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Abstract

We develop two Bayesian generalizations of the Poisson integer-valued autore-

gressive model. The AdINAR(1) model accounts for overdispersed data by means

of an innovation process whose marginal distributions are finite mixtures, while the

DP-INAR(1) model is a hierarchical extension involving a Dirichlet process, which

is capable of modeling a latent pattern of heterogeneity in the distribution of the

innovation rates. The probabilistic forecasting capabilities of both models are put

to test in the analysis of crime data in Pittsburgh, with favorable results.

1 Introduction

Integer-valued time series models are essential inferential tools in areas such as epidemiol-

ogy, econometrics, environmental studies, and public policy [1]. An important pioneering

development was the proposal of the integer-valued autoregressive model (INAR(1) model

hereafter) by McKenzie [2] and Al-Osh and Alzaid [3]. In a nutshell, the INAR(1) model

defines a time-homogeneous Markovian process for which the counts at one epoch are a

random fraction of the counts at the previous epoch plus the counts associated with an

independent innovation process with marginal Poisson distributions. In recent decades,

a large body of research has been dedicated to modifications and generalizations of this

original INAR(1) model [4, 5, 6, 7, 8].

In this paper we develop two Bayesian generalizations of the INAR(1) model. In

our first proposal, the adaptive integer-valued autoregressive model (AdINAR(1) model

hereafter) we make use of a finite mixture to define the marginal distributions of the

innovation process. The motivation for this AdINAR(1) model is the possibility to ac-

count for overdispersed time series. Our second contribution is a hierarchical extension

of the INAR(1) model, implemented with the help of a Dirichlet process [9] placed at

the top of the model hierarchy. In this DP-INAR(1) model, the innovation rates may

vary through time, and in their modeling we benefit from the clustering properties of the
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Dirichlet process. Our main goal in the paper is to assess the forecasting capabilities of the

two new models when compared to the original INAR(1) model, regarding out-of-sample

predictions.

The paper is organized as follows. In Section 2, we present a slightly generalized

version of the INAR(1) model, on which the two models defined in the following sec-

tions are based. The AdINAR(1) and the DP-INAR(1) models are developed in Sections

3 and 4, respectively. Necessary facts about the Dirichlet process are presented in the

Appendix. For both models we devise data augmentation schemes that result in full con-

ditional distributions in simple analytical forms, enabling the exploration of the posterior

distributions through Gibbs sampling [10, 11]. In Section 5, we put the models to work in

the forecasting of crime data in Pittsburgh, USA. In this application, the AdINAR(1) and

DP-INAR(1) model outperform the original INAR(1) model in the majority of the patrol

areas. Computer simulations are coded in C++ inside the R environment [12], using the

Rcpp library [13]. Computer code and data are available as supplementary materials.

2 Generalized INAR(1) model

We begin by generalizing the original INAR(1) model of McKenzie [2] and Al-Osh and

Alzaid [3] as follows.

Let {Yt}t≥1 be an integer-valued time series, and let the innovations {Zt}t≥2, given

positive parameters {λt}t≥2, be a sequence of conditionally independent random variables.

Given a parameter α ∈ [0, 1], let {Bi(t) : i ≥ 0, t ≥ 2} be a family of conditionally inde-

pendent and identically distributed Bernoulli(α) random variables. Furthermore, given all

the parameters, assume that the innovations {Zt}t≥2 and the family {Bi(t) : i ≥ 0, t ≥ 2}
are conditionally independent. The generalized INAR(1) model is defined by the func-

tional relation

Yt = α ◦ Yt−1 + Zt,

for t ≥ 2, in which ◦ denotes the binomial thinning operator, defined by α ◦ Yt−1 =∑Yt−1

i=1 Bi(t), if Yt−1 > 0, and α ◦ Yt−1 = 0, if Yt−1 = 0. In the homogeneous case, when

λ2 = . . . λT =: λ, and Zt has Poisson(λ) distribution, given λ, we recover the original

INAR(1) model.

This model can be interpreted as specifying a birth-and-death process, in which, at

epoch t, the number of cases Yt is equal to the new cases Zt plus the cases that survived

from the previous epoch; the role of the binomial thinning operator being to remove a

random number of the Yt−1 cases present at the previous epoch t− 1.

Let y = (y1, . . . , yT ) denote the values of an observed time series. For simplicity, we

assume that Y1 = y1 with probability one. Since the process {Yt}t≥1 is Markovian, the

joint distribution of Y1, . . . , YT , given parameters α and λ = (λ2, . . . , λT ), can be factored

as

Pr{Y1 = y1, . . . , YT = yT | α, λ} =
T∏
t=2

Pr{Yt = yt | Yt−1 = yt−1, α, λt}.
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Since, with probability one, α◦Yt−1 ≤ Yt−1 and Zt ≥ 0, by the law of total probability

and the definition of the generalized INAR(1) model we have that

Pr{Yt = yt | Yt−1 = yt−1, α, λt} = Pr{α ◦ Yt−1 + Zt = yt | Yt−1 = yt−1, α, λt}

= Pr

{
Yt−1∑
i=1

Bi(t) + Zt = yt

∣∣∣∣∣ Yt−1 = yt−1, α, λt

}

=

min{yt, yt−1}∑
mt=0

Pr

{
yt−1∑
i=1

Bi(t) = mt, Zt = yt −mt

∣∣∣∣∣ α, λt
}

=

min{yt, yt−1}∑
mt=0

Pr

{
yt−1∑
i=1

Bi(t) = mt

∣∣∣∣∣ α
}

Pr{Zt = yt −mt | λt}.

Hence, the generalized INAR(1) model likelihood function is given by

Ly(α, λ) =
T∏
t=2

min{yt−1, yt}∑
mt=0

(
yt−1
mt

)
αmt(1− α)yt−1−mt × Pr{Zt = yt −mt | λt}.

3 AdINAR(1) model

The AdINAR(1) model is defined assuming that λ2 = . . . λT =: λ, and that, given λ and

two additional parameters 0 < θ ≤ 1 and 0 ≤ w ≤ 1, the innovations Zt are conditionally

independent and identically distributed as the two component mixture w×Geometric(θ)+

(1 − w) × Poisson(λ). Therefore, using the results in Section 2, the AdINAR(1) model

likelihood function is given by

Ly(α, θ, λ, w) =

T∏
t=2

min{yt−1, yt}∑
mt=0

(
yt−1
mt

)
αmt(1− α)yt−1−mt

(
w × θ(1− θ)yt−mt + (1− w)× e−λλyt−mt

(yt −mt)!

)
.

The introduction of certain latent (unobservable) random variables allows us to specify

the AdINAR(1) model in terms of a set of conditional distributions. This alternative

representation leads to a factorization of the model joint distribution which is of key

importance to our Monte Carlo simulations.

3.1 Data augmentation

In the AdINAR(1) model, suppose that, in addition to the values of the counts Y1, . . . , YT ,

we could observe the values of the maturations Mt = α ◦ Yt−1, as well as the values of a

set of mixture component indicators Ut ∈ {0, 1}, for t = 2, . . . , T . The Mt’s would inform

us the number of cases that matured from the previous epoch, breaking down Yt into two
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parcels (maturations plus innovations), while the Ut’s would tell us from which component

of the mixture the value of the Zt’s were generated in one realization of the process.

We postulate that

(Ut | w) ∼ Bernoulli(w)

and

(Mt | α, Yt−1 = yt−1) ∼ Binomial(yt−1, α).

Furthermore, we assume that

Pr{Yt = yt |Mt = mt, Ut = ut, θ, λ} =


θ(1− θ)yt−mt I{mt,mt+1, ... }(yt) if ut = 1

e−λλyt−mt

(yt −mt)!
I{mt,mt+1, ... }(yt) if ut = 0

in which IA denotes the indicator function of the set A, defined by IA(x) = 1, if x ∈ A,

and IA(x) = 0, if x /∈ A.

Using the law of total probability and the product rule, we have that

Pr{Yt = yt | Yt−1 = yt−1, α, θ, λ, w}

=

yt−1∑
mt=0

∑
ut∈{0,1}

Pr{Yt = yt,Mt = mt, Ut = ut | Yt−1 = yt−1, α, θ, λ, w}

=

yt−1∑
mt=0

∑
ut∈{0,1}

(
Pr{Mt = mt | Yt−1 = yt−1, α}

× Pr{Yt = yt |Mt = mt, Ut = ut, θ, λ}Pr{Ut = ut | w}

)
.

Since

I{mt,mt+1,... }(yt)× I{0,1,...,yt−1}(mt) = I{0,1,...,yt}(mt)× I{0,1,...,yt−1}(mt)

= I{0,1,...,min{yt,yt−1}}(mt),

we come to the conclusion that this data augmented model [14, 15] induces the AdINAR(1)

model likelihood function.

In the following, we take advantage of this alternative representation of the AdI-

NAR(1) model by the data augmentation scheme to derive simple closed forms for the

model parameters and latent variables full conditional distributions, after the forms of

the prior distributions have been specified.
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3.2 Full conditionals

For convenience, we adopt a simplified notation in the following derivations, using the

same letters p and π to denote different probability functions or densities, with distinctions

made clear from context.

Let the prior distibutions be

α ∼ Beta(aα, bα), λ ∼ Gamma(aλ, bλ),

θ ∼ Beta(aθ, bθ), w ∼ Beta(aw, bw).

Define m = (m2, . . . ,mT ) and u = (u2, . . . , uT ). The joint distribution of the data

augmented AdINAR(1) model factors as

p(y,m, u, α, θ, λ, w) =

(
T∏
t=2

p(yt | mt, ut, θ, λ) p(mt | yt−1, α)

)
π(α) π(θ) π(λ) π(w).

Using the symbol ∝ to denote proportionality up to a suitable normalization factor,

and the label “all others” to designate the observed counts y, and all the other latent

variables and model parameters, with the exception of the one under consideration, the

full conditional distributions are derived by inspection of this factorization.

(α | all others) ∼ Beta

(
aα +

T∑
t=2

mt, bα +
T∑
t=2

(yt−1 −mt)

)

(θ | all others) ∼ Beta

(
aθ +

T∑
t=2

ut, bθ +
T∑
t=2

(yt −mt)I{1}(ut)

)

(λ | all others) ∼ Gamma

(
aλ +

T∑
t=2

(yt −mt)I{0}(ut), bλ + (T − 1)−
T∑
t=2

ut

)

(w | all others) ∼ Beta

(
aw +

T∑
t=2

ut, bw + (T − 1)−
T∑
t=2

ut

)

Pr {Ut = 1 | all others} ∝ w θ(1− θ)yt−mt ;

Pr {Ut = 0 | all others} ∝ (1− w)
e−λλyt−mT

(yt −mt)!
,

for t = 2, . . . , T .

Pr {Mt = mt | all others}

∝


1

(yt−1 −mt)! mt!

(
α

(1− θ)(1− α)

)mt
I{0,1,...,min{yt,yt−1}}(mt) if ut = 1

1

(yt −mt)! (yt−1 −mt)! mt!

(
α

λ (1− α)

)mt
I{0,1,...,min{yt,yt−1}}(mt) if ut = 0

for t = 2, . . . , T .

Using these full conditional distributions, we can code a Gibbs sampler [10, 11] to

explore the posterior distribution.

5



3.3 Forecasting

The Gibbs sampler described above yields a sample {α(n), θ(n), λ(n), w(n)}Nn=1 from the

posterior distribution. Uncertainty about future counts is represented by the h-steps-

ahead posterior predictive distribution

YT+h | Y1 = y1, . . . , YT = yT ,

for some target h ≥ 1. In particular, a pointwise forecast is obtained as a suitable

summary of this posterior predictive distribution. In particular, a pointwise forecast is

obtained as a suitable summary of this posterior predictive distribution.

To get a Monte Carlo approximation of the h-steps-ahead posterior predictive distri-

bution, we use the AdINAR(1) model definition to propagate the process to the future

sequentially, generating synthetic counts

y
(n)
T+1 = α(n) ◦ yT + z

(n)
T+1,

...

y
(n)
T+h = α(n) ◦ y(n)T+h−1 + z

(n)
T+h,

for n = 1, . . . , N , in which the synthetic innovations z
(n)
T+1, . . . , z

(n)
T+h are drawn indepen-

dently from a Geometric(θ(n)) distribution, with probability w(n), or from a Poisson(λ(n))

distribution, with probability 1− w(n).

From the sample {y(n)T+h}Nn=1, we approximate the h-steps-ahead posterior probability

function by the respective empirical averages

p(yT+h | y1, . . . , yT ) ≈ 1

N

N∑
n=1

I{yT+h}(y
(n)
T+h),

for yT+h ≥ 0.

As a pointwise forecast ŷT+h, since we are dealing with discrete observations, we com-

pute a generalized median of the h-steps-ahead posterior predictive distribution, defined

by

ŷT+h = arg min
yT+h≥0

∣∣∣∣∣0.5−
yT+h∑
r=0

p(r | y1, . . . , yT )

∣∣∣∣∣ .
We use a form of predictive cross-validation to evaluate the forecasting performance

of the model. For an observed time series y1, . . . , yT , we pick some T ∗ < T , and treat the

counts yT ∗ , . . . , yT as a holdout (test) sample. For t ≥ T ∗, we train the model conditioning

only on the values y1, . . . , yt−1 and making an h-steps-ahead out-of-sample prediction ŷt+h.

To score the forecast performance, we average the median deviations |ŷt+h− yt+h| over all

out-of-sample predictions. This cross-validation procedure is depicted in Figure 1.
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time

Figure 1: Predictive cross-validation scheme for one-step-ahead predictions. For each line,

the black dots indicate the training set. Predictions are made for the target epoch marked

with an ×.

4 DP-INAR(1) model

The DP-INAR(1) model completes the generalized INAR(1) model defined in Section 2,

placing a Dirichlet process G at the top of the hierarchy. We recollect the necessary

Dirichlet process facts and notations in the Appendix.

Formally, the innovations Zt are modeled, given λt, as conditionally independent and

identically distributed, with distribution Poisson(λt), and the innovation rates λ2, . . . , λT ,

given G ∼ DP(τ G0), are conditionally independent and identically distributed, with

Pr{λt ∈ B | G = G} = G(B), for every Borel set B. The prior distributions for α and τ

are Beta(aα, bα) and Gamma(aτ , bτ ), respectively. The base probability measure G0 is a

Gamma(a0, b0) distribution.

4.1 Data augmentation

The DP-INAR(1) model can also be data augmented, postulating that the maturations

are distributed as

Mt | α, Yt−1 = yt−1 ∼ Binomial(yt−1, α),

and

Pr{Yt = yt |Mt = mt, λt} =
e−λtλyt−mtt

(yt −mt)!
I{mt,mt+1, ... }(yt).

Figure 2 displays a graphical representation of the data augmented DP-INAR(1)

model. In the graph, absence of an arrow connecting two random objects means that

they are conditionally independent given their parents (see [16] for a witful discussion of

graphical models).

4.2 Full conditionals

Define m = (m2, . . . ,mT ), and let µG denote the distribution of G. Marginalizing G on

the graph, we have
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τ G

λ2 λ3 . . . λT−1 λT

Y1 Y2 Y3 YT−1 YT. . .

M2 M3 MT−1

α

. . . MT

Figure 2: The data augmented DP-INAR(1) model.

p(y,m, α, λ) =

∫
p(y,m, α, λ | G) dµG(G)

=

{
T∏
t=2

p(yt | mt, λt) p(mt | yt−1, α)

}
× π(α)×

∫ T∏
t=2

p(λt | G) dµG(G).

Since the random vector (λ2, . . . , λT ) has an exchangeable distribution, using this

symmetry and the product rule, we can always make p(λ2, . . . , λT ) depend on a certain

λt only through p(λt | λ\t), in which λ\t denotes the vector λ with the component λt

removed. Hence,

p(λt | all others) ∝ p(y,m, α, λ) ∝ p(λt | λ\t) p(yt | mt, λt) ∝ e−λtλyt−mtt p(λt | λ\t).

Therefore, the Pólya-Blackwell-MacQueen urn process yields the full conditional dis-

tribution of λt as the mixture

λt | all others ∼ τ · ba00 · Γ(yt −mt + a0)

Γ(a0)(b0 + 1)yt−mt+a0
×Gamma(yt −mt + a0, b0 + 1)

+
∑
r 6=t

λyt−mtr e−λrδ{λr},

in which δ{λr} denotes a point mass at λr. In the former expression we suppressed the

normalization constant which makes all mixture weights add up to one.
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The derivations of the full conditionals for α and mt are straightforward.

α | all others ∼ Beta

(
aα +

T∑
t=2

mt, bα +
T∑
t=2

(yt−1 −mt)

)
.

p(mt | all others) ∝ 1

mt!(yt −mt)!(yt−1 −mt)!

(
α

λt(1− α)

)mt

I{0,1,...,min {yt−1,yt}}(mt).

West [17] shows how to derive the full conditional distribution of the concentration

parameter τ in simple closed form, after the introduction of an auxiliary random variable

U . Using this technique, we have the full conditionals

U | all others ∼ Beta(τ + 1, T − 1);

τ | all others ∼ Γ(aτ + k)

(bτ − log u)aτ+k−1
×Gamma(aτ + k, bτ − log u)

+
(T − 1) · Γ(aτ + k − 1)

(bτ − log u)aτ+k−1
×Gamma(aτ + k − 1, bτ − log u),

in which we suppressed the normalization constant which makes the two mixture weights

add up to one.

These full conditional distributions allow us to explore the model posterior distribu-

tion by coding a Gibbs sampler [10, 11]. Experimentation with this Gibbs sampler shows

that, as pointed out by Escobar and West [18] in a similar context, we can improve mixing

by resampling simultaneously the values of all λt’s inside the same cluster at the end of

each iteration. Formally, let (λ∗1, . . . , λ
∗
k) be the k unique values among (λ2, . . . , λT ) and

define the number of occupants of cluster j by nj =
∑T

t=2 I{λ∗j}(λt). It follows that

λ∗j | all others ∼ Gamma

(
a0 +

T∑
t=2

(yt −mt) · I{λ∗j}(λt), b0 + nj

)
.

for j = 1, . . . , k. After the λ∗j ’s are sampled from this distribution, we update the values

of all λt’s inside each cluster by the corresponding λ∗j .

4.3 Choice of prior parameters

Extending the original scheme proposed by Dorazio [19], we choose the parameters aτ

and bτ of the τ prior by minimizing the Kullback-Leibler divergence between the prior

distribution of the number of clusters K and a uniform discrete distribution on a suitable

range. Using the results in the Appendix, the marginal probability function of K can be

computed as

π(k) =

∫ ∞
0

Pr{K = k | τ} π(τ) dτ =
bτS(T − 1, k)

Γ(aτ )
I(aτ , bτ ; k),
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for k = 1, . . . , T − 1, in which

I(aτ , bτ ; k) =

∫ ∞
0

τ k+aτ−1 e−bτ τ Γ(τ)

Γ(τ + T − 1)
dτ.

Using the information available about the phenomena under consideration to make a

sensible choice for the integers kmin and kmax, and letting q be the probability function of

a uniform discrete distribution on {kmin, . . . , kmax}, that is

q(k) =
1

(kmax − kmin + 1)
I{kmin,...,kmax}(k),

we find, by numerical integration and optimization, the values of aτ and bτ that minimize

the Kullback-Leibler divergence

KL[π ‖ q] =
kmax∑
k=kmin

q(k) log

(
q(k)

π(k)

)

= (constant) + log Γ(aτ )− aτ log bτ −
1

(kmax − kmin + 1)

kmax∑
k=kmin

log I(aτ , bτ ; k).

We choose the parameters a0 and b0 of the base probability density g0 in a similar

fashion, minimizing the Kullback-Leibler divergence between g0 and a uniform distribution

on a suitable range [0, λmax], in which λmax is chosen by taking into consideration the

available information on the studied phenomena. Letting h be a uniform density on

[0, λmax], that is

h(λ) =

(
1

λmax

)
I[0,λmax](λ),

we find, by numerical optimization, the values of a0 and b0 that minimize the Kullback-

Leibler divergence

KL[g0 ‖ h] =

∫ λmax

0

(
1

λmax

)
log

(
1/λmax

g0(λ)

)
dλ

= − log λmax − a0 log b0 + log Γ(a0)− (a0 − 1)(log λmax − 1) +
b0λmax

2
.

4.4 Forecasting

Let {α(n), λ(n)}Nn=1 be a sample from the posterior distribution obtained by Gibbs sam-

pling. Using the law of total probability, the product rule, and simplifying the conditional

independences in the model, we can write the posterior predictive probability function as

p(yT+h | y1, . . . , yT ) =

∫
p(yT+h | yT , α, λT+1, . . . , λT+h)

×
h∏
i=1

p(λT+i | λ2, . . . , λT+i−1)

× p(α, λ2, . . . , λT | y1, . . . , yT ) dα dλ2 . . . dλT+h.

A nice property of the DP-INAR(1) model is that we can derive a simple analytical

expression for the first factor in the integrand above.
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Proposition 4.1. The probability function of Yt+h, given Yt = yt, α, and (λt+1, . . . , λt+h),

can be writen as the convolution of a Bin(yt, α
h) distribution and a Poisson(µh) distribu-

tion,

p(yt+h | yt, α, λt+1, . . . , λt+h) =

min{yt,yt+h}∑
m=0

(
yt
m

)
(αh)m(1− αh)yt−m

(
µ
yt+h−m
h e−µh

(yt+h −m)!

)
,

in which

µh =
h∑
i=1

αh−iλt+i.

Proof. We prove the result by induction. For h = 1, using a simplified notation, the

conditional moment generating function is given by

MYt+1|Yt(s) = E
[
esYt+1 | Yt

]
= E

[
es(α◦Yt+Zt+1) | Yt

]
= E

[
es(

∑Yt
i=1Bi(t)+Zt+1) | Yt

]
,

But since {Zt}t≥2 is a sequence of conditionally independent random variables, which is

also conditionally independent of {Bi(t) : i ≥ 0, t ≥ 2}, we have that

MYt+1|Yt(s) = E
[
es

∑Yt
i=1Bi(t) | Yt

]
E
[
esZt+1

]
= (αes + (1− α))Yt exp(λt+1(e

s − 1)),

which is the product of the generating functions of a Binomial(Yt, α) random variable and

a Poisson(λt+1) random variable. Now, suppose the result holds for an arbitrary h ≥ 2.

Then,

MYt+h+1|Yt(s) = E
[
esYt+h+1 | Yt

]
= E

[
E
[
esYt+h+1 | Yt+h

]
| Yt
]

= E
[
euYt+h | Yt

]
exp(λt+h+1(e

s − 1)),

in which we defined eu = αes + (1−α). Consequently, from the induction hypothesis, we

have that

MYt+h+1|Yt(s) = (αheu + (1− αh))Yt exp(µh(e
u − 1)) exp(λt+h+1(e

s − 1))

= (αh(αes + (1− α)) + (1− αh))Yt exp(µh((αe
s + (1− α))− 1))

× exp(λt+h+1(e
s − 1))

= (αh+1es + (1− αh+1))Yt exp(µh+1(e
s − 1)),

in which µh+1 = αµh+λt+h+1. Hence, the result holds for h+1, completing the proof.

Using the Pólya-Blackwell-MacQueen urn process repeatedly, for n = 1 . . . , N , we

draw a sample {λ(n)T+1, . . . , λ
(n)
T+h}Nn=1 from

∏h
i=1 p(λT+i | λ2, . . . , λT+i−1) sequentially as

follows:

λ
(n)
T+1 ∼

τ

τ + T
G0 +

1

τ + T

T∑
t=2

δ{λ(n)t }
;

λ
(n)
T+2 ∼

τ

τ + T + 1
G0 +

1

τ + T + 1

T+1∑
t=2

δ{λ(n)t }
;

...

λ
(n)
T+h ∼

τ

τ + T + h− 1
G0 +

1

τ + T + h− 1

T+h−1∑
t=2

δ{λ(n)t }
.
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Combining all these elements, we approximate the integral representation of the h-

steps-ahead posterior predictive probability function by the Monte Carlo average

p(yT+h | y1, . . . , yT ) ≈ 1

N

N∑
n=1

p(yT+h | yT , α(n), λ
(n)
T+1, . . . , λ

(n)
T+h),

for yT+h ≥ 0.

5 Pittsburgh crime data

In this section, we analyze monthly time series of burglary events in Pittsburgh, USA,

from January 1990 to December 2001 [20]. In this dataset, each time series has a length

of 144 months and corresponds to a certain patrol area, comprising a total of 36 time

series.

In what follows, we use patrol area 58 to exemplify the training procedures for the

AdINAR(1) and the DP-INAR(1) models. This patrol area presents substantial overdis-

persion in the monthly counts of burglary events, with mean 10.4 and variance 31.1.

In all runs of the Gibbs samplers, we discard the first 103 simulated values, which

correspond to the burn-in period, and end up with a posterior sample of size 104.

For the AdINAR(1) model hyperparameters, we make the choices aα = 1, bα = 1,

aλ = 1, bλ = 0.1, aθ = 1, bθ = 1, aw = 1, and bw = 1, which correspond to reasonably flat

priors.

Figure 3 displays the marginal posterior distributions of the AdINAR(1) model pa-

rameters. The posterior distribution of the thinning parameter α is fairly concentrated,

with posterior mean 0.31, showing that the autoregressive component is not negligible for

this patrol area. The posterior mean of λ is 6.78, while the posterior mean of θ is 0.12.

Also, the posterior distribution of w, with posterior mean 0.38, shows that the geometric

component of the mixture has less weight for this patrol area.

For the DP-INAR(1) model, we specify the hyperparameters as follows. To determine

aτ and bτ , the optimization procedure described in Section 4.3, with kmin = 1 and kmax =

143, yields aτ = 0.519 and bτ = 0.003. Note that these values of kmin and kmax correspond,

within our scheme, to the most spread choice for the prior distribution of the number of

clusters K. With regard to the base measure, Figure 4 displays the contour plot of

the corresponding Kullback-Leibler divergence KL[g0 ‖ h]. The minimum is attained at

a0 = 1.778 and b0 = 0.096. Finally, we choose a uniform prior for the thinning parameter

α, making aα = 1 and bα = 1.

The DP-INAR(1) marginal posterior distributions of the parameters α, λ3, λ18, and

λ96 are displayed in Figure 5. For this patrol area, the posterior mean of the thinning

parameter α is 0.19. The posterior means of λ3, λ18 and λ96 are equal to 6.50, 13.61 and

32.01, respectively, showing that different regimes of innovation rates were captured in

the learning process. Figure 6 shows both the prior and posterior distributions of the

12



number of clusters K. While the prior distribution is reasonably flat in the range 1 to

143, the posterior distribution is concentrated around 7, the posterior mode.

The Markov chains in Figures 7 and 8 indicate that proper mixing is achieved by the

Gibbs samplers for both models.

With regard to the forecasting performance within this dataset, Table 1 presents the

mean absolute deviations of the out-of-sample predictions for the INAR(1), AdINAR(1),

and DP-INAR(1), in the 36 patrol areas. In this table, the mean absolute deviations

are computed predicting the values of the last 44 months of each time series, using the

predictive cross-validation procedure described in Section 3.3.

The results in Table 1 show that the AdINAR(1) and the DP-INAR(1) models out-

perform the INAR(1) model in 75% of the patrol areas. From the last two columns of the

table, we see that the AdINAR(1) model and the DP-INAR(1) model produce substantial

relative gains in the mean absolute deviations, with the exception of five areas in which

the INAR(1) performs better, but with smaller relative gains.

6 Conclusions

Two Bayesian generalizations of the INAR(1) model are proposed. The AdINAR(1)

model accounts for overdispersion in the time series using a Geometric-Poisson mixture

as the marginal distribution of the innovation process, while the DP-INAR(1) model

is capable of learning a latent pattern of heterogeneity in the distribution of the in-

novation rates by means of a Dirichlet process placed at the top of the model hierar-

chy. For both models, we devise data augmentation schemes from which we derive full

conditional distributions in simple analytical forms. Simulations of the posterior distri-

butions through Gibbs sampling, and a predictive cross-validation procedure, give evi-

dence of good forecasting performance in the analysis of times series of burglary events in

Pittsburgh, USA. An open source R package implementing both models is available at:

https://github.com/heltongraziadei/BINAR.
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Figure 3: Marginal posterior distributions of the AdINAR(1) model parameters α, θ, λ,

and w for patrol area 58.
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Figure 4: Contour plot of the Kullback-Leibler divergence associated with the optimiza-

tion of the base measure hyperparameters for patrol area 58.
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Figure 5: Marginal posterior distributions of the DP-INAR(1) model parameters α, λ3,

λ18, and λ96 for patrol area 58.
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Figure 6: DP-INAR(1) model prior and posterior distributions for the number of clusters

K, in gray and black respectively, for patrol area 58.
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Figure 7: Markov chains associated with the AdINAR(1) model marginal posterior dis-

tributions of parameters α, θ, λ, and w for patrol area 58. The gray rectangles indicate

the burn-in periods.
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Figure 8: Markov chains associated with the DP-INAR(1) model marginal posterior dis-

tributions of parameters α, λ3, λ18, and λ96 for patrol area 58. The gray rectangles

indicate the burn-in periods.
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Table 1: Mean absolute deviations for the out-of-sample predictions of the INAR(1),

AdINAR(1) and DP-INAR(1) models. The last two columns show the relative variations

for the AdINAR(1) and DP-INAR(1) models with respect to the INAR(1) model (lower

is better). For each patrol area, the best mean absolute deviation is written in bold face.

Patrol Area INAR(1) AdINAR(1) DP-INAR(1) ∆AdINAR(1) ∆DP-INAR(1)

11 1.209 1.209 1.209 0.000 0.000

12 3.907 3.349 3.512 -0.143 -0.101

13 2.674 2.628 2.698 -0.017 0.009

14 2.581 2.488 2.535 -0.036 -0.018

15 2.791 2.721 2.721 -0.025 -0.025

16 2.093 1.930 2.000 -0.078 -0.044

17 2.279 2.233 2.256 -0.020 -0.010

21 1.186 1.140 1.140 -0.039 -0.039

22 2.279 2.116 2.116 -0.071 -0.071

23 3.302 3.256 3.209 -0.014 -0.028

24 1.651 1.465 1.535 -0.113 -0.070

25 1.302 1.395 1.233 0.071 -0.054

26 2.023 1.209 1.512 -0.402 -0.253

27 1.349 1.186 1.186 -0.121 -0.121

28 0.814 0.860 0.837 0.057 0.029

29 2.767 2.744 2.767 -0.008 0.000

31 3.488 3.698 3.442 0.060 -0.013

32 3.442 3.442 3.488 0.000 0.014

33 1.930 1.721 1.814 -0.108 -0.060

34 3.581 3.535 3.674 -0.013 0.026

41 2.372 2.349 2.395 -0.010 0.010

42 3.302 3.209 3.302 -0.028 0.000

43 2.163 2.093 2.186 -0.032 0.011

44 1.837 1.721 1.791 -0.063 -0.025

45 2.395 2.326 2.395 -0.029 0.000

46 2.744 2.744 2.628 0.000 -0.042

47 2.302 2.465 2.256 0.071 -0.020

51 2.860 3.093 2.930 0.081 0.024

52 3.814 3.977 3.930 0.043 0.030

53 2.837 2.930 2.884 0.033 0.016

54 2.884 2.558 2.535 -0.113 -0.121

55 4.512 5.419 4.884 0.201 0.082

56 2.093 1.884 1.930 -0.100 -0.078

57 1.977 2.047 1.977 0.035 0.000

58 2.977 2.372 2.512 -0.203 -0.156
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Appendix

Dirichlet process

Suppose that we represent our uncertainties about quantities assuming values in a sam-

pling space X , with sigma-field B, by means of an underlying probability space (Ω,F ,Pr).

A mapping G : B × Ω → [0, 1] is a random probability measure if G( · , ω) is a

probability measure over (X ,B), for every ω ∈ Ω, and G(B) = G(B, · ) is a random

variable, for each B ∈ B.

Ferguson [9] defined a random probability measure G descriptively as follows. Let

β be a finite nonzero measure over (X ,B) and postulate that for each B-measurable

partition {B1, . . . , Bk} of X the random vector (G(B1), . . . ,G(Bk)) has the ordinary

Dirichlet distribution with parameters (β(B1), . . . , β(Bk)). In this case, we say that G is a

Dirichlet process with base measure β, and use the notation G ∼ DP(β). Ferguson proved

that G is a properly defined random process in the sense of Kolmogorov’s consistency

theorem.

Defining the concentration parameter τ = β(X ), and the base probability measureG0

by G0(B) = β(B)/β(X ), it follows from the usual properties of the Dirichlet distribution

that E[G(B)] = G0(B) and Var[G(B)] = G0(B)(1 − G0(B))/(τ + 1), for every B ∈ B.

Therefore, G is centered on G0, and τ controls the concentration of G around G0. In terms

of the concentration parameter and the base probability measure, we write G ∼ DP(τ G0).

Inference with the Dirichlet process is tractable. In particular, Ferguson proved that

the Dirichlet process is closed under sampling: if X1, . . . , Xn are conditionally independent

and identically distributed, given G ∼ DP(τ G0), such that Pr{Xi ∈ B | G = G} = G(B),

for every B in B, then

G | X1 = x1, . . . , Xn = xn ∼ DP

(
(τ + n)

(
τ

τ + n
G0 +

1

τ + n

n∑
i=1

IB(xi)

))
.

Notice that, using the law of total expectation, we have

Pr{Xn+1 ∈ B | X1, . . . , Xn} = E[Pr{Xn+1 ∈ B | G, X1, . . . , Xn} | X1, . . . , Xn]

= E[Pr{Xn+1 ∈ B | G} | X1, . . . , Xn]

= E[G(B) | X1, . . . , Xn],

almost surely, for every B in B, in which the second equality follows from the conditional

independence of the Xi’s. Hence, the posterior predictive distribution is

Pr{Xn+1 ∈ B | X1 = x1, . . . , Xn = xn} =
τ

τ + n
G0(B) +

1

τ + n

n∑
i=1

IB(xi).
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This expression of the posterior predictive distribution unleashes important features

of the Dirichlet process, thereby showing how it can be used as a modeling tool. In

particular, it defines a data generating process known as the Pólya-Blackwell-MacQueen

urn [21]. If we imagine the sequential generation of the Xi’s, for i = 1, . . . , n, we see that a

value is generated anew from G0 with probability proportional to τ , or we repeat one the

previously generated values with probability proportional to its multiplicity. This shows

that, almost surely, realizations of a Dirichlet process G are discrete probability measures,

maybe with denumerably infinite support, depending on the nature of G0. Also, this data

generating process associated with the Pólya-Blackwell-MacQueen urn implies that the

Xi’s are clustered, meaning that there is a positive probability that Xi = Xj, for i 6= j.

Antoniak [22] derived the conditional distribution of the number of distinct Xi’s, that is,

the number of clusters K, given the concentration parameter τ , as

Pr{K = k | τ} = S(n, k) τ k
Γ(τ)

Γ(τ + n)
I{1,2,...,n}(k),

in which S(n, k) denotes the unsigned Stirling number of the first kind.
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