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Example i. Normal model and

normal prior

Let us now consider a simple measurement error model with
normal prior for the unobserved measurement.

X0 ~ N(9,0%)
0 ~ N(bo,73)

with o2, 6y and 7'8 known for now. It is easy to show that the
posterior of # given X = x is also normal.

More precisely, (0|X = x) ~ N(01,72) where

01 = why+ (1—w)x
2 = 2o
wo= 15°/(5%+07%)

w measures the relative information contained in the prior
distribution with respect to the total information (prior plus
likelihood).
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Example from Box & Tiao (1973)

Prior A: Physicist A (large experience): 6 ~ N(900, (20)?)
Prior B: Physicist B (not so experienced): 6 ~ N(800, (80)?).
Model: (X|0) ~ N(6, (40)?).
Observation: X = 850

(01X = 850, Ha) ~ N(890,(17.9)%)

(01X = 850, Hg) ~ N(840,(35.7)?)

Information (precision)
Physicist A: from 0.002500 to 0.003120 (an increase of 25%)
Physicist B: from 0.000156 to 0.000781 (an increase of 400%)
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Two additional examples

Observations x, parameters @ and history H.

Likelihood functions/models - p(x|@0, H)

Exampleii : x;|0, H ~ N(0z;; 0?) i=1,...,n
Example iii : x;|0,H ~ N(0;e%) t=1,...,T

Prior distributions - p(0|H)

Example i : 6|H ~ N(6o, 78)

Example iii : 6:H ~ N(a+ 86;_1,0%) t=1,..

Assume, for now, that (z1,...,2,, 02, 10,00, 7¢) and
(a, B,02,00) are known and belong to H.
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Turning the Bayesian crank

Posterior (Bayes' Theorem):

p(6,x|H)
p(0|x, H) (x| H)
p(x|6, H)p(6|H)
p(x|H)
o p(x|0, H)p(6|H)

Prior predictive distribution:

plxlH) = [ plxio. H)p(61H) d0 = Eglp(x(6. H)
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Posterior predictive distribution

Let y be a new set of observations conditionally independent of
x given 8. Then,

ply|x,H) = /@p(y,0|x,H)d0:/ep(y\B,X,H)p(0|x,H)d0

= | py16. Hp(olx. H)do = Egye [oly . )]

Note 1: In general, but not always (time series, for example) x
and y are independent given 6.

Note 2: It might be more useful to concentrate on prediction
rather than on estimation since the former is verifiable. In
other words, x and y can be observed; not 6.



Sequential Bayes

Experimental result: x; ~ p1(x1 | 0)

p(0 | x1) o< h(0; x1)p(6)

Experimental result: x2 ~ pa(x2 | 0)

P
F
di
P
F

1

v
tior

senil S p(O | x2,x1) o h(6;x2)p(6 | x1)
X /2(9;X2)/1(9;X1)p(9)

Experimental results: x; ~ pi(x; | ), for i =3,--- ,n

p(0 | xn, - ,x1) o< 1n(0;x,)p(6 | Xp_1,--- ,x1)

o [H 1i(6; x,-)] p(8)
i=1
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Example ii. Simple linear
regression

Model, prior and posterior:

Posterior and

: xil0,H ~ N(0z;0?) i=1,...,n
predictive
distributions 9’H ~ N(907 T02)

Posterior
predictive

distribution H‘X, H ~ N(91,T12)

Sequential Bayes

Example ii.
Simple linear Where

regression

ml=12+22z/0 and 61 =1 (Oo7y? + 2'x/0?)

Note 1: As nincreases, 71 — 02(z'z)"! and 6; — (2'z)"12'x.

Note 2: The same applies when 7'(;2 — 0, i.e. with ’little’ prior
ER— knowledge about 6.

Bayes factor
Bayesian Model

Averaging DAC



Posterior and
predictive
distributions

Posterior
predictive
distribution

Sequential Bayes

Example iii.
Stochastic
volatility
model

Posterior odds
Bayes factor

Bayesian Model
Averaging

Example iii. SV model

Model, prior and posterior:

xe|0p, H ~ N(0;e) t=1,...,T
0:/H ~ N(a+p6;_1,0%) t=1,....T

T
1
p(O|x, H) o He‘gf/zexp{—zxte_ef}

t=1

7 1
H exp {—M(Gt - — 591—1)2}
t=1

X

Unfortunately, closed form solutions are rare.
e How to compute E(fa3|x, H) or V(011|x, H)?
e How to obtain a 95% credible region for (035, 036|x, H)?
e How to sample from p(0|x, H)?
e How to compute p(x|H) or p(x741, ..., x74k|X, H)?

11 /99
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Example iv. Multiple linear
regression

The standard Bayesian approach to multiple linear regression is
(v1X,8,0%) ~ N(XB,0°1,)

where y = (y1,...,¥n), X = (x1,...,x,)" is the (n x q), design
matrix and g = p + 1.

The prior distribution of (3,c2) is NIG(bg, By, no, So), i.e.

Blo* ~ N(bo,o”Bo)
0’2 ~ IG(n0/2,n050/2)

for known hyperparameters by, By, ng and Sp.

175 /9599



Example iv. Conditionals and
marginals
It is easy to show that (3, 02) is NIG(by, By, n1,S1), i.e.
(Blo®,y, X) ~ N(b1,0°Bi)
(2ly,X) ~ 1G(n1/2,nS1/2)

where

Bt = Byl+X'X
Bi'by = Byltbo+ X'y

n = ng+n
mS1 = npSo+ (y — Xb1)'y + (bo — b1)'By ' by.
Example iv. It is also easy to derive the full conditional distributions, i.e.
il o (Bly, X) ~ to(b1, S1B1)

(0'2‘6,}/,)() ~ IG(”1/27 n1511/2)

where

nSi1 = noSo + (v — XB)'(y —XB).

13T /99



Example iv. Ordinary least squares

It is well known that

B o= (X'X)'XYy

Ay A
2 Se _(y=XBY(y—XB)

precive n—gq n—gq

distributions

Posterior

Breribution are the OLS estimates of 3 and o2, respectively.

Sequential Bayes

The conditional and unconditional sampling distributions of 3

are
(Blo®,y, X) ~ N(B,o*(X'X)™1)
Bly, X) ~ taq(B,Se)
regression
respectively, with
L (8%102) ~ IG ((n— q)/2,((n — q)0?/2) .

Bayesian Model
Averaging oac



Example iv. Sufficient statistics

Recall (yi|xt, 8,02) ~ N(xiB3,02) for t = 1,..., n, with prior
,3|0'2 ~ N(b0,0'2B()) and 0'2 ~ IG(n0/2,n050/2).

Then, for y* = (y1,...,y:) and Xt = (xq,...,x¢)’, it follows:

Posterior and
predictive

distributions (6|0‘2,yt7Xt) ~ N(bt, U2Bt)

Posterior

R, (02|yt, X1) ~ 1G(ne/2,neS:/2)

Sequential Bayes

where ny = n, 1+ 1, By = B4, + xex, By tby = B be 1 + yvix:
and n: Sy = ne—1Se-1 + (ye — bixe)ye + (be—1 — bt)/Bt_llbt—l-

The only ingredients needed are: x;x/, y:x; and y?.

Example iv.

Multiple linear i i i

regression These recursions will play an important role later on when
deriving sequential Monte Carlo methods for conditionally
Gaussian dynamic linear models, like many stochastic volatility

Posterior odds

Bayes factor models.

Bayesian Model

Averaging

15 /9599



Example iv. Predictive

The predictive density can be seen as the marginal likelihood,

i.e.

p(y|X) = /p(y!X,5,02)p(5|02)p(02)d6d02
Posterior and
predictive
F{T“ or, by Bayes' theorem, as the normalizing constant, i.e.
predictive
distribution
Sequential Bayes p(y‘X’ B’ O'Z)p(/3|o'2)p(o'2)

p(y|X) =

p(Blo2,y, X)p(a?]y, X)
which is valid for all (3, 02).

Closed form solution is available for the multiple normal linear
Example iv. .
Multiple linear regreSSIonZ

regression
(y|X) ~ tnO(Xbo, 50(/,, + XB()X/)).

Posterior odds
Bayes factor
Bayesian Model

Averaging DA
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Bayesian model criticism

Suppose that the competing models can be enumerated and
are represented by the set M = {My, M, ...}, and that the
true model is in M (Bernardo and Smith, 1994).

The posterior model probability of model M; is given by
Pr(Mjly) oc f(y[M;)Pr(M;)

where

f(yIM;) Z/f()/IHpMj)P(@jo)d@j

is the prior predictive density of model M; and Pr(M;) is the
prior model probability of model M;.

17 /99
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Posterior odds
The posterior odds of model M; relative to My is given by

Pr(Mjly) —_ Pr(M;) " f(yIM;)
Pr(Myly) Pr(My) f(y|Mk)
——— —— —_——

posterior odds  prior odds Bayes factor

The Bayes factor can be viewed as the weighted likelihood ratio

of Mj to M.

The main difficulty is the computation of the marginal
likelihood or normalizing constant f(y|M;).

Therefore, the posterior model probability for model j can be
obtained from
1 Pr(l\/lk)

R » _
Pr(M;ly) Mkze:lvl J Pr(M;)

19 /959
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Bayes factor

Jeffreys (1961) recommends the use of the following rule of
thumb to decide between models j and k:

log,, Bk B;

Evidence against k

00to05 1.0to3.2
05t0o1.0 3.2to10
1.0to 2.0 10 to 100
> 2 > 100

Not worth more than a bare mention
Substantial

Strong

Decisive

Kass and Raftery (1995) argue that “it can be useful to
consider twice the natural logarithm of the Bayes factor, which
is on the same scale as the familiar deviance and likelihood
ratio test statistics”. Their slight modification is:

2 Ioge Bjk Bj

Evidence against k

0.0 to 2.0 1.0t0 3.0
2.0t0 6.0 3.0 to 20
6.0 to 10.0 20 to 150
> 10 > 150

Not worth more than a bare mention
Substantial

Strong

Decisive
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Bayesian Model Averaging

See Hoeting, Madigan, Raftery and Volinsky (1999), Statistical

Science, 14, 382-401.
Let M denote the set that indexes all entertained models.

Assume that A is an outcome of interest, such as the future
value y¢1k, or an elasticity well defined across models, etc.
The posterior distribution for A is

p(Aly) = > p(Alm,y)Pr(mly)
meM
for data y and posterior model probability
p(y|m)Pr(m)

Primly) = p(y)

where Pr(m) is the prior probability model.

290 /99
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Posterior predictive criterion

Gelfand and Ghosh (1998) introduced a posterior predictive

criterion that, under squared error loss, favors the model M;

which minimizes

G _ pG G
Df = PS + G

where
PP = ZV(M,M

GjG = Z[Yt E(Jtly, M )]2

and (¥1,...,¥n) are predictions/replicates of y.
The first term, P}, is a penalty term for model complexity.

The second term, G;j, accounts for goodness of fit.

271 /99



Deviance Information Criterion

See Spiegelhalter, Best, Carlin and van der Linde (2002),
JRSS-B, 64, 583-616.

If 6* = E(0|y) and D(0) = —2log p(y|@) is the deviance, then
the DIC generalizes the AIC

Sequential Bayes

DIC = D+pp

= goodness of fit + model complexity

where D = Ey,(D(6)) and pp = D — D(6").
The pp is the effective number of parameters.

Small values of DIC suggests a better-fitting model.
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