely, realizations of a Dirichlet process

are discrete probability measures, perhaps with denumerable infinite support, depending

on the nature of G0. Also, this data generating process, known as the Pólya-Blackwell-

MacQueen urn, implies that the Xi’s are “softly clustered”, in the sense that in one

realization of the process the elements of a subset of the Xi’s may have exactly the same

value.

The Pitman-Yor process [6] is a generalization of the Dirichlet process which results in

a model with added flexibility. Essentially, the Pitman-Yor process modifies the expression

of the probability associated with the Pólya-Blackwell-MacQueen urn introducing a new

parameter so that the posterior predictive probability becomes

Pr{Xn+1 ∈ B | X1 = x1, . . . , Xn = xn} =
τ + kσ

τ + n
G0(B) +

1

τ + n

n∑
i=1

(
1− σ

νi

)
IB(xi),

in which 0 ≤ σ < 1 is the discount parameter, τ > −σ, k is the number of distinct

elements in {X1, . . . , Xn}, and νi is the number of elements in {X1, . . . , Xn} which are

equal to Xi, for i = 1, . . . , n. It is well known that E[G(B)] = G0(B) and

Var[G(B)] =

(
1− σ
τ + 1

)
G0(B)(1−G0(B)),
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for every Borel set B. Hence, G is centered on the base probability measure G0, while τ

and σ control the concentration of G around G0. We use the notation G ∼ PY(τ, σ,G0).

When σ = 0, we recover the Dirichlet process as a special case.

Pitman [6] derived the distribution of the number of clusters K (the number of distinct

Xi’s), conditionally on both the concentration parameter τ and the discount parameter

σ, as

Pr{K = k | τ, σ} =

∏k−1
i=1 (τ + iσ)

σk × (τ + 1)n−1
× C (n, k;σ),

in which (x)n = Γ(x + n)/Γ(x) is the rising factorial and C (n, k;σ) is the generalized

factorial coefficient [13].

In the next section, we use a Pitman-Yor process to model the distribution of the

innovation rates in the generalized INAR(p) model.

4 PY-INAR(p) model

The PY-INAR(p) model is as a hierarchical extension of the generalized INAR(p) model

defined in Section 2. Given a random measure G ∼ PY(τ, σ,G0), in which G0 is a

Gamma(a0, b0) distribution, let the innovation rates λp+1, . . . , λT be conditionally inde-

pendent and identically distributed with distribution Pr{λt ∈ B | G = G} = G(B).

To complete the PY-INAR(p) model, we need to specify the form of the prior dis-

tribution for the vector of thinning parameters α = (α1, . . . , αp). By comparison with

standard results from the theory of the AR(p) model [14], Du and Li [4] found that in

the INAR(p) model the constraint
∑p

i=1 αi < 1 must be fulfilled to guarantee the non-

explosiveness of the process. In their Bayesian analysis of the INAR(p) model, Neal and

Kypraios [5] considered independent beta distributions for the αi’s. Unfortunately, this

choice is problematic. For example, in the particular case when the αi’s have independent

uniform distributions, it is possible to show that Pr{
∑p

i=1 αi < 1} = 1/p!, implying that

we would be concentrating most of the prior mass on the explosive region even for moder-

ate values of the model order p. We circumvent this problem using a prior distribution for

α that places all of its mass on the nonexplosive region and still allows us to derive the full

conditional distributions of the αi’s in simple closed form. Specifically, we take the prior

distribution of α to be a Dirichlet distribution with hyperparameters (a1, . . . , ap; ap+1),

and corresponding density

π(α) =
Γ
(∑p+1

i=1 ai

)
∏p+1

i=1 Γ(ai)

p+1∏
i=1

αai−1i ,

in which ai > 0, for i = 1, . . . , p+ 1, and αp+1 = 1−
∑p

i=1 αi.
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Let m = {mi,t: i = 1, . . . , p, t = p + 1, . . . , T} denote the set of all maturations, and

let µG be the distribution of G. Our strategy to derive the full conditionals distributions

of the model parameters and latent variables is to consider the marginal distribution

p(y,m, α, λ) =

∫
p(y,m, α, λ | G) dµG(G)

=

{
T∏

t=p+1

p(yt | m1,t, . . . ,mp,t, λt)

p∏
i=1

p(mi,t | yt−i, αi)

}

× π(α)×
∫ T∏

t=p+1

p(λt | G) dµG(G).

From this expression, using the results in Section 3, the derivation of the full condi-

tional distributions is straightforward. In the following expressions, the symbol ∝ denotes

proportionality up to a suitable normalization factor, and the label “all others” designate

the observed counts y and all the other latent variables and model parameters, with the

exception of the one under consideration.

Let λ\t denote the set {λp+1, . . . , λT} with the element λt removed. Then, for t =

p+ 1, . . . , T , we have

λt | all others ∼ wt ×Gamma(yt −mt + a0, b0 + 1) +
∑
r 6=t

(
1− σ

νr

)
λyt−mt
r e−λrδ{λr},

in which the weight

wt =
(τ + k\t σ)× ba00 × Γ(yt −mt + a0)

Γ(a0)× (b0 + 1)yt−mt+a0
,

νr is the number of elements in λ\t which are equal to λr, and k\t is the number of distinct

elements in λ\t. In this mixture, we suppressed the normalization constant that makes

all weights add up to one.

Making the choice ap+1 = 1, we have

αi | all others ∼ TBeta

(
ai +

T∑
t=p+1

mi,t, 1 +
T∑

t=p+1

(yt−i −mi,t), 1−
∑
j 6=i

αj

)
,

for i = 1, . . . , p, in which TBeta denotes the right truncated Beta distribution with support

(0, 1−
∑p

j 6=i αj).

For the latent maturations, we find

p(mi,t | all others) ∝ 1

(mi,t)!(yt −
∑p

j=1mj,t)!(yt−i −mi,t)!

(
αi

λt(1− αi)

)mi,t

× I{0, 1, ... ,min{yt−
∑

j 6=imj,t, yt−i}}(mi,t).

To explore the posterior distribution of the model, we build a Gibbs sampler [15] using

these full conditional distributions. Escobar and West [16] showed, in a similar context,
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that we can improve mixing by resampling simultaneously the values of all λt’s inside the

same cluster at the end of each iteration of the Gibbs sampler. Letting (λ∗1, . . . , λ
∗
k) be

the k unique values among (λp+1, . . . , λT ), define the number of occupants of cluster j by

nj =
∑T

t=p+1 I{λ∗j}(λt), for j = 1, . . . , k. It follows that

λ∗j | all others ∼ Gamma

(
a0 +

T∑
t=p+1

(
yt −

p∑
j=1

mj,t

)
· I{λ∗j}(λt), b0 + nj

)
.

for j = 1, . . . , k. At the end of each iteration of the Gibbs sampler, we update the values

of all λt’s inside each cluster by the corresponding λ∗j using this distribution.

5 Prior sensitivity

As it is often the case for Bayesian models with nonparametric components, a choice of

the prior parameters of the PY-INAR(p) model which yields robustness of the posterior

distribution is nontrivial [17].

The first aspect to be considered is the fact that the base measure G0 plays a crucial

role in the determination of the posterior distribution of the number of clusters K. This

can be seen directly by inspecting the form of the full conditional distributions derived in

Section 4. Recalling that G0 is a gamma distribution with mean a0/b0 and variance a0/b
2
0,

from the full conditional distribution of λt one may note that the probability of generating,

on each iteration of the Gibbs sampler, a value for λt anew from G0 is proportional to

(τ + k\t σ)× ba00 × Γ(yt −mt + a0)

Γ(a0)(b0 + 1)yt−mt+a0
.

Therefore, supposing that all the other terms are fixed, if we concentrate the mass of

G0 around zero by making b0 → ∞, this probability decreases to zero. This is not

problematic, because it is hardly the case that we want to make such a drastic choice for

G0. The behavior in the other direction is more revealing, since taking b0 ↓ 0, in order

to spread the mass of G0, also makes the limit of this probability to be zero. Due to

this behavior, we need to establish a criterion to choose the hyperparameters of the base

measure which avoids these extreme cases.

In our analysis, it is convenient to have a single hyperparameter regulating how the

mass of G0 is spread over its support. For a given λmax > 0, we find numerically the values

of a0 and b0 which minimize the Kullback-Leibler divergence between G0 and a uniform

distribution on the interval [0, λmax]. This Kullback-Leibler divergence can be computed

explicitly as

− log λmax − a0 log b0 + log Γ(a0)− (a0 − 1)(log λmax − 1) +
b0λmax

2
.

In this new parameterization, our goal is to make a sensible choice for λmax. It is worth

emphasizing that by this procedure we are not truncating the support of G0, but only
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Figure 1: Formation of the elbows for σ = 0.5 (left) and σ = 0.75 (right). The red dotted

lines indicate the chosen values of λmax.

using the uniform distribution on the interval [0, λmax] as a reference for our choice of the

base measure hyperparameters a0 and b0.

Our proposal to choose λmax goes as follows. We fix some value 0 ≤ σ < 1 for the

discount parameter and choose an integer k0 as the prior expectation of the number of

clusters K, which, using the results at the end of Section 3, can be computed explicitly

as

E[K] =

τ × (ψ(τ + T − p)− ψ(τ)) if σ = 0;

((τ + σ)T−p/(σ × (τ + 1)T−p−1))− τ/σ if σ > 0,

in which ψ(x) is the digamma function (see [6] for a derivation of this result). Next, we

find the value of the concentration parameter τ by solving E[K] = k0 numerically. After

this, for each λmax in a grid of values, we run the Gibbs sampler and compute the posterior

expectation of the number of clusters E[K | y]. Finally, in the corresponding graph, we

look for the value of λmax located at the “elbow” of the curve, that is, the value of λmax

at which the values of E[K | y] level off.

As an explicit example of this graphical criterion in action, we used the functional

form of a first-order model with thinning parameter α = 0.15 to simulate a time series of

length T = 1 000, for which the distribution of the innovations is a symmetric mixture of

three Poisson distributions with parameters 1, 8, and 15. Figure 1 shows the formations

of the elbows for two values of the discount parameter: σ = 0.5 and σ = 0.75.

For the simulated time series, Figures 2, 3, 4, and 5 display the behavior of the

posterior distributions obtained using the elbow method for (k0, σ) ∈ {4, 10, 16, 30} ×
{0, 0.25, 0.5, 0.75}. These figures make the relation between the choice of the value of

the discount parameter σ and the achieved robustness of the posterior distribution quite

explicit: as we increase the value of the discount parameter σ, the posterior becomes

insensitive to the choice of k0. In particular, for σ = 0.75, the posterior mode is always
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Simulated

Predicted 1 2 3

1 297 32 0

2 11 217 42

3 0 84 316

Table 1: Confusion matrix for the cluster assignments.

near 3, which is the number of components used in the distribution of the innovations of

the simulated time series.

Once we understand the influence of the prior parameters on the robustness of the

posterior distribution, an interesting question is how to get a point estimate for the

distribution of clusters, in the sense that each λt, for t = p+ 1, . . . , T , would be assigned

to one of the available clusters.

From the Gibbs sampler, it is easy to obtain an approximation for the probabilities

drt = Pr{λr 6= λt | y}, for r, t = p + 1, . . . , T . These probabilities define a dissimilarity

matrix D = (drt) among the innovation rates. Although D is not a distance matrix,

we can use it as a starting point to represent the innovation rates in a two dimensional

Euclidean space using the technique of metric multidimensional scaling (see [18] for a

general discussion). From this two dimensional representation, we build a dendrogram,

which is appropriately cut in order to define three clusters, allowing us to assign a single

cluster label to each innovation rate. Table 1 displays the confusion matrix of this assign-

ment, showing that 83% of the innovations were grouped correctly in the clusters which

correspond to the mixture components used to simulate the time series. A visual rep-

resentation of this difference between assigned and simulated clusters is given on Figure

6.

Acknowledgements

Helton Graziadei and Hedibert F. Lopes thank FAPESP for financial support through

grants numbers 2017/10096-6 and 2017/22914-5. Antonio Lijoi and Igor Prünster are

partially supported by MIUR, PRIN Project 2015SNS29B.

9



References

[1] E. McKenzie, “Some simple models for discrete variate time series,” Journal of the

American Water Resources Association, vol. 21, no. 4, pp. 645–650, 1985.

[2] M. Al-Osh and A. Alzaid, “First-order integer-valued autoregressive (INAR(1)) pro-

cess: distributional and regression properties,” Statistica Neerlandica, vol. 42, pp. 53–

61, 1988.

[3] C. Weiß, An introduction to discrete-valued time series. John Wiley & Sons, 2018.

[4] J.-G. Du and Y. Li, “The integer-valued autoregressive (INAR(p)) model,” Journal

of Time Series Analysis, vol. 12, pp. 129–142, 1991.

[5] P. Neal and T. Kypraios, “Exact bayesian inference via data augmentation,” Statis-

tics and Computing, vol. 25, no. 2, pp. 333–347, 2015.

[6] J. Pitman et al., “Combinatorial stochastic processes,” tech. rep., Technical Report

621, Dept. Statistics, UC Berkeley, 2002. Lecture notes., 2002.

[7] J. Dion, G. Gauthier, and A. Latour, “Branching processes with immigration and

integer-valued time series,” Serdica Mathematical Journal, vol. 21, no. 2, pp. 123–136,

1995.

[8] D. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of Computa-

tional and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001.

[9] M. Tanner and W. Wong, “The calculation of posterior distributions by data augmen-

tation,” Journal of the American Statistical Association, vol. 82, no. 398, pp. 528–540,

1987.

[10] T. Ferguson, “A Bayesian analysis of some nonparametric problems,” The Annals of

Statistics, vol. 1, no. 2, pp. 209–230, 1973.

[11] M. J. Schervish, Theory of statistics. Springer Series in Statistics, 1995.

[12] N. Hjort, C. Holmes, P. Müller, and S. Walker, Bayesian nonparametrics, vol. 28.

Cambridge University Press, 2010.

[13] A. Lijoi, R. H. Mena, and I. Prünster, “Bayesian nonparametric estimation of the

probability of discovering new species,” Biometrika, vol. 94, no. 4, pp. 769–786, 2007.

[14] J. Hamilton, Time series analysis, vol. 2. Princeton university Press, 1994.

[15] D. Gamerman and H. Lopes, Markov chain Monte Carlo: stochastic simulation for

Bayesian inference. Chapman & Hall / CRC, 2006.

[16] M. Escobar and M. West, “Computing nonparametric hierarchical models,” in Prac-

tical nonparametric and semiparametric Bayesian statistics (D. Dey, P. Müller, and

D. Sinha, eds.), ch. 1, pp. 1–22, Springer-Verlag, 1998.

10



[17] A. Canale and I. Prünster, “Robustifying bayesian nonparametric mixtures for count

data,” Biometrics, vol. 73, no. 1, pp. 174–184, 2017.

[18] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.

Springer Series in Statistics, 2009.

11



0.0

0.1

0.2

0.3

0.4

1 10 20 30 40
k

k 0
 =

 4

0.0

0.1

0.2

0.3

0.4

1 10 20 30 40
k

k 0
 =

 1
0

0.0

0.1

0.2

0.3

0.4

1 10 20 30 40
k

k 0
 =

 1
6

0.0

0.1

0.2

0.3

0.4

1 10 20 30 40
k

k 0
 =

 3
0

σ =  0

Figure 2: Posterior distributions of the number of clusters K for the simulated time series

with σ = 0 and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.
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Figure 3: Posterior distributions of the number of clusters K for the simulated time series

with σ = 0.25 and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.
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Figure 4: Posterior distributions of the number of clusters K for the simulated time series

with σ = 0.5 and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.
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Figure 5: Posterior distributions of the number of clusters K for the simulated time series

with σ = 0.75 and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.
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Figure 6: Swallow tails obtained by multidimensional scaling. The left and right figures

show the assigned and simulated cluster labels, respectively
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