Bayesian Ingredients

Hedibert Freitas Lopes
Professor of Statistics
hedibert.org

Insper

Example iii.
Stochastic volatility model

Example iv. Multiple linear regression

Bayesian
model

Outline

(1) Example i. Normal model and normal prior
(2) Turning the Bayesian crank

Posterior and predictive distributions
Posterior predictive distribution Sequential Bayes
(3) Example ii. Simple linear regression
(4) Example iii. Stochastic volatility model
(5) Example iv. Multiple linear regression
(6) Bayesian model criticism

Posterior odds
Bayes factor
Bayesian Model Averaging
Posterior predictive criterion
Deviance Information Criterion

Example i. Normal model and normal prior

Let us now consider a simple measurement error model with normal prior for the unobserved measurement.

$$
\begin{aligned}
X \mid \theta & \sim N\left(\theta, \sigma^{2}\right) \\
\theta & \sim N\left(\theta_{0}, \tau_{0}^{2}\right)
\end{aligned}
$$

with σ^{2}, θ_{0} and τ_{0}^{2} known for now. It is easy to show that the posterior of θ given $X=x$ is also normal.

More precisely, $(\theta \mid X=x) \sim N\left(\theta_{1}, \tau_{1}^{2}\right)$ where

$$
\begin{aligned}
\theta_{1} & =w \theta_{0}+(1-w) x \\
\tau_{1}^{-2} & =\tau_{0}^{-2}+\sigma^{-2} \\
w & =\tau_{0}^{-2} /\left(\tau_{0}^{-2}+\sigma^{-2}\right)
\end{aligned}
$$

w measures the relative information contained in the prior distribution with respect to the total information (prior plus likelihood).

Example from Box \& Tiao (1973)

Normal model and normal prior

Prior A: Physicist A (large experience): $\theta \sim N\left(900,(20)^{2}\right)$
Prior B: Physicist B (not so experienced): $\theta \sim N\left(800,(80)^{2}\right)$.
Model: $(X \mid \theta) \sim N\left(\theta,(40)^{2}\right)$.

Observation: $X=850$

$$
\begin{aligned}
\left(\theta \mid X=850, H_{A}\right) & \sim N\left(890,(17.9)^{2}\right) \\
\left(\theta \mid X=850, H_{B}\right) & \sim N\left(840,(35.7)^{2}\right)
\end{aligned}
$$

Information (precision)
Physicist A: from 0.002500 to 0.003120 (an increase of 25%)
Physicist B: from 0.000156 to 0.000781 (an increase of 400%)

Example i.
Normal model and normal prior

Turning the

Bayesian crank
Posterior and predictive distributions Posterior predictive distribution Sequential Bayes

Example ii.
Simple linear regression

Example iii. Stochastic volatility model

```
Example iv.
```

Multiple linear
regression
Bayesian
model
criticism

Posterior odds Bayes factor Bayesian Model Averaging

Two additional examples

Example i.

Normal model and normal prior

Observations \boldsymbol{x}, parameters $\boldsymbol{\theta}$ and history H.
Likelihood functions/models - $p(\boldsymbol{x} \mid \boldsymbol{\theta}, H)$

> | Example ii | $:$ | $x_{i} \mid \theta, H \sim N\left(\theta z_{i} ; \sigma^{2}\right)$ |
| ---: | :--- | :--- |
| Example iii | $:$ | $x_{t} \mid \theta, H \sim N\left(0 ; e^{\theta_{t}}\right)$ |,$\ldots, n, 1, \ldots, T$

Prior distributions - $p(\boldsymbol{\theta} \mid H)$
Example ii : $\theta \mid H \sim N\left(\theta_{0}, \tau_{0}^{2}\right)$
Example iii : $\quad \theta_{t} \mid H \sim N\left(\alpha+\beta \theta_{t-1}, \sigma^{2}\right) \quad t=1, \ldots, T$

Assume, for now, that $\left(z_{1}, \ldots, z_{n}, \sigma^{2}, \nu_{0}, \theta_{0}, \tau_{0}^{2}\right)$ and $\left(\alpha, \beta, \sigma^{2}, \theta_{0}\right)$ are known and belong to H.

Turning the Bayesian crank

Posterior (Bayes' Theorem):

$$
\begin{aligned}
p(\boldsymbol{\theta} \mid \boldsymbol{x}, H) & =\frac{p(\boldsymbol{\theta}, \boldsymbol{x} \mid H)}{p(\boldsymbol{x} \mid H)} \\
& =\frac{p(\boldsymbol{x} \mid \boldsymbol{\theta}, H) p(\boldsymbol{\theta} \mid H)}{p(\boldsymbol{x} \mid H)} \\
& \propto p(\boldsymbol{x} \mid \boldsymbol{\theta}, H) p(\boldsymbol{\theta} \mid H)
\end{aligned}
$$

Prior predictive distribution:

$$
p(\boldsymbol{x} \mid H)=\int_{\Theta} p(\boldsymbol{x} \mid \boldsymbol{\theta}, H) p(\boldsymbol{\theta} \mid H) d \boldsymbol{\theta}=E_{\boldsymbol{\theta}}[p(\boldsymbol{x} \mid \boldsymbol{\theta}, H)]
$$

Posterior predictive distribution

Let \boldsymbol{y} be a new set of observations conditionally independent of \boldsymbol{x} given $\boldsymbol{\theta}$. Then,

$$
\begin{aligned}
p(\boldsymbol{y} \mid \boldsymbol{x}, H) & =\int_{\Theta} p(\boldsymbol{y}, \boldsymbol{\theta} \mid \boldsymbol{x}, H) d \boldsymbol{\theta}=\int_{\Theta} p(\boldsymbol{y} \mid \boldsymbol{\theta}, \boldsymbol{x}, H) p(\boldsymbol{\theta} \mid \boldsymbol{x}, H) d \boldsymbol{\theta} \\
& =\int_{\Theta} p(\boldsymbol{y} \mid \boldsymbol{\theta}, H) p(\boldsymbol{\theta} \mid \boldsymbol{x}, H) d \boldsymbol{\theta}=E_{\boldsymbol{\theta} \mid \boldsymbol{x}}[p(\boldsymbol{y} \mid \boldsymbol{\theta}, H)]
\end{aligned}
$$

Note 1: In general, but not always (time series, for example) \boldsymbol{x} and \boldsymbol{y} are independent given $\boldsymbol{\theta}$.

Note 2: It might be more useful to concentrate on prediction rather than on estimation since the former is verifiable. In other words, \boldsymbol{x} and \boldsymbol{y} can be observed; not $\boldsymbol{\theta}$.

Sequential Bayes

Experimental result: $\boldsymbol{x}_{1} \sim p_{1}\left(\boldsymbol{x}_{1} \mid \boldsymbol{\theta}\right)$

$$
p\left(\boldsymbol{\theta} \mid \boldsymbol{x}_{1}\right) \propto I_{1}\left(\boldsymbol{\theta} ; x_{1}\right) p(\boldsymbol{\theta})
$$

Experimental result: $\boldsymbol{x}_{2} \sim p_{2}\left(\boldsymbol{x}_{2} \mid \boldsymbol{\theta}\right)$

$$
\begin{aligned}
p\left(\boldsymbol{\theta} \mid \boldsymbol{x}_{2}, \boldsymbol{x}_{1}\right) & \propto I_{2}\left(\boldsymbol{\theta} ; \boldsymbol{x}_{2}\right) p\left(\boldsymbol{\theta} \mid \boldsymbol{x}_{1}\right) \\
& \propto I_{2}\left(\boldsymbol{\theta} ; \boldsymbol{x}_{2}\right) I_{1}\left(\boldsymbol{\theta} ; \boldsymbol{x}_{1}\right) p(\boldsymbol{\theta})
\end{aligned}
$$

Experimental results: $\boldsymbol{x}_{i} \sim p_{i}\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)$, for $i=3, \cdots, n$

$$
\begin{aligned}
p\left(\boldsymbol{\theta} \mid \boldsymbol{x}_{n}, \cdots, \boldsymbol{x}_{1}\right) & \propto I_{n}\left(\boldsymbol{\theta} ; \boldsymbol{x}_{n}\right) p\left(\boldsymbol{\theta} \mid \boldsymbol{x}_{n-1}, \cdots, \boldsymbol{x}_{1}\right) \\
& \propto\left[\prod_{i=1}^{n} I_{i}\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)\right] p(\boldsymbol{\theta})
\end{aligned}
$$

Example ii. Simple linear regression

Model, prior and posterior:

$$
\begin{aligned}
x_{i} \mid \theta, H & \sim N\left(\theta z_{i} ; \sigma^{2}\right) \quad i=1, \ldots, n \\
\theta \mid H & \sim N\left(\theta_{0}, \tau_{0}^{2}\right) \\
\theta \mid \boldsymbol{x}, H & \sim N\left(\theta_{1}, \tau_{1}^{2}\right)
\end{aligned}
$$

where

$$
\tau_{1}^{-2}=\tau_{0}^{-2}+\boldsymbol{z}^{\prime} \boldsymbol{z} / \sigma^{2} \quad \text { and } \quad \theta_{1}=\tau_{1}^{2}\left(\theta_{0} \tau_{0}^{-2}+\boldsymbol{z}^{\prime} \boldsymbol{x} / \sigma^{2}\right)
$$

Note 1: As n increases, $\tau_{1} \rightarrow \sigma^{2}\left(\boldsymbol{z}^{\prime} \boldsymbol{z}\right)^{-1}$ and $\theta_{1} \rightarrow\left(\boldsymbol{z}^{\prime} \boldsymbol{z}\right)^{-1} \boldsymbol{z}^{\prime} \boldsymbol{x}$.
Note 2: The same applies when $\tau_{0}^{-2} \rightarrow 0$, i.e. with 'little' prior knowledge about θ.

Example iii. SV model

Model, prior and posterior:

$$
\begin{aligned}
x_{t} \mid \theta_{t}, H & \sim N\left(0 ; e^{\theta_{t}}\right) \quad t=1, \ldots, T \\
\theta_{t} \mid H & \sim N\left(\alpha+\beta \theta_{t-1}, \sigma^{2}\right) \quad t=1, \ldots, T \\
p(\boldsymbol{\theta} \mid \boldsymbol{x}, H) & \propto \prod_{t=1}^{T} e^{-\theta_{t} / 2} \exp \left\{-\frac{1}{2} x_{t} e^{-\theta_{t}}\right\} \\
& \times \prod_{t=1}^{T} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\theta_{t}-\alpha-\beta \theta_{t-1}\right)^{2}\right\}
\end{aligned}
$$

Unfortunately, closed form solutions are rare.

- How to compute $E\left(\theta_{43} \mid \boldsymbol{x}, H\right)$ or $V\left(\theta_{11} \mid \boldsymbol{x}, H\right)$?
- How to obtain a 95% credible region for $\left(\theta_{35}, \theta_{36} \mid \boldsymbol{x}, H\right)$?
- How to sample from $p(\theta \mid \boldsymbol{x}, H)$?
- How to compute $p(\boldsymbol{x} \mid H)$ or $p\left(x_{T+1}, \ldots, x_{T+k} \mid \boldsymbol{x}, H\right)$?

Example iv. Multiple linear regression

The standard Bayesian approach to multiple linear regression is

$$
\left(y \mid X, \beta, \sigma^{2}\right) \sim N\left(X \beta, \sigma^{2} I_{n}\right)
$$

where $y=\left(y_{1}, \ldots, y_{n}\right), X=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ is the $(n \times q)$, design matrix and $q=p+1$.

The prior distribution of $\left(\beta, \sigma^{2}\right)$ is $\operatorname{NIG}\left(b_{0}, B_{0}, n_{0}, S_{0}\right)$, i.e.

$$
\begin{aligned}
\beta \mid \sigma^{2} & \sim N\left(b_{0}, \sigma^{2} B_{0}\right) \\
\sigma^{2} & \sim I G\left(n_{0} / 2, n_{0} S_{0} / 2\right)
\end{aligned}
$$

for known hyperparameters b_{0}, B_{0}, n_{0} and S_{0}.

Example iv. Conditionals and marginals

It is easy to show that $\left(\beta, \sigma^{2}\right)$ is $\operatorname{NIG}\left(b_{1}, B_{1}, n_{1}, S_{1}\right)$, i.e.

$$
\begin{aligned}
\left(\beta \mid \sigma^{2}, y, X\right) & \sim N\left(b_{1}, \sigma^{2} B_{1}\right) \\
\left(\sigma^{2} \mid y, X\right) & \sim I G\left(n_{1} / 2, n_{1} S_{1} / 2\right)
\end{aligned}
$$

where

$$
\begin{aligned}
B_{1}^{-1} & =B_{0}^{-1}+X^{\prime} X \\
B_{1}^{-1} b_{1} & =B_{0}^{-1} b_{0}+X^{\prime} y \\
n_{1} & =n_{0}+n \\
n_{1} S_{1} & =n_{0} S_{0}+\left(y-X b_{1}\right)^{\prime} y+\left(b_{0}-b_{1}\right)^{\prime} B_{0}^{-1} b_{0}
\end{aligned}
$$

It is also easy to derive the full conditional distributions, i.e.

$$
\begin{aligned}
(\beta \mid y, X) & \sim t_{n_{1}}\left(b_{1}, S_{1} B_{1}\right) \\
\left(\sigma^{2} \mid \beta, y, X\right) & \sim I G\left(n_{1} / 2, n_{1} S_{11} / 2\right)
\end{aligned}
$$

where

$$
n_{1} S_{11}=n_{0} S_{0}+(y-X \beta)^{\prime}(y-X \beta)
$$

Example iv. Ordinary least squares

It is well known that

$$
\begin{aligned}
\hat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
\hat{\sigma}^{2} & =\frac{S_{e}}{n-q}=\frac{(y-X \hat{\beta})^{\prime}(y-X \hat{\beta})}{n-q}
\end{aligned}
$$

are the OLS estimates of β and σ^{2}, respectively.
The conditional and unconditional sampling distributions of $\hat{\beta}$ are

$$
\begin{aligned}
\left(\hat{\beta} \mid \sigma^{2}, y, X\right) & \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right) \\
(\hat{\beta} \mid y, X) & \sim t_{n-q}\left(\beta, S_{e}\right)
\end{aligned}
$$

respectively, with

$$
\left(\hat{\sigma}^{2} \mid \sigma^{2}\right) \sim I G\left((n-q) / 2,\left((n-q) \sigma^{2} / 2\right)\right.
$$

Example iv. Sufficient statistics

Recall $\left(y_{t} \mid x_{t}, \beta, \sigma^{2}\right) \sim N\left(x_{t}^{\prime} \beta, \sigma^{2}\right)$ for $t=1, \ldots, n$, with prior $\beta \mid \sigma^{2} \sim N\left(b_{0}, \sigma^{2} B_{0}\right)$ and $\sigma^{2} \sim I G\left(n_{0} / 2, n_{0} S_{0} / 2\right)$.

Then, for $y^{t}=\left(y_{1}, \ldots, y_{t}\right)$ and $X^{t}=\left(x_{1}, \ldots, x_{t}\right)^{\prime}$, it follows:

$$
\begin{aligned}
\left(\beta \mid \sigma^{2}, y^{t}, X^{t}\right) & \sim N\left(b_{t}, \sigma^{2} B_{t}\right) \\
\left(\sigma^{2} \mid y^{t}, X^{t}\right) & \sim I G\left(n_{t} / 2, n_{t} S_{t} / 2\right)
\end{aligned}
$$

where $n_{t}=n_{t-1}+1, B_{t}^{-1}=B_{t-1}^{-1}+x_{t} x_{t}^{\prime}, B_{t}^{-1} b_{t}=B_{t-1}^{-1} b_{t-1}+y_{t} x_{t}$ and $n_{t} S_{t}=n_{t-1} S_{t-1}+\left(y_{t}-b_{t}^{\prime} x_{t}\right) y_{t}+\left(b_{t-1}-b_{t}\right)^{\prime} B_{t-1}^{-1} b_{t-1}$.

The only ingredients needed are: $x_{t} x_{t}^{\prime}, y_{t} x_{t}$ and y_{t}^{2}.
These recursions will play an important role later on when deriving sequential Monte Carlo methods for conditionally Gaussian dynamic linear models, like many stochastic volatility models.

Example iv. Predictive

The predictive density can be seen as the marginal likelihood, i.e.

$$
p(y \mid X)=\int p\left(y \mid X, \beta, \sigma^{2}\right) p\left(\beta \mid \sigma^{2}\right) p\left(\sigma^{2}\right) d \beta d \sigma^{2}
$$

or, by Bayes' theorem, as the normalizing constant, i.e.

$$
p(y \mid X)=\frac{p\left(y \mid X, \beta, \sigma^{2}\right) p\left(\beta \mid \sigma^{2}\right) p\left(\sigma^{2}\right)}{p\left(\beta \mid \sigma^{2}, y, X\right) p\left(\sigma^{2} \mid y, X\right)}
$$

which is valid for all $\left(\beta, \sigma^{2}\right)$.
Closed form solution is available for the multiple normal linear regression:

$$
(y \mid X) \sim t_{n_{0}}\left(X b_{0}, S_{0}\left(I_{n}+X B_{0} X^{\prime}\right)\right)
$$

Bayesian model criticism

Suppose that the competing models can be enumerated and are represented by the set $M=\left\{M_{1}, M_{2}, \ldots\right\}$, and that the true model is in M (Bernardo and Smith, 1994).

The posterior model probability of model M_{j} is given by

$$
\operatorname{Pr}\left(M_{j} \mid y\right) \propto f\left(y \mid M_{j}\right) \operatorname{Pr}\left(M_{j}\right)
$$

where

$$
f\left(y \mid M_{j}\right)=\int f\left(y \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid M_{j}\right) d \theta_{j}
$$

is the prior predictive density of model M_{j} and $\operatorname{Pr}\left(M_{j}\right)$ is the prior model probability of model M_{j}.

Posterior odds

The posterior odds of model M_{j} relative to M_{k} is given by

$$
\underbrace{\frac{\operatorname{Pr}\left(M_{j} \mid y\right)}{\operatorname{Pr}\left(M_{k} \mid y\right)}}_{\text {posterior odds }}=\underbrace{\frac{\operatorname{Pr}\left(M_{j}\right)}{\operatorname{Pr}\left(M_{k}\right)}}_{\text {prior odds }} \times \underbrace{\frac{f\left(y \mid M_{j}\right)}{f\left(y \mid M_{k}\right)}}_{\text {Bayes factor }} .
$$

The Bayes factor can be viewed as the weighted likelihood ratio of M_{j} to M_{k}.

The main difficulty is the computation of the marginal likelihood or normalizing constant $f\left(y \mid M_{j}\right)$.

Therefore, the posterior model probability for model j can be obtained from

$$
\frac{1}{\operatorname{Pr}\left(M_{j} \mid y\right)}=\sum_{M_{k} \in M} B_{k j} \frac{\operatorname{Pr}\left(M_{k}\right)}{\operatorname{Pr}\left(M_{j}\right)}
$$

Bayes factor

Jeffreys (1961) recommends the use of the following rule of thumb to decide between models j and k :

$\log _{10} B_{j k}$	$B_{j k}$	Evidence against k
0.0 to 0.5	1.0 to 3.2	Not worth more than a bare mention
0.5 to 1.0	3.2 to 10	Substantial
1.0 to 2.0	10 to 100	Strong
>2	>100	Decisive

Kass and Raftery (1995) argue that "it can be useful to consider twice the natural logarithm of the Bayes factor, which is on the same scale as the familiar deviance and likelihood ratio test statistics". Their slight modification is:

$2 \log _{e} B_{j k}$	$B_{j k}$	Evidence against k
0.0 to 2.0	1.0 to 3.0	Not worth more than a bare mention
2.0 to 6.0	3.0 to 20	Substantial
6.0 to 10.0	20 to 150	Strong
>10	>150	Decisive

Bayesian Model Averaging

See Hoeting, Madigan, Raftery and Volinsky (1999), Statistical Science, 14, 382-401.

Let \mathcal{M} denote the set that indexes all entertained models.

Assume that Δ is an outcome of interest, such as the future value y_{t+k}, or an elasticity well defined across models, etc. The posterior distribution for Δ is

$$
p(\Delta \mid y)=\sum_{m \in \mathcal{M}} p(\Delta \mid m, y) \operatorname{Pr}(m \mid y)
$$

for data y and posterior model probability

$$
\operatorname{Pr}(m \mid y)=\frac{p(y \mid m) \operatorname{Pr}(m)}{p(y)}
$$

where $\operatorname{Pr}(m)$ is the prior probability model.

Posterior predictive criterion

Gelfand and Ghosh (1998) introduced a posterior predictive criterion that, under squared error loss, favors the model M_{j} which minimizes

$$
D_{j}^{G}=P_{j}^{G}+G_{j}^{G}
$$

where

$$
\begin{aligned}
P_{j}^{G} & =\sum_{t=1}^{n} V\left(\tilde{y}_{t} \mid y, M_{j}\right) \\
G_{j}^{G} & =\sum_{t=1}^{n}\left[y_{t}-E\left(\tilde{y}_{t} \mid y, M_{j}\right)\right]^{2}
\end{aligned}
$$

and $\left(\tilde{y}_{1}, \ldots, \tilde{y}_{n}\right)$ are predictions/replicates of y.
The first term, P_{j}, is a penalty term for model complexity.
The second term, G_{j}, accounts for goodness of fit.

Deviance Information Criterion

See Spiegelhalter, Best, Carlin and van der Linde (2002), JRSS-B, 64, 583-616.

If $\theta^{*}=E(\theta \mid y)$ and $D(\theta)=-2 \log p(y \mid \theta)$ is the deviance, then the DIC generalizes the AIC

$$
\begin{aligned}
D I C & =\bar{D}+p_{D} \\
& =\text { goodness of fit }+ \text { model complexity }
\end{aligned}
$$

where $\bar{D}=E_{\theta \mid y}(D(\theta))$ and $p_{D}=\bar{D}-D\left(\theta^{*}\right)$.
The p_{D} is the effective number of parameters.
Small values of DIC suggests a better-fitting model.

