Example *i*. Normal model and normal prior

Turning the Bayesian crank Posterior and

distributions
Posterior
predictive
distribution
Sequential Bayes

Example ii. Simple linea regression

Example iii. Stochastic volatility model

Example iv.
Multiple linear

Bayesian model

Posterior odds Bayes factor Bayesian Model Averaging

Bayesian Ingredients

Hedibert Freitas Lopes
Professor of Statistics
hedibert.org

Insper

Outline

- Example *i*. Normal model and normal prior
- Posterior and predictive distributions
 Posterior predictive distribution
- Example ii. Simple linear regression
- Example ii Stochastic volatility model
- Example iv. Multiple linearegression
- model criticism
- Posterior odds Bayes factor Bayesian Model Averaging

- 1 Example i. Normal model and normal prior
- 2 Turning the Bayesian crank Posterior and predictive distributions Posterior predictive distribution Sequential Bayes
- 3 Example ii. Simple linear regression
- 4 Example iii. Stochastic volatility model
- 5 Example iv. Multiple linear regression
- 6 Bayesian model criticism
 - Posterior odds
 Bayes factor
 Bayesian Model Averaging
 Posterior predictive criterion
 Deviance Information Criterion

Example *i*. Normal model and normal prior

Turning th Bayesian crank

Posterior and predictive distributions Posterior predictive distribution Sequential Baye

Example ii. Simple linear regression

Example ii Stochastic volatility model

Example iv. Multiple linea regression

model criticism

Posterior odds Bayes factor Bayesian Model Averaging

Example *i*. Normal model and normal prior

Let us now consider a simple measurement error model with normal prior for the unobserved measurement.

$$X|\theta \sim N(\theta, \sigma^2)$$

 $\theta \sim N(\theta_0, \tau_0^2)$

with σ^2 , θ_0 and τ_0^2 known for now. It is easy to show that the posterior of θ given X = x is also normal.

More precisely, $(\theta|X=x) \sim N(\theta_1, \tau_1^2)$ where

$$\theta_1 = w\theta_0 + (1 - w)x$$

$$\tau_1^{-2} = \tau_0^{-2} + \sigma^{-2}$$

$$w = \tau_0^{-2} / (\tau_0^{-2} + \sigma^{-2})$$

w measures the relative information contained in the prior distribution with respect to the total information (prior plus likelihood).

Example from Box & Tiao (1973)

Prior A: Physicist A (large experience): $\theta \sim N(900, (20)^2)$

Prior B: Physicist B (not so experienced): $\theta \sim N(800, (80)^2)$.

Model: $(X|\theta) \sim N(\theta, (40)^2)$.

Observation: X = 850

$$(\theta|X=850, H_A) \sim N(890, (17.9)^2)$$

$$(\theta|X=850, H_B) \sim N(840, (35.7)^2)$$

Information (precision)

Physicist A: from 0.002500 to 0.003120 (an increase of 25%)

Physicist B: from 0.000156 to 0.000781 (an increase of 400%)

Example *i*. Normal model and normal prior

Turning the Bayesian crank Posterior and

distributions
Posterior
predictive
distribution
Sequential Baye

Example ii. Simple linea regression

Example iii Stochastic volatility model

Example iv. Multiple linea regression

Bayesian model criticism

Posterior odds
Bayes factor
Bayesian Model
Averaging

Two additional examples

Observations x, parameters θ and history H.

Likelihood functions/models - $p(x|\theta, H)$

Example ii : $x_i | \theta, H \sim N(\theta z_i; \sigma^2)$ i = 1, ..., n

Example iii : $x_t | \theta, H \sim N(0; e^{\theta_t})$ t = 1, ..., T

Prior distributions - $p(\theta|H)$

Example ii : $\theta | H \sim N(\theta_0, \tau_0^2)$

Example iii : $\theta_t | H \sim N(\alpha + \beta \theta_{t-1}, \sigma^2)$ t = 1, ..., T

Assume, for now, that $(z_1, \ldots, z_n, \sigma^2, \nu_0, \theta_0, \tau_0^2)$ and $(\alpha, \beta, \sigma^2, \theta_0)$ are known and belong to H.

Posterior and predictive distributions

Posterior predictive distribution

Example ii.

Example iii Stochastic volatility

Example iv.
Multiple linea

Bayesian model criticism

Posterior odds Bayes factor Bayesian Mode

Turning the Bayesian crank

Posterior (Bayes' Theorem):

$$p(\theta|\mathbf{x}, H) = \frac{p(\theta, \mathbf{x}|H)}{p(\mathbf{x}|H)}$$

$$= \frac{p(\mathbf{x}|\theta, H)p(\theta|H)}{p(\mathbf{x}|H)}$$

$$\propto p(\mathbf{x}|\theta, H)p(\theta|H)$$

Prior predictive distribution:

$$p(\mathbf{x}|H) = \int_{\Theta} p(\mathbf{x}|\theta, H) p(\theta|H) d\theta = E_{\theta}[p(\mathbf{x}|\theta, H)]$$

Posterior odds Bayes factor Bayesian Model Averaging

Posterior predictive distribution

Let y be a new set of observations conditionally independent of x given θ . Then,

$$p(\mathbf{y}|\mathbf{x}, H) = \int_{\Theta} p(\mathbf{y}, \theta|\mathbf{x}, H) d\theta = \int_{\Theta} p(\mathbf{y}|\theta, \mathbf{x}, H) p(\theta|\mathbf{x}, H) d\theta$$
$$= \int_{\Theta} p(\mathbf{y}|\theta, H) p(\theta|\mathbf{x}, H) d\theta = E_{\theta|\mathbf{x}} [p(\mathbf{y}|\theta, H)]$$

Note 1: In general, but not always (time series, for example) x and y are independent given θ .

Note 2: It might be more useful to concentrate on prediction rather than on estimation since the former is *verifiable*. In other words, x and y can be <u>observed</u>; not θ .

Posterior odds Bayes factor Bayesian Model Averaging

Sequential Bayes

Experimental result: $\mathbf{x}_1 \sim p_1(\mathbf{x}_1 \mid \mathbf{\theta})$

$$p(\theta \mid \mathbf{x}_1) \propto l_1(\theta; \mathbf{x}_1) p(\theta)$$

Experimental result: $\mathbf{x}_2 \sim p_2(\mathbf{x}_2 \mid \mathbf{\theta})$

$$\rho(\theta \mid \mathbf{x}_2, \mathbf{x}_1) \propto l_2(\theta; \mathbf{x}_2) \rho(\theta \mid \mathbf{x}_1) \\
\propto l_2(\theta; \mathbf{x}_2) l_1(\theta; \mathbf{x}_1) \rho(\theta)$$

Experimental results: $\mathbf{x}_i \sim p_i(\mathbf{x}_i \mid \boldsymbol{\theta})$, for $i = 3, \dots, n$

$$p(\theta \mid \mathbf{x}_n, \cdots, \mathbf{x}_1) \propto l_n(\theta; \mathbf{x}_n) p(\theta \mid \mathbf{x}_{n-1}, \cdots, \mathbf{x}_1)$$

$$\propto \left[\prod_{i=1}^n l_i(\theta; \mathbf{x}_i) \right] p(\theta)$$

Turning th Bayesian crank

Posterior and predictive distributions Posterior predictive distribution

Example ii. Simple linear regression

Example ii Stochastic volatility model

Example iv.
Multiple linea regression

model criticism

Posterior odds Bayes factor Bayesian Model Averaging

Example ii. Simple linear regression

Model, prior and posterior:

$$x_i | \theta, H \sim N(\theta z_i; \sigma^2)$$
 $i = 1, ..., n$
 $\theta | H \sim N(\theta_0, \tau_0^2)$
 $\theta | \mathbf{x}, H \sim N(\theta_1, \tau_1^2)$

where

$$\tau_1^{-2} = \tau_0^{-2} + {\it z}'{\it z}/\sigma^2 \quad \text{and} \quad \theta_1 = \tau_1^2 \left(\theta_0 \tau_0^{-2} + {\it z}'{\it x}/\sigma^2\right)$$

Note 1: As n increases, $\tau_1 \to \sigma^2(\mathbf{z}'\mathbf{z})^{-1}$ and $\theta_1 \to (\mathbf{z}'\mathbf{z})^{-1}\mathbf{z}'\mathbf{x}$.

Note 2: The same applies when $\tau_0^{-2} \to 0$, i.e. with 'little' prior knowledge about θ .

model

Posterior odds Bayes factor Bayesian Model Averaging

Example iii. SV model

Model, prior and posterior:

$$x_{t}|\theta_{t}, H \sim N(0; e^{\theta_{t}}) \qquad t = 1, \dots, T$$

$$\theta_{t}|H \sim N(\alpha + \beta\theta_{t-1}, \sigma^{2}) \qquad t = 1, \dots, T$$

$$p(\theta|\mathbf{x}, H) \propto \prod_{t=1}^{T} e^{-\theta_{t}/2} \exp\left\{-\frac{1}{2}x_{t}e^{-\theta_{t}}\right\}$$

$$\times \prod_{t=1}^{T} \exp\left\{-\frac{1}{2\sigma^{2}}(\theta_{t} - \alpha - \beta\theta_{t-1})^{2}\right\}$$

Unfortunately, closed form solutions are rare.

- How to compute $E(\theta_{43}|\mathbf{x},H)$ or $V(\theta_{11}|\mathbf{x},H)$?
- How to obtain a 95% credible region for $(\theta_{35}, \theta_{36}|\mathbf{x}, H)$?
- How to sample from $p(\theta|\mathbf{x}, H)$?
- How to compute p(x|H) or $p(x_{T+1},...,x_{T+k}|x,H)$?

Turning th Bayesian

Posterior and predictive distributions Posterior predictive distribution Sequential Bayes

Example ii. Simple linear regression

Example ii Stochastic volatility model

Example iv. Multiple linear regression

model criticism

Posterior odds Bayes factor Bayesian Model Averaging

Example iv. Multiple linear regression

The standard Bayesian approach to multiple linear regression is

$$(y|X,\beta,\sigma^2) \sim N(X\beta,\sigma^2I_n)$$

where $y = (y_1, \dots, y_n)$, $X = (x_1, \dots, x_n)'$ is the $(n \times q)$, design matrix and q = p + 1.

The prior distribution of (β, σ^2) is $NIG(b_0, B_0, n_0, S_0)$, i.e.

$$\beta | \sigma^2 \sim N(b_0, \sigma^2 B_0)$$

 $\sigma^2 \sim IG(n_0/2, n_0 S_0/2)$

for known hyperparameters b_0 , B_0 , n_0 and S_0 .

Example *i*. Normal model and normal

Turning th

Posterior and predictive distributions
Posterior predictive distribution

Example ii. Simple linea regression

Example ii Stochastic volatility model

Example iv. Multiple linear regression

model criticism Posterior o

Posterior odds Bayes factor Bayesian Model Averaging

Example iv. Conditionals and marginals

It is easy to show that (β, σ^2) is $NIG(b_1, B_1, n_1, S_1)$, i.e.

$$(\beta|\sigma^2, y, X) \sim N(b_1, \sigma^2 B_1)$$

 $(\sigma^2|y, X) \sim IG(n_1/2, n_1 S_1/2)$

where

$$B_1^{-1} = B_0^{-1} + X'X$$

$$B_1^{-1}b_1 = B_0^{-1}b_0 + X'y$$

$$n_1 = n_0 + n$$

$$n_1S_1 = n_0S_0 + (y - Xb_1)'y + (b_0 - b_1)'B_0^{-1}b_0.$$

It is also easy to derive the full conditional distributions, i.e.

$$(\beta|y,X) \sim t_{n_1}(b_1,S_1B_1)$$

 $(\sigma^2|\beta,y,X) \sim IG(n_1/2,n_1S_{11}/2)$

where

$$n_1S_{11} = n_0S_0 + (y - X\beta)'(y - X\beta)$$

Bayesian crank

predictive distributions Posterior predictive distribution Sequential Bayes

Example ii. Simple linea regression

Example ii Stochastic volatility model

Example iv. Multiple linear regression

model criticism

Posterior odds Bayes factor Bayesian Model Averaging

Example iv. Ordinary least squares

It is well known that

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$\hat{\sigma}^2 = \frac{S_e}{n-q} = \frac{(y-X\hat{\beta})'(y-X\hat{\beta})}{n-q}$$

are the OLS estimates of β and σ^2 , respectively.

The conditional and unconditional sampling distributions of $\hat{\beta}$ are

$$(\hat{\beta}|\sigma^2, y, X) \sim N(\beta, \sigma^2(X'X)^{-1})$$

 $(\hat{\beta}|y, X) \sim t_{n-q}(\beta, S_e)$

respectively, with

$$(\hat{\sigma}^2|\sigma^2) \sim IG((n-q)/2,((n-q)\sigma^2/2)$$
.

model criticism

Posterior odds Bayes factor Bayesian Model Averaging

Example iv. Sufficient statistics

Recall $(y_t|x_t, \beta, \sigma^2) \sim N(x_t'\beta, \sigma^2)$ for t = 1, ..., n, with prior $\beta|\sigma^2 \sim N(b_0, \sigma^2B_0)$ and $\sigma^2 \sim IG(n_0/2, n_0S_0/2)$.

Then, for $y^t = (y_1, \dots, y_t)$ and $X^t = (x_1, \dots, x_t)'$, it follows:

$$(\beta | \sigma^2, y^t, X^t) \sim N(b_t, \sigma^2 B_t)$$

$$(\sigma^2 | y^t, X^t) \sim IG(n_t/2, n_t S_t/2)$$

where $n_t = n_{t-1} + 1$, $B_t^{-1} = B_{t-1}^{-1} + x_t x_t'$, $B_t^{-1} b_t = B_{t-1}^{-1} b_{t-1} + y_t x_t$ and $n_t S_t = n_{t-1} S_{t-1} + (y_t - b_t' x_t) y_t + (b_{t-1} - b_t)' B_{t-1}^{-1} b_{t-1}$.

The only ingredients needed are: $x_t x_t'$, $y_t x_t$ and y_t^2 .

These recursions will play an important role later on when deriving **sequential Monte Carlo** methods for conditionally Gaussian dynamic linear models, like many stochastic volatility models.

Example iv. Multiple linear regression

model criticism

Posterior odds Bayes factor Bayesian Model Averaging

Example iv. Predictive

The predictive density can be seen as the *marginal likelihood*, i.e.

$$p(y|X) = \int p(y|X, \beta, \sigma^2) p(\beta|\sigma^2) p(\sigma^2) d\beta d\sigma^2$$

or, by Bayes' theorem, as the normalizing constant, i.e.

$$p(y|X) = \frac{p(y|X, \beta, \sigma^2)p(\beta|\sigma^2)p(\sigma^2)}{p(\beta|\sigma^2, y, X)p(\sigma^2|y, X)}$$

which is valid for all (β, σ^2) .

Closed form solution is available for the multiple normal linear regression:

$$(y|X) \sim t_{n_0}(Xb_0, S_0(I_n + XB_0X')).$$

Stochastic volatility model

Example iv.
Multiple linea regression

Bayesian model criticism

Posterior odds Bayes factor Bayesian Mode

Bayesian model criticism

Suppose that the competing models can be enumerated and are represented by the set $M = \{M_1, M_2, \ldots\}$, and that the *true model* is in M (Bernardo and Smith, 1994).

The posterior model probability of model M_j is given by

$$Pr(M_j|y) \propto f(y|M_j)Pr(M_j)$$

where

$$f(y|M_j) = \int f(y|\theta_j, M_j) p(\theta_j|M_j) d\theta_j$$

is the prior predictive density of model M_j and $Pr(M_j)$ is the prior model probability of model M_j .

Example i. Normal model and normal prior

Turning th Bayesian crank

Posterior and predictive distributions Posterior predictive distribution

Example ii. Simple linear regression

Example ii Stochastic volatility model

Example iv. Multiple linea regression

Bayesian model criticism

Posterior odds
Bayes factor
Bayesian Model
Averaging

Posterior odds

The posterior odds of model M_j relative to M_k is given by

$$\underbrace{\frac{Pr(M_j|y)}{Pr(M_k|y)}}_{\text{posterior odds}} = \underbrace{\frac{Pr(M_j)}{Pr(M_k)}}_{\text{prior odds}} \times \underbrace{\frac{f(y|M_j)}{f(y|M_k)}}_{\text{Bayes factor}}.$$

The Bayes factor can be viewed as the weighted likelihood ratio of M_i to M_k .

The main difficulty is the computation of the marginal likelihood or normalizing constant $f(y|M_i)$.

Therefore, the posterior model probability for model j can be obtained from

$$\frac{1}{Pr(M_j|y)} = \sum_{M_k \in M} B_{kj} \frac{Pr(M_k)}{Pr(M_j)}.$$

Example i. Normal model and normal prior

Turning th Bayesian crank

Posterior and predictive distributions Posterior predictive distribution Sequential Baye

Example ii. Simple linea regression

Example ii Stochastic volatility model

Example iv.
Multiple lines

Bayesian model criticism

Posterior odds
Bayes factor
Bayesian Mode

Bayes factor

Jeffreys (1961) recommends the use of the following rule of thumb to decide between models j and k:

$\log_{10} B_{jk}$	B_{jk}	Evidence against k
0.0 to 0.5	1.0 to 3.2	Not worth more than a bare mention
0.5 to 1.0	3.2 to 10	Substantial
1.0 to 2.0	10 to 100	Strong
> 2	> 100	Decisive

Kass and Raftery (1995) argue that "it can be useful to consider twice the natural logarithm of the Bayes factor, which is on the same scale as the familiar deviance and likelihood ratio test statistics". Their slight modification is:

$2\log_e B_{jk}$	B_{jk}	Evidence against k
0.0 to 2.0	1.0 to 3.0	Not worth more than a bare mention
2.0 to 6.0	3.0 to 20	Substantial
6.0 to 10.0	20 to 150	Strong
> 10	> 150	Decisive

Posterior and

Bavesian Model Averaging

Bayesian Model Averaging

See Hoeting, Madigan, Raftery and Volinsky (1999), Statistical Science, 14, 382-401.

Let \mathcal{M} denote the set that indexes all entertained models.

Assume that Δ is an outcome of interest, such as the future value y_{t+k} , or an elasticity well defined across models, etc. The posterior distribution for Δ is

$$p(\Delta|y) = \sum_{m \in \mathcal{M}} p(\Delta|m, y) Pr(m|y)$$

for data y and posterior model probability

$$Pr(m|y) = \frac{p(y|m)Pr(m)}{p(y)}$$

where Pr(m) is the prior probability model.

Posterior odds Bayes factor Bayesian Model Averaging

Posterior predictive criterion

Gelfand and Ghosh (1998) introduced a posterior predictive criterion that, under squared error loss, favors the model M_j which minimizes

$$D_j^G = P_j^G + G_j^G$$

where

$$P_j^G = \sum_{t=1}^n V(\tilde{y}_t|y, M_j)$$

$$G_j^G = \sum_{t=1}^n [y_t - E(\tilde{y}_t|y, M_j)]^2$$

and $(\tilde{y}_1, \dots, \tilde{y}_n)$ are predictions/replicates of y.

The first term, P_i , is a penalty term for model complexity.

The second term, G_i , accounts for goodness of fit.

Example iv. Multiple linea regression

Bayesian model criticism

Posterior odds Bayes factor Bayesian Model Averaging

Deviance Information Criterion

See Spiegelhalter, Best, Carlin and van der Linde (2002), *JRSS-B*, 64, 583-616.

If $\theta^* = E(\theta|y)$ and $D(\theta) = -2\log p(y|\theta)$ is the deviance, then the DIC generalizes the AIC

$$DIC = \bar{D} + p_D$$

= goodness of fit + model complexity

where
$$\bar{D} = E_{\theta|y}(D(\theta))$$
 and $p_D = \bar{D} - D(\theta^*)$.

The p_D is the effective number of parameters.

Small values of DIC suggests a better-fitting model.