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Abstract

This paper proposes a novel Bayesian semiparametric stochastic volatility model
with Markov switching regimes for modeling the dynamics of the financial
returns. The distribution of the error term of the returns is modeled as an infi-
nite mixture of Normals; meanwhile, the intercept of the volatility equation is
allowed to switch between two regimes. The proposed model is estimated using
a novel sequential Monte Carlo method called particle learning that is espe-
cially well suited for state-space models. The model is tested on simulated data
and, using real financial times series, compared to a model without the Markov
switching regimes. The results show that including a Markov switching speci-
fication provides higher predictive power for the entire distribution, as well as
in the tails of the distribution. Finally, the estimate of the persistence parameter
decreases significantly, a finding consistent with previous empirical studies.
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1 INTRODUCTION

Volatility modeling has been of great interest in the last decades, especially after the recent financial crisis when the
standard models failed to explain and predict the events that occurred in the financial markets. The two benchmark
approaches to model volatility are based on the autoregressive conditional heteroscedasticity (ARCH)–type models, pro-
posed by Engle,1 and the stochastic volatility (SV) type models, proposed by Taylor.2 The models differ in the underlying
assumptions of the observability of the volatility. In ARCH-type models, the volatility is deterministic and observable,
whereas, in the SV type models, the volatility states are latent and stochastic. By allowing for the volatility states to be
stochastic, SV models provide more flexibility than the generalized ARCH (GARCH3) specifications (see the work of Broto
and Ruiz4 for example).

The SV model, as introduced by Taylor,2 assumes the distribution of the error term of the returns to be Normal.
Normal distribution was also considered by other works,5-8 just to name a few. However, many empirical studies have
shown that the returns exhibit heavy-tailed behavior (see related works9-11 for example). One possibility, instead of
Normal distribution, is to employ a distribution that allows for fat tails. The student-t distribution was used by other
works10-15; the Normal-inverse Gaussian by Barndorff-Nielsen16; the mixture of Normals by Mahieu and Schotman17;
and the generalized error distribution by Liesenfeld and Richard,18 among many others. Another possibility is to aban-
don parametric assumptions for the distribution of the returns altogether and consider a semiparametric SV model.* In

*In some papers, such models are referred to as nonparametric SV models
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such model, the volatility equation maintains the parametric form, whereas the distribution of the returns is modeled
nonparametrically.

The Bayesian semiparametric SV models have become rather popular in the last decade (see other works19,20 and21,22

for univariate SV models). Zaharieva et al23 proposed a multivariate extension with the nonparametric errors. In these
works, the authors assume that the distribution of the returns follows an infinite mixture of Normals via Dirichlet pro-
cess mixture (DPM) models (see related works24,25,26 among others). Such infinite mixtures turn out to be a very flexible
modeling approach because they nest other parametric specifications for the error term. The infinite mixture of Normals
can approximate other distributions, frequently used in financial time series context (see, eg, the works of Tokdar27 and
Mencía and Sentana,28) because of its “universal approximation property”.29 Finally, the use of the DPM models in finan-
cial time-series context is not restricted to density estimation only and can be used for other types of infinite mixtures.
For example, Lau and So30 considered infinite mixtures of autoregressive processes and showed how to perform cluster
analysis and outlier detection using the DPM. Lau and So31 highlighted that the mixture of time series models can cap-
ture structural changes and showed that mixing over infinite GARCH processes results into superior model performance
for 10 index return series.

In the semiparametric SV models, even when the distribution of the returns is modeled in a flexible nonparametric
manner, the volatility equation still maintains its simple AR(1) representation. Such model might have some limitations
by not allowing for structural changes in the volatility process. If these changes are not accounted for, the persistence
parameter in the volatility equation might be overestimated. Overestimation of the persistence parameter leads to incor-
rect conclusions about the predictability of the volatility.32 Therefore, in this paper, we augment the semiparametric
stochastic volatility model, similar to the one in the work of Delatola and Griffin,21 to include Markov switching regimes
in the volatility equation, resulting into a Bayesian semiparametric Markov switching SV (MSSV-DPM) model. Includ-
ing shifts in the volatility regimes was first proposed by So et al.33 Since then, fully parametric MSSV models have been
rather popular in the financial time series context due to its superior performance as compared to the benchmark SV mod-
els. Kalimipalli and Susmel34 considered two-factor SV model with regime switching and found that the estimated high
volatility persistence is reduced when the regimes are incorporated in the model. Shibata and Watanabe35 also found that
the persistence parameter estimates drop as compared to those of the standard SV models. Moreover, for their data, the
MSSV model performs better than the benchmark SV models. Similar findings are also present in the work of Vo,32 who
models oil price movements. Carvalho and Lopes36 used an auxiliary particle filter (APF) to sequentially learn about states
and parameters of the MSSV model and showed the predictive superiority of the MSSV model. For surveys on regime
switching models, GARCH, and SV, refer to related works37-39 among others.

In general, the estimation of SV-type models is rather complex, given the unobservable nature of the volatility. The
Markov chain Monte Carlo (MCMC) is the standard approach in the Bayesian context, with the seminal work by
Jacquier et al.5 For a survey on Bayesian estimation of time-varying volatility models, see the works of Chen et al37 and
Virbickaite et al40 among others. Even though MCMC methods are considered to be the gold standard among Bayesian
estimation methods, they are computationally costly and inherently nonsequential.41 A cost-efficient alternative to
MCMC is sequential Monte Carlo (SMC) methods, also known as particle filters, that allow for on-line type inference by
updating the posterior distribution as new observations arrive. By construction, stochastic volatility models are state-space
models, naturally suggesting the use of particle filters for estimation. Moreover, the model proposed in this paper belongs
to a class of models that have the availability of sufficient statistics of the parameters (see the work of Storvik42). This
permits to track a low-dimensional set of sufficient statistics instead of a high-dimensional vector of parameters. The use
of sufficient statistics has been shown to increase the efficiency of the algorithm by reducing the variance of the sam-
pling weights (see the work of Carvalho et al43). In this paper, we make use of the particle learning (PL) approach, which
is a particle-based method, firstly introduced by Carvalho et al.43 For general introduction to PL and comparison with
MCMC, see the works of Lopes and Polson41 and Carvalho et al43 among others. Warty et al44 proposed a sequential esti-
mation algorithm for the SV model with variance-gamma jumps in the returns. The algorithm, a hybrid between the APF
and PL, is compared to the MCMC output and used for a real-data application. In a recent paper, Virbickaitė et al45 have
designed a PL algorithm for a semiparametric stochastic volatility model of Delatola and Griffin.21 The authors conducted
an extensive comparison with the MCMC estimation output and showed that both estimation methods present almost
identical posterior distributions for model parameters, filtered volatility states, and the distribution of the error term. In
this paper, we construct a PL algoritm similar to the one in the work of Virbickaitė et al45 and augment it to include the
Markov switching regimes.

The rest of this paper is structured as follows. Section 2 presents the linearized SV model with nonparametric errors
and introduces a new MSSV-DPM model. Section 3 designs a PL algorithm for inference and prediction and presents a
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simulated data example. Section 4 evaluates the performance of the proposed model by using real data. Finally, Section 5
concludes.

2 MSSV-DPM MODEL

We start this section by reviewing a benchmark stochastic volatility model with Normal errors. We then relax the Normal-
ity assumption and present the semiparametric SV model, similar to the one seen in the work of Delatola and Griffin.21

The innovation distribution is assumed to follow an infinite mixture of Gaussians via Dirichlet process mixture models,
giving rise to a SV-DPM model. Finally, we augment the semiparametric SV model with Markov switching regimes in the
volatility equation, resulting into a novel MSSV-DPM model.

Denote yt as the de-meaned log returns that are modeled as 𝑦t = exp{ht∕2}vt. The standard discrete SV model assumes
the following dynamics for the volatility: ht = 𝛼 + 𝛽ht− 1 + 𝜏𝜂t. Here, 𝛽 is the volatility persistence parameter such
that |𝛽| < 1 for the stationarity of the volatilities; vt and 𝜂t are uncorrelated error terms, such that 𝜂t ∼  (0, 1). The
distribution of the vt has zero mean and unit variance and can take many different forms: from the standard Normal to
heavy-tailed Student-t and others (see related works6,10,17,18 for example).

Kim et al6 proposed a linearization of the standard SV model by defining rt = log 𝑦2
t and 𝜖t = log v2

t , resulting into the
following dynamic linear model:

rt = ht + 𝜖t, (1)

ht = 𝛼 + 𝛽ht−1 + 𝜏𝜂t. (2)

The distribution of 𝜖t is log𝜒2
1 if vt in the conventional SV model, described previously, is Normally distributed. Kim et al6

and Omori et al46 used carefully tuned finite mixtures of Normals to approximate the log𝜒2
1 distribution and used a data

augmentation argument to design fast MCMC schemes that jointly sample {h1, … , hT} based on the well-known forward
filtering, ie, backward sampling algorithm of Carter and Kohn47 and Fruhwirth-Schnatter.48 However, if vt is not Normally
distributed, then approximations of Kim et al6 and Omori et al46 are not appropriate anymore.

2.1 DPM errors
As mentioned in the introduction, it has been shown in multiple empirical studies that the distribution of the returns
has heavier tails than permitted by the Normal distribution. If this is the case, the distribution of 𝜖t in (1) is not log𝜒2

1
anymore. Delatola and Griffin21,22 proposed to approximate the distribution of 𝜖t as an infinite mixture of Normals by
relying on DPM models. Dirichlet process mixture models, firstly introduced by Lo,26 have been widely used for modeling
time-varying volatilities with univariate and multivariate SV and GARCH-type models (see other works19-23,49-52).

As seen in the work of Escobar and West,53 the DPM model has the following representation:

𝑓 (𝜖t;G) = ∫ k(𝜖t; 𝜃t)dG(𝜃t), (3)

where k is some density kernel with parameter vector 𝜃t and the mixing distribution G has a Dirichlet Process prior,
denoted here by G ∼ (c,G0(𝜃; 𝜚)). Each observation 𝜖t comes from a kernel density k(·) with some parameters 𝜃t, fol-
lowing the mixing distribution G. The parameter c is called the concentration parameter and G0(𝜃; 𝜚) is called the base
distribution with certain hyperparameters 𝜚. The concentration parameter c can be seen as the prior belief about the num-
ber of clusters in the mixture. Small values of c assume a priori an infinite mixture model with only few components that
have large weights. Meanwhile, large values of c assume a priori an infinite mixture model with many components and
all the weights being very small. c is also called a precision parameter and indicates how close G is to the base distribution
G0, where larger c indicates that G is closer to G0.

Gaussian kernel and conjugate base prior. One of the most popular DPM model variants in the financial time
series context assumes a Gaussian kernel for k(𝜖t; 𝜃t) in (3), ie, 𝜖t ∼  (𝜇t, 𝜎

2
t ). Then, the conjugate base prior

G0(𝜇, 𝜎2; 𝜚) is a Normal-inverse gamma prior, denoted here by G0 ∼ (𝜇, 𝜎2;m0,V0, a0, a0𝜎
2
0), such that 𝜇|𝜎2 is

Normal, ie,  (𝜇;m0,V0𝜎
2), and 𝜎2 is inverse gamma, ie, (𝜎2; a0∕2, a0𝜎

2
0∕2). Here, m0, V0, a0, and a0𝜎

2
0 are the

hyperparameters in 𝜚.



VIRBICKAITĖ AND LOPES 981

2.2 Markov switching volatility
As mentioned in the introduction, the benchmark stochastic volatility model has certain limitations. In particular, it does
not account for structural changes in the volatility process and, if such regime shifts are ignored, the persistence parameter
is overestimated. In other words, the 𝛽 parameter in (2) is very close to one and the volatility equation approaches the
nonstationary process. In order to incorporate such changes in the regimes, So et al33 introduced the MSSV model, where
the log volatility equation is of the following form:

ht = 𝛼st + 𝛽ht−1 + 𝜏𝜂t, 𝜂t ∼  (0, 1). (4)

Here, st are the regime variables following a two-state first order Markov process

pi𝑗 = P[st = 𝑗|st−1 = i], for i, 𝑗 = 0, 1.

As seen in the work of Carvalho and Lopes,36 it is necessary to introduce the following reparametrization for 𝛼st to avoid
identification issues:

𝛼st = 𝛾0 + 𝛾1I{st = 1}, 𝛾0 ∈ ℜ and 𝛾1 > 0.
Here, I{st = 1} is an indicator function that takes values equal to one if the volatility is in the high state (st = 1) and
zero in the low state (st = 0). The transition matrix between the states 0 and 1 is defined as follows:

T =
[

P(st = 0|st−1 = 0) P(st = 1|st−1 = 0)
P(st = 0|st−1 = 1) P(st = 1|st−1 = 1)

]
=
[

p 1 − p
1 − q q

]
. (5)

There are quite a few papers that consider regime switching SV models in Bayesian context. Kalimipalli and Susmel34

have proposed a two-factor SV model with regime switches and estimated it using Gibbs sampler. They found that the
estimate of high volatility persistence is reduced when the regimes are incorporated in the model. Moreover, the authors
compared the new model with other two alternative two-factor models, simple SV, and GARCH, and found that SV always
outperforms GARCH, both in sample and out of sample. Shibata and Watanabe35 designed an MCMC scheme to estimate
the MSSV model and found that the persistence parameter estimates drop as compared to those of the standard SV mod-
els. Moreover, the MSSV model performs better than the benchmark SV models. Lopes and Carvalho54 extended the SV
model to multivariate case and presented a factor stochastic volatility (FSV) model with Markov switching jumps. They
constructed a novel MCMC scheme for inference and found that the new model can capture market crashes in an instan-
taneous way, as opposed to the traditional FSV models. Carvalho and Lopes36 have constructed an SMC filter by combining
APF with the filter of Liu and West55 to estimate an SV model with Markov switching regimes. They found that, in terms
of predictions, the Markov switching SV specification outperforms a simple SV model. Abanto-Valle et al56 investigated
the relationship between stock return volatility and trading volume by using a MSSV specification and also found that the
persistence parameter drops significantly after introducing the Markov switching jump. Finally, Chen et al57 considered
a Markov switching GARCH model, where the volatility states are determined by a hidden Markov chain, and the return
distribution is assumed to follow a fat-tailed t. Their model could be seen as a GARCH-counterpart of the model pro-
posed in here (only we allow for fat-tailed errors via DPM specification). In addition, the authors allowed for all volatility
parameters to change across different states as well as the mean equation for the returns, allowing for more flexibility.
Chen et al57 showed that their proposed model is superior to standard approaches in VaR estimation.

Define 𝛷 = (𝛾0, 𝛾1, 𝛽, 𝜏
2, p, q) as a set of parameters associated with the volatility equation, 𝛺 = {(𝜇, 𝜎2)( 𝑗)}∞

𝑗=1 as a set
of parameters associated with the distribution of the error term, and 𝛩 = (𝛷,𝛺) as a complete set of model parameters.
Therefore, the complete MSSV-DPM model is a linearlized SV model in (1)-(2) with DPM errors in (3) that accommodates
the regime-shifting structure in (4)-(5) and can be written as follows:

rt|ht, 𝛩 ∼ 1
c + t − 1

L⋆
t−1∑

𝑗=0
nt−1,𝑗 (

rt;𝜇𝑗 + ht, 𝜎
2
𝑗

)
, (6)

ht|ht−1, 𝜆t, 𝛩 ∼  (
ht; 𝛾0 + 𝛾1𝜆t + 𝛽ht−1, 𝜏

2) , (7)

𝜆t|𝛩 ∼ (
(1 − p)1−𝜆t−1 q𝜆t−1

)
. (8)

Here, nt, j is a number of observations assigned to the jth component at time t, n0 = c, L⋆
t is a number of nonempty

components in the mixture at time t, ie, L⋆
t is not fixed a priori and grows if new components are observed. Given this

missing information, the mixture becomes finite, and the upper limit for the number of components is the number of
observations. In practice, data tends to cluster, meaning that some observations come from the same component, thus
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L⋆
t ≤ t. Moreover, (𝜋) denotes a Bernoulli distribution with parameter 𝜋 and 𝜆t is a Bernoulli distributed state

variable that takes value 1 if the volatility is in the high regime and zero otherwise. The newly proposed MSSV-DPM
model contains the SV-DPM model as a special case when there is only one regime, ie, p = 0. It also nests the benchmark
SV and MSSV models with Normal innovations when L⋆

t = 1, ∀t = 1, … ,T.

3 ESTIMATION AND SIMULATION STUDY

In this section, we present the algorithm to perform PL estimation for the novel MSSV-DPM model. By using simulated
data, we show that the estimation algorithm is able to precisely estimate the parameters and the density of the squared
log returns and filter the latent log volatilities and volatility regimes.

3.1 PL for the MSSV-DPM model
In this section, we modify and augment the PL algorithm presented in the work of Virbickaitė et al45 to include the Markov
switching specification. Particle learning, as mentioned before, is one of several particle filters that allow to perform
sequential state filtering and parameter learning. Moreover, PL, which was firstly introduced by Carvalho et al,43 allows
for sequential filtering, smoothing, and parameter learning by including state-sufficient statistics in a set of particles. For
a more detailed explanation of PL with illustrations, refer to the works of Carvalho et al43 and Lopes et al58 among others.
For comparison between PL and MCMC for the SV-DPM model, refer to the work of Virbickaitė et al,45 and for com-
parison between APF+PL and MCMC for the SV model with variance-gamma jumps in the returns, refer to the work of
Warty et al.44

The priors for model parameters and the initial states are chosen to be conditionally conjugate: h0 ∼  (c0,C0),
𝜎2 ∼ (a0∕2, a0𝜎

2
0∕2), 𝜇|𝜎2 ∼  (m0,V0𝜎

2), 𝜏2 ∼ (b0∕2, b0𝜏
2
0∕2), 𝛽|𝜏2 ∼  (−1,1)(m𝛽 ,V𝛽𝜏

2), 𝛾0 ∼  (m𝛾0 ,V𝛾0),
𝛾1 ∼  (0,+∞)(m𝛾1 ,V𝛾1), p ∼ (𝛼p, 𝛽p), and q ∼ (𝛼q, 𝛽q). Here,  (a,b) represents a Normal distribution, truncated at a
and b,  is Beta distribution, and c0, C0, a0, a0𝜎

2
0 , m0, V0, b0, b0𝜏

2
0 , m𝛽 , V𝛽 , m𝛾0 , V𝛾0 , m𝛾1 , V𝛾1 , 𝛼p, 𝛽p, 𝛼q, and 𝛽q are the fixed

hyperparameters.
Call St a set of sufficient statistics, which contains all updated hyperparameters, necessary for the parameter simulation,

as well as the three kinds of filtered state variables: the latent log volatilities ht; the indicator variable kt, which tells us to
which mixture component the data point belongs to; and 𝜆t, the volatility regime indicator. The object we call particle at
time t contains St. All necessary parameters can be easily simulated given the set of sufficient statistics. At each time t, we
have a collection of N particles that provides approximations to the densities of interest. When this set of N particles passes
from one time to another, t to t + 1, some of the particles disappear (the ones that are not representative with respect to
the new data point), and some are repeated more than once to take their place (see the “Resampling” step later). Then,
this resampled set of particles is modified to include the information from the new data point (see the “Sampling” and
“Propagating” steps later).

In order to initiate the algorithm, initial parameter values are simulated from their corresponding priors. The initial
set of sufficient statistics S0 consists of {h(i)

0 }N
i=1, which has been simulated from its prior; {k(i)

t }N
i=1, which at t = 0 are all

set equal to 1 because, when the first observation arrives, it will belong to the first and only component, initial volatility
regime {𝜆0}N

i=1 = 0 and initial hyperparameters {a(i)
0 }N

i=1, {a0𝜎
2(i)
0 }N

i=1, … , which at time t = 0 are all the same across all
particles. Then, for t = 1… ,T and for each particle (i), the algorithm iterates through the following steps. For notation
simplicity, we do not include the indicator (i) that refers to a single particle, where (i) = 1, … ,N.

1. Resampling.
Resample the (i) = 1, … ,N particles with weights proportional to the predictive density of the log squared returns
rt = log 𝑦2

t :

w(i) ∝ 1
c + t − 1

L⋆
t−1∑

𝑗=0
n𝑗𝑓N

(
rt; 𝛾0 + 𝛾1𝜆t−1 + 𝛽ht−1 + 𝜇𝑗, 𝜏

2 + 𝜎2
𝑗

)
.

Here, 𝛩 = (𝛾0, 𝛾1, 𝛽, 𝜏
2, p, q, 𝜇1, … , 𝜇L⋆

t−1
, 𝜎2

1 , … , 𝜎2
L⋆

t−1
) have been simulated at the end of the previous period. The

resampled particles are denoted by a tilde above the particle, as in 𝛩̃.
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2. Sampling.

(a) Sample new states of the log volatilities 𝜆t:

𝜆t|𝜆̃t−1, h̃t−1, 𝛩̃, rt ∼ 
(

z2

z1 + z2

)
,

where

z1 =
⎡⎢⎢⎣ 1

c + t − 1

L̃⋆
t−1∑

𝑗=1
ñ𝑗𝑓N

(
rt; 𝛾̃0 + 𝛽h̃t−1 + 𝜇̃𝑗 , 𝜏

2 + 𝜎̃2
𝑗

)
(9)

+ c
c + t − 1

𝑓N
(

rt; 𝛾̃0 + 𝛽h̃t−1 + 𝜇0, 𝜏
2 + 𝜎2

0
)⎤⎥⎥⎦ × Pr

(
𝜆t = 0|𝜆̃t−1, 𝛩̃

)
,

z2 =
⎡⎢⎢⎣ 1

c + t − 1

L̃⋆
t−1∑

𝑗=1
ñ𝑗𝑓N

(
rt; 𝛾̃0 + 𝛾̃1𝜆̃t−1 + 𝛽h̃t−1 + 𝜇̃𝑗 , 𝜏

2 + 𝜎̃2
𝑗

)
+ c

c + t − 1
𝑓N

(
rt; 𝛾̃0 + 𝛾̃1𝜆̃t−1 + 𝛽h̃t−1 + 𝜇0, 𝜏

2 + 𝜎2
0
)⎤⎥⎥⎦ × Pr

(
𝜆t = 1|𝜆̃t−1, 𝛩̃

)
.

Call 𝛼̃ = 𝛾0 + 𝛾1𝜆t.
(b) Sample new log volatilities ht:

ht|h̃t−1, 𝛩̃, L̃⋆
t−1, 𝜆t, rt ∼

L̃⋆
t−1∑

𝑗=0

ñ𝑗

c + t − 1
 (ht;mh𝑗 ,Vh𝑗),

where

mh𝑗 =
𝜏2(rt − 𝜇̃𝑗) + 𝜎̃2

𝑗
(𝛼̃ + 𝛽h̃t−1)

𝜏2 + 𝜎̃2
𝑗

and Vh𝑗 =
𝜎̃2
𝑗
𝜏2

𝜎̃2
𝑗
+ 𝜏2

.

For each particle, we sample ht from a mixture of L⋆
t−1 + 1 components with the corresponding weights from

the previous period.
(c) Sample new indicators kt from {1, … ,L⋆

t−1 + 1}, with weights proportional to

ñ𝑗𝑓N
(

rt; 𝛼̃ + 𝛽h̃t−1 + 𝜇̃𝑗 , 𝜏
2 + 𝜎̃2

𝑗

)
, 𝑗 = 1, … ,L⋆

t−1,

where ñL⋆
t−1+1 = c and 𝜎2

L⋆
t−1+1 = 𝜎2

0 . If kt ≤ L⋆
t−1, nkt = ñkt +1 and L⋆

t = L⋆
t−1, otherwise, L⋆

t = L⋆
t−1 +1 and nkt = 1.

Note that the method described here of how to sequentially learn the number of components L∗
t can be seen as

an online adaptation of the weighted Chinese restaurant process of Lo.59 The exact same weighting approach
was considered by Lau and So,30 for example, where the weights are proportional to the cluster sizes adjusted
by the predictive density of the observation equation, the only difference being that the authors use MCMC
methods for inference, which also allows to use the entire sample information. In the SMC setting, however,
it is impossible to incorporate information from the so-called “future” seating arrangements because of the
sequential nature of the algorithm, and the observations, once assigned to a certain cluster, cannot be reseated.

3. Propagating sufficient statistics and learning 𝛩.

(c.1) Sample 𝛾0 from  (𝛾0;m⋆
𝛾0
,V⋆

𝛾0
), where

m⋆
𝛾0
=

m̃𝛾0𝜏
2 + Ṽ𝛾0

(
ht − (𝛾̃1𝜆t + 𝛽h̃t−1)

)
𝜏2 + Ṽ𝛾0

and V⋆
𝛾0
=

𝜏2Ṽ𝛾0

𝜏2 + Ṽ𝛾0

.

(c.2) Sample 𝛾1 from  (0,+∞)(𝛾1;m⋆
𝛾1
,V⋆

𝛾1
), where

m⋆
𝛾1
=

m̃𝛾1𝜏
2 + Ṽ𝛾1𝜆t

(
ht − (𝛾0 + 𝛽h̃t−1)

)
Ṽ𝛾1𝜆t + 𝜏2

and V⋆
𝛾1
=

𝜏2Ṽ𝛾1

𝜏2 + 𝜆tṼ𝛾1

.
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Call 𝛼 = 𝛾0 + 𝛾1𝜆t.
(c.3) Sample 𝜏2 from (𝜏2; b⋆

0 ∕2, b⋆
0 𝜏

2⋆
0 ∕2), where

b⋆
0 = b̃0 + 1 and b⋆

0 𝜏
2⋆
0 = b̃0𝜏

2
0 +

(
m̃𝛽 h̃t−1 − (ht − 𝛼)

)2

1 + Ṽ𝛽 h̃2
t−1

.

(c.4) Sample 𝛽 from  (−1,1)(𝛽;m⋆
𝛽
,V⋆

𝛽
𝜏2), where

m⋆
𝛽
=

m̃𝛽 + Ṽ𝛽 h̃t−1(ht − 𝛼)
1 + Ṽ𝛽 h̃2

t−1

and V⋆
𝛽
=

Ṽ𝛽

1 + Ṽ𝛽 h̃2
t−1

.

(c.5) Sample p from (p; 𝛼⋆
p , 𝛽

⋆
p ), where

𝛼⋆
p = 𝛼p + 1 if 𝜆t = 0|𝜆t−1 = 0 and 𝛽⋆p = 𝛽p + 1 if 𝜆t = 1|𝜆t−1 = 0.

(c.6) Sample q from (q; 𝛼⋆
q , 𝛽

⋆
q ), where

𝛼⋆
q = 𝛼q + 1 if 𝜆t = 1|𝜆t−1 = 1 and 𝛽⋆q = 𝛽q + 1 if 𝜆t = 0|𝜆t−1 = 1.

(c.7) Sample 𝜎kt=𝑗 only for that component j, where the data point at time t is assigned to, ie, kt = j, from
(𝜎2

kt=𝑗
; a⋆

0 ∕2, a⋆
0 𝜎

2⋆∕2), where

a⋆
0 = ã0 + 1 and a⋆

0 𝜎
2⋆
0 = ã0𝜎̃

2
0 + (rt − ht − m̃0)2

1 + Ṽ0
.

(c.8) Sample 𝜇kt=𝑗 only for that component j, where the data point at time t is assigned to, ie, kt = j, from
 (𝜇kt=𝑗 ;m⋆

0 ,V⋆
0 𝜎

2
kt=𝑗

), where

m⋆
0 = m̃0 + Ṽ0(rt − ht)

1 + Ṽ0
and V⋆

0 = Ṽ0

1 + Ṽ0
.

Parts of the derivations of the equations are available in the Appendix at the end of the manuscript, whereas the rest
are available in the work of Virbickaitė et al.45

3.2 Simulation study
In order to asses the estimation accuracy of the PL algorithm for the proposed model, we use a simulated data set of
T = 2000 observations with the following parameters: 𝛾0 = −0.06, 𝛾1 = 0.15, 𝛽 = 0.92, 𝜏2 = 0.05, p = 0.996, and
q = 0.996. The error term for the returns follows a standard Normal distribution vt ∼  (0, 1), thus the true DGP for the
linearlized model is 𝜖t ∼ log𝜒2

1 . The hyperparameters are c0 = 0, C0 = 0.1, m𝛽 = 0.95, V𝛽 = 0.1, b0 = 4, b0𝜏
2
0 = 0.2,

a0 = 5, a0𝜎
2
0 = 15, m0 = −1.27 (this specific value is chosen because the mean of the log 𝜒2

1 distribution is equal to
−1.27), V0 = 0.1, m𝛾0 = 0, V𝛾0 = 1, m𝛾1 = 0, V𝛾1 = 0.1, 𝛼p = 3, 𝛽p = 0.1, 𝛼q = 3, and 𝛽q = 0.1. The concentration
parameter c is set to be equal to 1, as in the work of Carvalho et al.60 Using the simulated data, we fit the MSSV-DPM
model using PL, number of particles N = 300k. All codes were written in R.†

Figure 1 top graph draws the simulated log returns yt. The middle graph represents the true realization of the log volatil-
ity (in black) and the mean estimated filtered log volatility (in gray). The 95% credible intervals (CIs) for the estimated
filtered log volatility almost always capture the true realization of the log volatility (not reported). The bottom graph of
the same figure draws the mean probability of being in a state one (st = 1), compared to the true state. As seen from
the figure, PL takes some time to learn because, at first, it is not able to distinguish the regimes well. However, around

†Large data sets with a large number of particles were estimated on a multiprocessor server, so the running times are not reported. However, for the
reference, we did a test run of four parallel MC chains with 100 000 particles each for a simulated data set of 2000 observations on a personal computer.
The specifications are as follows: 8-core 3.00 GHz AMD Ryzen processor with 16 GB of RAM. Each run took between 2 hours 45 minutes and 2 hours
47 minutes.
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FIGURE 1 Simulated data: daily log returns (top), true and estimated log volatilities (middle), true and estimated volatility regimes (bottom)

observation 1000, the algorithm is able to correctly identify the regimes with the overall regime misclassification rate equal
to 13%. Figure 2 draws the sequential estimation of the model parameters and their 95% CIs. The parameter estimates
seem reasonable and very close to their true values. It takes some time to learn the true value of parameter q because there
is no information available about it before the regime switch, which happens around time t = 300. The estimation of the
parameter 𝜏2 is the least precise due to the fact that this parameter represents the volatility of the volatility and is noto-
riously difficult to estimate. Finally, Figure 3 draws the estimated nonparametric density of the log squared error term,
which is almost identical to the true DGP, which is log𝜒2

1 distributed. We have repeated the same exercise four times to get
some intuition about the size of Monte Carlo error. For the estimation results across four independent runs, see Table 1.
We can see that the 95% CIs at time T are rather similar across all four runs, maybe except parameter 𝛾1 because it can be
estimated only when volatility is in high regime. The differences arise because of the Monte Carlo error. Increasing the
number of particles would result into almost identical estimation paths.

Overall, the obtained estimation results seem quite reasonable and PL is able to correctly identify the hidden volatility
regimes, filter log volatilities, estimate the density of the errors, and the parameters in an efficient sequential manner.
The model diagnostics can be done by plotting the nonparametrically estimated density vs. the actually observed log
squared returns, as seen in Figure 3. Furthermore, one can also inspect the estimated Markov switching matrix to see if it
is diagonal or not to decide if Markov switching assumption is valid. Alternatively, one could also perform the residuals
analysis, among many other model diagnostic checks.

As for the choice of the size of the particle approximation of the densities of interest, there are no well-established
rules in deciding the number of particles. However, one should choose the number of particles such that the estimated
parameter paths do not exhibit particle degeneracy, ie, a well-known shortcoming of particle filters. Virbickaitė et al45

summarized the main weaknesses of particle filters, with the main disadvantage being an ever-decreasing set of atoms in
the particle approximation of the density of interest. As noted by Chopin et al,61 increasing the number of observations
will lead to degenerating paths, unless the number of particles is being increased simultaneously. Therefore, the use of
PL or any particle-based filter in general is advantageous only if one is interested in fast one-step-ahead predictions.
However, once the number of observations has increased, one should consider restarting the filter at a later time t with a
smaller number of observations, or anticipate the large sample size and employ more particles (which would slow down
the estimation because the sizes of matrices that need to be carried from one time to another increase dramatically).
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FIGURE 2 Simulated data: sequential estimation of the model parameters, their 95% credible intervals and their true values
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FIGURE 3 Simulated data: MSSV-DPM estimated nonparametric density of the log squared error term compared to the true DGP of
log𝜒2

1 . DPM, Dirichlet process mixture; MSSV, Markov switching stochastic volatility; PL, particle learning

TABLE 1 95% credible intervals at time T for the estimated parameters of the MSSV-DPM model using
the simulated data across four different runs

Parameter 𝜸0 𝜸1 p q 𝜷 𝝉2

True Value −0.06 0.15 0.996 0.996 0.92 0.05

Run 1 −0.090, −0.061 0.107, 0.178 0.987, 0.999 0.985, 0.999 0.907, 0.944 0.026, 0.044
Run 2 −0.134, −0.015 0.107, 0.273 0.980, 0.998 0.978, 0.998 0.852, 0.944 0.023, 0.062
Run 3 −0.119, −0.012 0.125, 0.247 0.983, 0.999 0.983, 0.999 0.864, 0.932 0.012, 0.060
Run 4 −0.107, −0.065 0.113, 0.180 0.984, 0.999 0.983, 0.999 0.900, 0.936 0.026, 0.042

Abbreviations: DPM, Dirichlet process mixture; MSSV, Markov switching stochastic volatility.
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TABLE 2 Descriptive statistics for
S&P500, Ford, and natural gas data

S&P500 Ford Gas

Mean 0.0223 0.0182 0.0104
Median 0.0690 −0.0778 0.0668
St.dev. 1.2752 2.8026 4.4554
Skewness −0.2237 −0.0220 0.7370
Kurtosis 10.4789 15.8981 28.3024
T 4447 4329 4193

Another well-documented issue associated with mixture models is the “label switching” phenomenon, which occurs
when mixture parameters are unidentified. There are multiple (infinite) possible permutations of the mixture parame-
ters, leading to the same density (see the work of Frühwirth-Schnatter62). However, label switching in MCMC context is
different than in the SMC setting. In MCMC, the same observation at time t can be assigned to a different cluster label
than in the previous sweep of the sampler. On the other hand, in SMC (and PL), once the observation at time t is assigned
to a certain cluster, it is never reassigned because of the sequential nature of the sampler. However, there is no guaran-
tee that an observation at time t is assigned to the same cluster j across all particles. In addition, if it is assigned to a
different cluster, the associated cluster parameters are estimated to be different over the particles at time t. Therefore, as
noted in the work of Jensen et al,19 DPM clusters cannot be used to determine different states of the economy, for example.
Nonetheless, the objective of using DPM is to model the unknown distribution of the log-squared error term, hence label
switching does not present a problem because any permutation still leads to the same density.

4 REAL DATA APPLICATION

In this section, we present a real data application using log returns of three financial assets: S&P500 index, Ford company,
and a commodity, ie, natural gas. The S&P500 and Ford prices are from January 2, 1997, till September 9, 2014, and Henry
Hub natural gas spot prices (dollars per million btu) are from January 5, 1997, till September 9, 2014. All data are obtained
from the Datastream database. The descriptive statistics are in Table 2 and the descriptive graphs are in Figure 4.

Next, using the de-meaned data, we fit two semiparametric models, SV-DPM, and the newly introduced MSSV-DPM.
The hyperparameters for the priors are the same as in the simulation study in Section 3.2. Note that the SV-DPM model
is a restricted version of the MSSV-DPM model, where the probability of staying in the same regime is set equal to one,
p = 1, therefore, neither q nor 𝛾1 nor 𝜆t are possible to estimate. Moreover, as mentioned before, both models nest a
benchmark SV model with Normal errors as a special case. The number of particles is set to N = 500k because the
number of observations is larger than in the simulation study (4000+).

To compare the performance of the models, we use the average log predictive score (LPS) and average log predictive
tail score (LPTS𝛼). LPTS𝛼 considers the predictive performance only in the upper 100𝛼% of the empirical distribution of
the squared log returns. LPTS𝛼 was also employed by Delatola and Griffin.21 As the authors pointed out, the LPTS𝛼 is not
a proper scoring rule, however, it can be very helpful in understanding how the model performs in the tails. The LPS is
defined as follows:

LPS = − 1
T

T∑
t=1

log p(rt|rt−1),

and LPTS𝛼 is defined as:

LPTS𝛼 = − 1
T∑

t=1
I{rt > z𝛼}

T∑
t=1

I{rt > z𝛼} log p(rt|rt−1),

where z𝛼 is the upper 100𝛼 percentile of the empirical distribution of rt. Note that smaller values of the LPS and LPTS𝛼

correspond to a better model.
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FIGURE 4 Daily log returns (in percentage) and histograms for the S&P500 (top), Ford (middle), and natural gas (bottom) data

The log predictive densities are straightforward to obtain with the PL algorithm because they are a by-product of the
estimation procedure. For each t = 1, … ,T, the log predictive densities are calculated as follows:

log p(rt|rt−1) = 1
N

N∑
i=1

log p
(

rt|(𝛩, ht, kt, 𝜆t)(i)
)
. (10)

Differently than in MCMC setting, there is no need to fix a certain 𝛩̂ for the calculation of the LPS and LPTS𝛼 , and we can
account for the parameter and state uncertainty by using the approximation in (10). Accounting for parameter and state
uncertainty in MCMC setting at each time t without fixing certain 𝛩̂ would be prohibitively costly. The LPS and LPTS𝛼

report the average predictive performance for the entire distribution and the tails of the distribution, respectively. Com-
paring these scores is not straightforward because there is no established decision rule to decide whether the difference
in the scores between the two models is statistically significant.

Therefore, we also report the cumulative LPS, which can be seen as a log predictive Bayes factor (BF). Bayes factor allows
for consistent model comparison even for nonnested models, it contains rewards for model fit, accounts for coherency
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FIGURE 5 Estimated densities for the log squared error term for the SV-DPM and MSSV-DPM models, as compared to the approximation
of 7 Normals. DPM, Dirichlet process mixture; MSSV, Markov switching stochastic volatility; SV, stochastic volatility
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between the prior and the information arising from the data, as well as rewards parsimony (see the work of Koop63). The
BF between model 1 and model 2 is defined as BF12 = p(D|1)∕p(D|2) (see the work of Kass and Raftery64). Here,
p(D|) is the marginal likelihood for data D given a certain model . For a predictive BF, this marginal likelihood is
nothing else but the log predictive density in (10). Then, the difference between such cumulative log predictive densities
is a log predictive BF (LPBF). Kass and Raftery64 also provided a scale for the strength of preference of one model against
another, and if the 2 × LPBF > 10, the evidence in favor of one model against another is very strong.

Next, we present the estimation results for the S&P500 index. Figure 5 draws the estimated densities for the error term
for the SV-DPM and the MSSV-DPM models as compared to the frequently used mixture of 7 Normals of Kim et al,6 as
an approximation for log𝜒2

1 . If the distribution term of the returns was Normal, then the estimated distribution would
be very similar to the mixture of 7 Normals. In our estimation results, the SV-DPM and MSSV-DPM models estimate the
distribution term that is different from the 7-mixture approximation, therefore, we can conclude that the distribution term
of the returns in the nonlinearlized model is anything but Normal. As a result, the assumption of Normality is restrictive
and, for this data set, would be inappropriate. As seen in Figure 6, the filtered log volatilities and volatilities for both models
are very similar (second and third graphs). The differences arise during the financial crisis period, where the MSSV-DPM
model estimates higher volatility. This is one of the main advantages of the Markov switching specification because it
allows for high volatility via the shift in the regime and not by artificial inflation of the volatility persistence parameter 𝛽.
The filtered volatility regimes, ie, the mean probability of being in a state one (st = 1) for the MSSV-DPM model, are in
the bottom part of Figure 6. The volatility of the S&P500 index is in the high regime during the years 1999-2001 (could be
attributed to the dot-com bubble) and 2008-2010 (financial crisis). Table 3 presents the estimated parameter means and
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TABLE 3 Parameter estimation for SV-DPM and
MSSV-DPM models for S&P500 data at time T

SV-DPM MSSV-DPM
Mean 95% CI Mean 95% CI

𝛼 0.0019 (−0.002, 0.0061) - -
𝛽 0.9887 (0.984, 0.9932) 0.9712 (0.9592, 0.9822)
𝜏2 0.016 (0.0144, 0.0173) 0.0319 (0.0293, 0.0351)
𝛾0 - - 0.0074 (6e-04, 0.0136)
𝛾1 - - 0.0737 (6e-04, 0.5593)
p - - 0.9998 (0.9987, 1)
q - - 0.9971 (0.8617, 1)

Abbreviations: CI, credible interval; DPM, Dirichlet process mixture;
MSSV, Markov switching stochastic volatility; SV, stochastic volatility.

TABLE 4 LPS and LPTS for SV-DPM and MSSV-DPM for
S&P500 data (T = 4447)

SV-DPM MSSV-DPM Difference 2×LPBF

LPS 2.1956 2.1991 −0.0036 −32.0184
LPTS0.10 2.5953 2.5527 0.0426 37.8884
LPTS0.05 2.8400 2.7826 0.0574 25.5258
LPTS0.01 3.3949 3.2398 0.1550 13.7857

Abbreviations: DPM, Dirichlet process mixture; LPBF, log predictive Bayes
factor; LPS, log predictive score; LPTS, log predictive tail score; MSSV,
Markov switching stochastic volatility; SV, stochastic volatility.

TABLE 5 Parameter estimation for SV-DPM and
MSSV-DPM models for Ford data at time T

SV-DPM MSSV-DPM
Mean 95% CI Mean 95% CI

𝛼 0.0707 (0.0641, 0.0774) - -
𝛽 0.9514 (0.9461, 0.9563) 0.908 (0.9041, 0.9119)
𝜏2 0.0432 (0.0339, 0.0487) 0.0395 (0.0374, 0.0417)
𝛾0 - - 0.1287 (0.1223, 0.1351)
𝛾1 - - 0.139 (0.113, 0.167)
p - - 0.9994 (0.9981, 0.9999)
q - - 0.9949 (0.9847, 0.9992)

Abbreviations: CI, credible interval; DPM, Dirichlet process mixture;
MSSV, Markov switching stochastic volatility; SV, stochastic volatility.

95% CIs. The volatility persistence parameter is significantly larger for the SV-DPM model, ie, the estimated 95% CIs do
not overlap. This result is in line with the findings present in other papers (see related works32-35 among others).

Table 4 presents the LPS, LPTS𝛼 , and LPBF for the S&P500 data. As mentioned before, the LPS measures the average
predictive model performance for the entire distribution of the log squared returns and LPTS𝛼 only for the tails. Even
though the averages are virtually indistinguishable, the cumulative differences, ie, LPBFs, are significantly different. In
particular, for the S&P500 data, the SV-DPM model performs better if we consider the LPS (ie, the whole predictive
density), but the results change if we consider only the tails of the predictive distribution, where the newly introduced
MSSV-DPM model provides significantly better performance.

Similar results can be seen in the estimation of the other two data sets (see Tables 5, 6, 7, and 8 and Figures 7 and 8). For
Ford data, the estimated mean of the persistence parameter drops from 0.9514 to 0.908 and the 95% CIs do not overlap. For
the natural gas data, the SV-DPM model estimates the persistence parameter to be 0.8889 as compared to the MSSV-DPM
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TABLE 6 LPS and LPTS for SV-DPM and MSSV-DPM for Ford
data (T = 4329)

SV-DPM MSSV-DPM Difference 2× LPBF

LPS 2.0783 2.0756 0.0027 23.3766
LPTS0.10 2.8134 2.7260 0.0873 75.5843
LPTS0.05 3.1713 3.0334 0.1379 59.6969
LPTS0.01 4.2408 3.9699 0.2709 23.4545

Abbreviations: DPM, Dirichlet process mixture; LPBF, log predictive Bayes
factor; LPS, log predictive score; LPTS, log predictive tail score; MSSV,
Markov switching stochastic volatility; SV, stochastic volatility.

TABLE 7 Parameter estimation for SV-DPM and
MSSV-DPM models for gas data at time T

SV-DPM MSSV-DPM
Mean 95% CI Mean 95% CI

𝛼 0.2262 (0.2125, 0.2408) - -
𝛽 0.8889 (0.8812, 0.8961) 0.8137 (0.807, 0.8206)
𝜏2 0.1219 (0.1129, 0.1458) 0.1338 (0.1245, 0.1492)
𝛾0 - - 0.4161 (0.397, 0.4368)
𝛾1 - - 0.2758 (0.2255, 0.3205)
p - - 0.9951 (0.9907, 0.9976)
q - - 0.9802 (0.9655, 0.9904)

Abbreviations: CI, credible interval; DPM, Dirichlet process mixture;
MSSV, Markov switching stochastic volatility; SV, stochastic votality.

TABLE 8 LPS and LPTS for SV-DPM and MSSV-DPM for Gas
data (T = 4193)

SV-DPM MSSV-DPM difference 2×LPBF

LPS 2.1592 2.1529 0.0063 52.8318
LPTS0.10 2.8845 2.7875 0.0970 81.3442
LPTS0.05 3.2812 3.1095 0.1717 71.9938
LPTS0.01 4.5151 4.2300 0.2851 23.9085

Abbreviations: DPM, Dirichlet process mixture; LPBF, log predictive Bayes
factor; LPS, log predictive score; LPTS, log predictive tail score; MSSV,
Markov switching stochastic volatility; SV, stochastic volatility.

model estimate of 0.8137, and the 95% CIs do not overlap either. The average LPS and LPTS𝛼 for both models are very
similar, however, the LPBFs favor the MSSV-DPM model in the entire distribution and in the tails for both data sets
(see Tables 6 and 8). Figures 7 and 8 draw the estimated volatilities and volatility states for Ford and natural gas data.
The Ford returns exhibit three periods of volatility increases. The increase in the years 1998-1999 might be due to a
series of lawsuits against the company, which later were dismissed. The volatility increase in 2002-2003 might be due
to the early 2000s economic recession in the US; meanwhile, the volatility increase in the 2008-2009 is clearly due to
the global financial crisis. Natural gas data exhibits a very clear periodical pattern of shifts in the volatility regimes due
to seasonal-like behavior of the returns. The increase in volatility coincides approximately with the coldest months of
the year in the northern hemisphere, which is marked by increase demand in natural gas and possible increase in price
uncertainty. Therefore, for gas data, the volatility states could be interpreted as seasonality-related states, which explains
why the states are much less persistent compared to the other assets. Interestingly, during the global financial crisis, the
natural gas volatility does not exhibit a long-lasting shift in the regime.

It is important to mention that Figures 6 to 8 present only filtered but not smoothed volatilities and volatility state
estimates. In general, the purpose of the analysis plays essential role. If one is interested in understanding the historical
behavior of the series and the effects of, say, economic factors on the changes in volatility, it is important to consider the
information from the entire sequence, as is done by MCMC. In the SMC setting, this can be achieved by performing the
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−3
0

−1
0

10

Daily log−returns (in %)

1997 1998 1999 2000 2001 2003 2004 2005 2006 2008 2009 2010 2011 2012 2014

0
1

2
3

4

Log−volatility (SV in black & MSSV in grey)

 1997  1998  1999  2000  2001  2003  2004  2005  2006  2008  2009  2010  2011  2012  2014

0
20

40
60

Volatility (SV in black & MSSV in grey)

 1997  1998  1999  2000  2001  2003  2004  2005  2006  2008  2009  2010  2011  2012  2014

0.
0

0.
4

0.
8

MSSV volatility states

 1997  1998  1999  2000  2001  2003  2004  2005  2006  2008  2009  2010  2011  2012  2014

0
1

FIGURE 7 Filtered volatilities and volatility states (the mean probability of being in a state one st = 1 ) for Ford data for SV-DPM and
MSSV-DPM models. DPM, Dirichlet process mixture; MSSV, Markov switching stochastic volatility; SV, stochastic volatility

backwards smoothing procedure, where PL provides a procedure to perform direct backwards smoothing (see the work
of Carvalho et al43). If one is interested in the prediction of the volatility in the next period t + 1, backwards smoothing
does not apply. As noted in the work of Lopes et al,58 in most models estimated, using PL smoothing can effectively be
performed after the estimation.

To conclude, in majority of the cases, the newly proposed MSSV-DPM model outperforms the SV-DPM model in terms
of one-step-ahead prediction for the entire distribution (except for the S&P500 data) and for the tails (for all three data sets).
Moreover, including the regime shifts in the mean of the volatility equation reduces the value of the estimated persistence
parameter. As noted in the work of Vo,32 ignoring the shifts in the regimes gives the impression that the volatility is highly
persistent, therefore, highly predictable, which is not the case. The half-life of a volatility shock, defined as “the time it
takes for a shock to decay half of its initial value” (see the work of Vo32) for the S&P500 data drops from 61 days to 24 days;
for Ford data, from 14 to 7 days; and for natural gas data, from 6 days to 3 days.

Improved model performance, especially in the tails, has potential implications for estimating the tail risk, such as
value-at-risk (VaR), expected shortfall, among others. There is extensive evidence in the literature that includes regime
switches in the volatility equation, coupled with possibly fat-tailed distribution for the returns, results into superior VaR
prediction. Li and Lin,65 for example, estimated a Markov switching ARCH model and showed that it outperforms both
ARCH and GARCH in in- and out-sample VaR predictions. Chen et al57 have considered a double Markov switching
GARCH model that is, in spirit, similar to the model proposed here and showed that their proposed model is supe-
rior to standard approaches in VaR estimation. Yu et al,66 for example, modeled the VaR measure indirectly by using
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FIGURE 8 Filtered volatilities and volatility states (the mean probability of being in a state one st = 1 ) for natural gas data for SV-DPM
and MSSV-DPM models. DPM, Dirichlet process mixture; MSSV, Markov switching stochastic volatility; SV, stochastic volatility

threshold (nonlinear) GARCH models and found that the performance of their proposed approach outperforms other
methods.

5 DISCUSSION

This paper augments the existing SV-DPM model with Markov switching jumps to capture different volatility regimes,
resulting into an MSSV-DPM model. We test the newly proposed model on simulated data and find that the PL estimation
procedure is able to identify different volatility regimes. We present a real data application using three financial time
series of the returns for one index (S&P500), one company (Ford), and one commodity (natural gas). We find that the
MSSV-DPM model performs significantly better than the SV-DPM model if we consider the entire predictive distribution
of the returns for Ford and natural gas data, but not for the S&P500 data. If we consider the tails of the distributions, the
MSSV-DPM model significantly outperforms the SV-DPM model for the three data sets for all percentiles (1, 5, and 10)
of the tail. Finally, the volatility persistence parameter estimates drop significantly after including the Markov switching
specification, a finding in line with the results in multiple previous studies. Overestimation of the volatility persistence
leads to incorrect understanding of the predictability of the volatility.

A possible extension to the proposed model could be including a regime switch not only in the intercept term but also
in the persistence parameter, and/or in the mean equation for the returns (which is now assumed to be zero), same as
in the work of Chen et al.57 This would allow for even more flexibility in the nonlinear volatility dependence process.
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Another future research line could deal with comparing the model proposed in the manuscript to a semiparametric regime
switching GARCH model (in other words, its GARCH counterpart), adding a contribution to a large class of literature
dealing with the on-going debate of SV vs. GARCH.
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APPENDIX

PL FOR MSSV-DPM

1. Resampling. Resample old particles (parameters and the set of sufficient statistics, including the three state vari-
ables, ht, kt, and 𝜆t) with weights proportional to the predictive density of the returns, which can be obtained as
follows, where p(rt|ht, 𝛩) and p(ht|ht− 1, 𝛩) are as in (6) and (7):

p(rt|ht−1, 𝛩) = ∫ p(rt|ht, 𝛩)p(ht|ht−1, 𝛩)dht

= 1
c + t − 1

L⋆
t−1∑

𝑗=0
n𝑗 ∫ 𝑓

(
rt; ht + 𝜇𝑗, 𝜎

2
𝑗

)
𝑓

(
ht; 𝛾0 + 𝛾1𝜆t + 𝛽ht−1, 𝜏

2) dht

= … ∫
exp

{
−(rt − (ht + 𝜇𝑗))2∕(2𝜎2

𝑗
)
}

√
2𝜋𝜎2

𝑗

exp
{
−(ht − (𝛾0 + 𝛾1𝜆t + 𝛽ht−1))2∕(2𝜏2)

}√
2𝜋𝜏2

dht

= 1
c + t − 1

L⋆
t−1∑

𝑗=0
n𝑗𝑓N

(
rt; 𝛾0 + 𝛾1𝜆t + 𝛽ht−1 + 𝜇𝑗, 𝜏

2 + 𝜎2
𝑗

)
,

where n0 = c and (𝛾0, 𝛾1, 𝛽, 𝜏
2, p, q, 𝜇1, … , 𝜇L⋆

t−1
, 𝜎2

1 , … , 𝜎2
L⋆

t−1
) have been simulated at the end of the previous period.

2. Sampling. In this step, we propagate the latent states ht, the latent volatility states 𝜆t, and the indicator variables
kt, which indicate to which mixture component the observation belongs to. Note that the tilde above the parameter
indicates that the particle has been resampled in the first step.

(a) The volatility state variable 𝜆t is propagated according to the following:

p
(
𝜆t|𝜆̃t−1, h̃t−1, 𝛩̃, rt

)
∝ p

(
rt|𝜆̃t−1, h̃t−1, 𝛩̃

)
p
(
𝜆t|𝜆̃t−1

)
𝜆t|𝜆̃t−1, h̃t−1, 𝛩̃, rt ∼ 

(
z2

z1 + z2

)
,

where z1 and z2 as in (9) and 𝛼̃ = 𝛾̃0 + 𝛾̃1𝜆t.
(b) For sampling, ht make use of p(ht|h̃t−1, rt, 𝜆t, 𝛩̃) ∝ p(rt|ht, 𝛩̃)p(ht|h̃t−1, 𝜆t, 𝛩̃), where p(rt|ht, 𝛩) and

p(ht|ht− 1, 𝜆t, 𝛩) are as in (6) and (7)

p
(

ht|h̃t−1, 𝛩̃, ñ, L̃⋆
t−1, 𝜆t, rt

)
∝

L̃⋆
t−1∑

𝑗=0

ñ𝑗

c + t − 1
𝑓

(
rt; ht + 𝜇̃𝑗 , 𝜎̃

2
𝑗

)
𝑓

(
ht; 𝛼̃ + 𝛽h̃t−1, 𝜏

2)
ht|h̃t−1, 𝛩̃, ñ, L̃⋆

t−1, 𝜆t, rt ∼
L⋆

t−1∑
𝑗=0

ñ𝑗

c + t − 1
 (ht;mh𝑗 ,Vh𝑗),

where Vh𝑗 = A𝑗 𝜎̃
2
𝑗
, mh𝑗 = A𝑗(rt − 𝜇̃𝑗) + (1 − A𝑗)(𝛼̃ + 𝛽h̃t−1), A𝑗 = 𝜏2∕(𝜏2 + 𝜎̃2

𝑗
), and 𝛼̃ = 𝛾̃0 + 𝛾1𝜆t.

(c) For sampling new indicators kt, make use of p(kt = 𝑗|rt, h̃t−1, 𝛩̃) ∝ p(rt|kt = 𝑗, h̃t−1, 𝛩̃)p(kt = 𝑗|h̃t−1, 𝛩̃), where

p
(

rt|kt = 𝑗, h̃t−1, 𝛩̃
)
= ∫ p
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rt|ht, 𝛩̃
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ht|h̃t−1, 𝛩̃
)
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kt = 𝑗|h̃t−1, 𝛩̃
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ñ𝑗

c + t − 1
,

therefore,

p
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kt = 𝑗|rt, h̃t−1, 𝛩̃
)
∝ ñ𝑗𝑓N

(
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2 + 𝜎̃2
𝑗

)
, 𝑗 = 1, … ,L⋆

t−1 + 1,

where ñL⋆
t−1+1 = c and 𝜎2

L⋆
t−1+1 = 𝜎2

0 .
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3. Propagating sufficient statistics and learning 𝛩.
(c.3) and (c.4) sampling 𝜏2 and 𝛽, ie,

p(𝛽, 𝜏2|ht) ∝ p(ht|𝛽, 𝜏2)p(𝛽, 𝜏2)
∝ 𝑓

(
ht; 𝛼̃ + 𝛽h̃t−1, 𝜏

2)𝑓 (−1,1)

(
𝛽; m̃𝛽 , Ṽ𝛽𝜏

2) 𝑓(𝜏2; b̃0∕2, b̃0𝜏
2
0∕2

)
𝜏2 ∼ 

(
𝜏2; b̃0 + 1

2
,

b̃0𝜏
2
0 +

(
m̃𝛽 h̃t−1 − (ht − 𝛼̃)2) ∕ (1 + Ṽ𝛽 h̃2

t−1
)

2

)

𝛽 ∼  (−1,1)

(
𝛽;

m̃𝛽 + Ṽ𝛽 h̃t−1(ht − 𝛼̃)
1 + Ṽ𝛽 h̃2

t−1

,
Ṽ𝛽𝜏

2

1 + Ṽ𝛽 h̃2
t−1

)
.

Sufficient statistics updates and sampling for the rest of the parameters are analogous to (c.3) and (c.4).
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