Nonnormal & nonlinear dynamic models

Boostrap filter (BF)

Example 1 Local level model

Auxiliary particle filte (APF)

Sample-

resample and resamplesample

Sample-resample filters: BF and OBF

Resamplesample filters:

AR(1) plus

Basic references

Sequential Monte Carlo: Pure Filtering

Hedibert Freitas Lopes
Professor of Statistics
hedibert.org

Insper

Outline

- Nonnormal & nonlinear dynamic models
- Boostrap filte (BF)
- Example 1 Local leve model
- Auxiliary particle filter (APF)
- Sampleresample and resamplesample
- Sample-resamp filters: BF and OBF
- Resamplesample filters: APF and OAPF
- Example 2: AR(1) plus noise
- Basic references

- 1 Nonnormal & nonlinear dynamic models
- 2 Boostrap filter (BF)
- 3 Example 1: Local level model
- 4 Auxiliary particle filter (APF)
- Sample-resample and resample-sample filters Sample-resample filters: BF and OBF Resample-sample filters: APF and OAPF
- **6** Example 2: AR(1) plus noise
- 7 Basic references

Example 1 Local level model

particle filter (APF)

resample and resample-

filters
Sample-resamp

OBF
Resample-

APF and OAP

AR(1) plus noise

Basic references

Nonnormal & nonlinear dynamic models

Most nonnormal and nonlinear dynamic models are defined by

Observation equation

$$p(y_{t+1}|x_{t+1},\theta)$$

System or evolution equation

$$p(x_{t+1}|x_t,\theta)$$

Initial distribution

$$p(x_0|\theta)$$

The fixed parameters that drive the state space model, θ , is kept known and omitted for now.

Nonnormal & nonlinear dynamic models

Boostrap filte (BF)

Example 1 Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAPF

AR(1) plus

Basic references Posterior at time t:

$$p(x_t|y^t).$$

Prior at time t + 1:

$$\underbrace{p(x_{t+1}|y^t)}_{\text{prior at t}} = \int \underbrace{p(x_{t+1}|x_t)}_{\text{evolution posterior at t-1}} \underbrace{p(x_t|y^t)}_{\text{evolution posterior at t-1}} dx_t$$

Posterior at time t + 1:

$$p(x_{t+1}|y^{t+1}) \propto p(y_{t+1}|x_{t+1})p(x_{t+1}|y^t)$$

These densities are usually unavailable in closed form.

Resamplesample filters: APF and OAPF

Example 2: AR(1) plus noise

Basic references

Boostrap filter (BF)

Gordon, Salmond and Smith's (1993) seminal paper uses SIR to obtain draws from $p(x_{t+1}|y^{t+1})$ based on draws from $p(x_t|y^t)$.

Let $x_t^{(i)}$ be a draw from $p(x_t|y^t)$, for $i=1,\ldots,N$. Let $\tilde{x}_{t+1}^{(i)}$ be a draw from $p(x_{t+1}|x_t^{(i)})$, for $i=1,\ldots,N$. Then $\tilde{x}_{t+1}^{(i)}$ is a draw from $p(x_{t+1}|y^{t+1})$, for $i=1,\ldots,N$.

SIR argument: Sample k^i from $\{1, ..., M\}$ with (unnormalized) weights

$$\omega_{t+1}^{(j)} \propto p(y_{t+1}|\tilde{x}_{t+1}^{(j)})$$

and let $x_{t+1}^{(i)} = \tilde{x}_{t+1}^{(k^i)}$.

Then $x_{t+1}^{(i)}$ is a draw from $p(x_{t+1}|y^{t+1})$, for $i=1,\ldots,N$.

Nonnormal nonlinear dynamic models

Boostrap filter (BF)

Example 1 Local leve

Auxiliary particle filte (APF)

Sampleresample and resample-

resamplesample filters Sample-resample

OBF
Resamplesample filters:
APF and OAPF

APF and OAF
Example 2:

Basic

Basic references

SIS with Resampling (SISR)

Uniform weights is the goal!

Boostrap filter (BF)

Resample-

Resampling or not?

Theoretically, the resampling step is not necessary. Within a given time t, resampling always increases the variability of estimators.

For instance, let

$$I_1 = \sum_{i=1}^{N} h(\tilde{x}_t^{(i)}) w_t^{(i)}$$
 and $I_2 = \frac{1}{N} \sum_{i=1}^{N} h(x_t^{(i)})$

be two MC estimators of $E(h(x_t)|y^t)$ with I_1 based on (normalized) weights

$$w_t^{(i)} = \frac{\omega_t^{(i)}}{\sum_{j=1}^N \omega_t^{(j)}}.$$

It can be shown (Raoblackwellization) that

$$V(I_1) \leq V(I_2).$$

Boostrap filter (BF)

Resample-

Effective sample size

Liu and Chen (1995, 1998) argue that resampling at every time t is usually neither necessary nor efficient since it induces excessive variations.

Kong et al. (1994) and Liu (1996) proposed resampling whenever the effective sample size

$$N_{\mathsf{eff},t} = \frac{1}{\sum_{i=1}^{N} \left(w_t^{(i)}\right)^2}$$

is less than a certain threshold.

Nonnormal & nonlinear dynamic models

Boostrap filte (BF)

Example 1: Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resampl filters: BF and OBF Resample-

APF and OAPI

AR(1) p

Basic reference

Example 1: Local level model

The model is

$$y_t|x_t \sim N(x_t, \sigma^2)$$

 $x_t|x_{t-1} \sim N(x_{t-1}, \tau^2)$

with $(x_0|y^0) \sim N(m_0, C_0)$.

If
$$(x_{t-1}|y^{t-1}) \sim N(m_{t-1}, C_{t-1})$$
, then

$$(x_t|y^{t-1}) \sim N(m_{t-1}, R_t)$$

where $R_t = C_{t-1} + \tau^2$ and

$$(x_t|y^t) \sim N(m_t, C_t)$$

where
$$m_t = (1 - A_t)m_{t-1} + A_t y_t$$
, $C_t = A_t \sigma^2$ and $A_t = R_t/(R_t + \sigma^2)$.

Nonnormal & nonlinear dynamic

Boostrap filter (BF)

Example 1: Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resample filters: BF and OBF Resample-

APF and OAPF

AR(1) plus noise

Basic references

Example 1: SIS and bootstrap filters

Sequential importance sampling (SIS):

- $\{(x_{t-1}, \omega_{t-1})^{(i)}\}_{i=1}^N \sim p(x_{t-1}|y^{t-1}).$
- $\{(\tilde{x}_t, \omega_{t-1})^{(i)}\}_{i=1}^N \sim p(x_t|y^{t-1})$, where

$$\tilde{x}_t^{(i)} \sim N(x_{t-1}^{(i)}, \tau^2).$$

• $\{(\tilde{x}_t, \omega_t)^{(i)}\}_{i=1}^N \sim p(x^t|y^t)$, where

$$\omega_t^{(i)} \propto \omega_{t-1}^{(i)} f_N(y_t; \tilde{x}_t^{(i)}, \sigma^2).$$

Resampling:

Resample $\{x_t^{(1)}, \dots, x_t^{(N)}\}$ from $\{\tilde{x}_t^{(1)}, \dots, \tilde{x}_t^{(N)}\}$ with (normalized) weights $\{w_t^{(1)}, \dots, w_t^{(N)}\}$.

In this case, $\{(x_t, \omega_t)^{(i)}\}_{i=1}^N \sim p(x_t|y^t)$ with weights $\omega_t \propto 1$.

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAF

Example 2: AR(1) plus

Basic references

Example 1: local level model

n = 50, $x_0 = 0$, $\tau^2 = 0.5$ and $\sigma^2 = (0.25, 0.5, 1.0)$.

Nonnormal a nonlinear dynamic

Boostrap filte

Example 1: Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resample filters: BF and OBF

Resamplesample filters: APF and OAP

Example 2: AR(1) plus

Basic

SIS filter

Nonnormal a nonlinear dynamic

Boostrap filte

Example 1: Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resample filters: BF and OBF Resample-

sample filters: APF and OAPF

Example 2 AR(1) plus

Basic references

Bootstrap filter

Nonnormal of nonlinear dynamic models

Boostrap filte

Example 1: Local level model

Auxiliary particle filter (APF)

Sampleresamplesample

Sample-resamp filters: BF and OBF

OBF
Resamplesample filters:

Example 2:

Basic

Basic references

SIS_{0.2}: SIS filter with resampling when $N_{eff} < 0.2N$

Nonnormal nonlinear dynamic models

Boostrap filter (BF)

Example 1: Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resamp filters: BF and OBF

Resamplesample filters APF and OA

AR(1) plus

Basic references

Comparing estimates of $E(x_t|y^t)$.

Nonnormal & nonlinear dynamic

Boostrap filter (BF)

Example 1: Local level model

particle filt (APF)

Sampleresample and resamplesample filters

filters: BF and OBF
Resample-

Example 2

Basic

Comparing BF and SIS_{0.2} when

n = 50

 $MAE = \sum_{i=1}^{n} |x_t - \widehat{E}(x_t|y^t)|/n$; $RMAE = MAE_{bf}/MAE_{sis}$

nia2+1

sig2+1

Nonnormal of nonlinear dynamic models

Boostrap filte (BF)

Example 1: Local level model

Auxiliary particle filte (APF)

resample and resamplesample filters

filters: BF and OBF
Resample-sample filters:

Example 2 AR(1) plus

Basic reference

Comparing BF and $SIS_{0.2}$ when n=200

sig2=1

sig2=1

Nonnormal & nonlinear dynamic models

Boostrap filte

Example 1: Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample

filters: BF and OBF Resamplesample filters:

Example 2 AR(1) plus noise

Basic reference

Comparing BF and $SIS_{0.2}$ when n = 500

Auxiliary particle filter (APF)

Resample-

Auxiliary particle filter (APF)

Recall the two main steps in any dynamic model:

$$p(x_t|y^{t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|y^{t-1})dx_{t-1}$$

$$p(x_t|y^t) \propto p(y_t|x_t)p(x_t|y^{t-1})$$

$$= \int p(y_t|x_t)p(x_t|x_{t-1})p(x_{t-1}|y^{t-1})dx_{t-1}$$

Based on $\{(x_{t-1}, \omega_{t-1})^{(i)}\}_{i=1}^N \sim p(x_{t-1}|y^{t-1})$:

$$\hat{p}(x_t|y^{t-1}) \propto \sum_{i=1}^{N} p(x_t|x_{t-1}^{(i)})\omega_{t-1}^{(i)}$$

and

$$\hat{p}(x_t|y^t) \propto \sum_{i=1}^{N} p(y_t|x_t) p(x_t|x_{t-1}^{(i)}) \omega_{t-1}^{(i)}.$$

Basic

Basic references

Pitt and Shephard's (1999) idea

The previous mixture approximation suggests an augmentation scheme where the new target distribution is

$$\hat{p}(x_t, k|y^t) \propto p(y_t|x_t)p(x_t|x_{t-1}^{(k)})\omega_{t-1}^{(k)}.$$

A natural proposal distribution is

$$q(x_t, k|y^t) \propto p(y_t|g(x_{t-1}^{(k)}))p(x_t|x_{t-1}^{(k)})\omega_{t-1}^{(k)}$$

where, for instance, $g(x_{t-1}) = E(x_t|x_{t-1})$.

By a simple SIR argument, the weight of the particle x_t is

$$\omega_t \propto \frac{p(y_t|x_t)}{p(y_t|g(x_{t-1}))}$$

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resampl filters: BF and OBF Resample-

Resamplesample filters: APF and OAP

AR(1) plu

Basic references

APF algorithm

- $\{(x_{t-1}, \omega_{t-1})^{(i)}\}_{i=1}^{N}$ summarizes $p(x_{t-1}|y^{t-1})$.
- For j = 1, ..., N
 - Draw k^j from $\{1,\ldots,N\}$ with weights $\{\tilde{\omega}_{t-1}^{(1)},\ldots,\tilde{\omega}_{t-1}^{(N)}\}$:

$$\tilde{\omega}_{t-1}^{(i)} = \omega_{t-1}^{(i)} p(y_t | g(x_{t-1}^{(i)}))$$

- Draw $x_t^{(j)}$ from $p(x_t|x_{t-1}^{(k^j)})$.
- Compute associated weight

$$\omega_t^{(j)} \propto \frac{p(y_t|x_t^{(j)})}{p(y_t|g(x_{t-1}^{(k)}))}.$$

- $\{(x_t, \omega_t)^{(i)}\}_{i=1}^N$ summarizes $p(x_t|y^t)$.
- Maybe add a SIR step to replenish x_t s.

Example 1 Local level model

particle filter (APF)

Sampleresample and resamplesample filters

Sample-resample filters: BF and OBF Resample-

sample filters: APF and OAPF

AR(1) plus noise

Basic references

Sample-resample filters

- **1** Sample $\tilde{x}_{t+1}^{(j)}$ from $q_s(x_{t+1}|x_t^{(j)}, y_{t+1})$;
- 2 Resample $x_{t+1}^{(i)}$ from $\{\tilde{x}_{t+1}^{(j)}\}_{j=1}^{N}$ with weights

$$\omega_{t+1}^{(j)} \propto \frac{p(y_{t+1}|\tilde{x}_{t+1}^{(j)})p(\tilde{x}_{t+1}^{(j)}|x_t^{(j)})}{q_s(\tilde{x}_{t+1}^{(j)}|x_t^{(j)},y_{t+1})}.$$

Bootstrap filter (BF)

BF: $q_s(x_{t+1}|x_t, y_{t+1}) = p(x_{t+1}|x_t)$ - blinded sampling.

BF: $\omega_{t+1} = \omega_t p(y_{t+1}|x_{t+1})$ - likelihood function.

Optimal bootstrap filter (OBF)

OBF: $q_s(x_{t+1}|x_t, y_{t+1}) = p(x_{t+1}|x_t, y_{t+1})$ - perfectly adapted.

OBF: $\omega_{t+1} = \omega_t p(y_{t+1}|x_t)$ - predictive density.

Nonnormal & nonlinear dynamic

Boostrap filte (BF)

Example 1 Local leve model

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

filters: BF and OBF

Resamplesample filters: APF and OAPF

AR(1) plus noise

Basic references

Resample-sample filters

- **1** Resample $\tilde{x}_t^{(i)}$ from $\{x_t^{(j)}\}_{j=1}^N$ with weights $q_r(x_t^{(j)}|y_{t+1})$;
- **2** Sample $x_{t+1}^{(i)}$ from $q_s(x_{t+1}|\tilde{x}_t^{(i)}, y_{t+1})$;
- 3 New weights

$$\omega_{t+1}^{(i)} = \frac{p(y_{t+1}|x_{t+1}^{(i)})p(x_{t+1}^{(i)}|\tilde{x}_{t}^{(i)})}{q_r(\tilde{x}_{t}^{(i)}|y_{t+1})q_s(x_{t+1}^{(i)}|\tilde{x}_{t}^{(i)},y_{t+1})}.$$

Auxiliary particle filter (APF)

APF: $q_r(x_t|y_{t+1}) = p(y_{t+1}|g(x_t)) - g(x_t)$ is guess of x_{t+1} .

APF: $q_s(x_{t+1}|x_t, y_{t+1}) = p(x_{t+1}|x_t)$ - blinded sampling.

APF: $\omega_{t+1} = \omega_t \frac{p(y_{t+1}|X_{t+1})}{p(y_{t+1}|g(\tilde{x}_t))}$ - likelihood ratio.

Optimal auxiliary particle filter (OAPF)

OAPF: $q_r(x_t|y_{t+1}) = p(y_{t+1}|x_t)$ - predictive density.

OAPF: $q_s(x_{t+1}|x_t, y_{t+1}) = p(x_{t+1}|x_t, y_{t+1})$ - perfectly adapted.

OAPF: $\omega_{t+1}^{(i)} = \omega_t^{(i)}$.

Nonnormal & nonlinear dynamic

Boostrap filte (BF)

Example 1 Local leve model

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAPF

noise

Basic references

Step-by-step filtering

Consider the nonlinear dynamic model (Gordon et al., 1993):

$$y_t \sim N\left(\frac{x_t^2}{20}, 1\right)$$

 $x_t | x_{t-1} \sim N(g(x_{t-1}), 10)$

where

$$g(x_{t-1}) = 0.5x_{t-1} + 25\frac{x_{t-1}}{1 + x_{t-1}^2} + 8\cos(1.2(t-1))$$

for t = 1, 2 and $x_0 = 0.1$.

The two simulated observations are $y_1 = 8.385527$ and 5.336167.

The prior for x_0 is N(0,2).

BF and APF are run based on N = 20 particles.

Nonnormal a nonlinear dynamic

Boostrap filter (BF)

Example 1 Local level

Auxiliary particle filte (APF)

Sampleresample and resamplesample filters

filters: BF and OBF

Resamplesample filters: APF and OAPF

Example 2: AR(1) plus noise

Basic references

The bootstrap filter

Nonnormal nonlinear dynamic models

Boostrap filter (BF)

Example 1 Local leve

Auxiliary particle filte (APF)

Sampleresample and resamplesample filters

> Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAPF

Example 2: AR(1) plus

Basic references

The auxiliary particle filter

Basic references

Example 2: Simulation exercise

Three data sets ($\tau^2 = (0.25, 0.5, 0.75)$) with n = 100 observations were generated from

$$y_t|x_t \sim N(x_t, \sigma^2)$$

 $x_t|x_{t-1} \sim N(\alpha + \beta x_{t-1}, \tau^2)$

with
$$(\alpha, \beta, \sigma^2) = (0.05, 0.95, 1.0)$$
 and $x_0 = 0.5$.

 $x_0 \sim N(0.5, 10)$ and true $p(x_t|y^t)$ are available in closed form.

R = 20 replications based on N = 1000 particles.

$$\mathsf{MAE} = \sum_{t=1}^{T} |\hat{q}_{t,f}^{\alpha} - q_{t}^{\alpha}| / T.$$

where q_t^{α} and $\hat{q}_{t,f}^{\alpha}$ are the true and approximate α th percentile of $p(x_t|y^t)$.

BF, APF, OBF and OAPF

BF is based on $p(x_t|x_{t-1})$ and $p(y_t|x_t)$.

APF is based on $p(x_t|x_{t-1})$ and

$$q_r(x_{t-1}|y_t) \equiv N(\mu_t, \tau^2),$$

where $\mu_t = g(x_{t-1}) = \alpha + \beta x_{t-1}$.

OBF and OAPF are based on

$$p(y_t|x_{t-1}) \equiv N(\mu_t, \sigma^2 + \tau^2)$$

$$p(x_t|x_{t-1}, y^t) \equiv N((1 - A)\mu_t + Ay_t, A\sigma^2)$$

where $A = \tau^2 / (\sigma^2 + \tau^2)$.

Nonnormal & nonlinear dynamic models

Boostrap filte (BF)

Example : Local leve model

Auxiliary particle filter (APF)

Sampl

resample and resamplesample filters

Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAF

Example 2: AR(1) plus noise

Basic references

2.5th, 50th and 97.5th percentiles of $p(x_t|y^t)$

Column 1: y_t (black) versus x_t (red).

Columns 2 and 4: BF and APF (true:black, filter:gray)
Columns 4 and 5: OBF and OAPF (true:black, filter:gray)

Relative MAE

Nonnormal nonlinear dynamic models

Boostrap filte (BF)

Example 1 Local level model

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resamp filters: BF and OBF Resamplesample filters: APF and OAPF

Example 2: AR(1) plus noise

Basic references S = 20 datasets n = 100 observations

Relative MAE

Nonnormal nonlinear dynamic models

Boostrap filte (BF)

Local level model

particle filter (APF)

Sampleresample and resamplesample filters

Sample-resamp filters: BF and OBF Resamplesample filters: APF and OAPF

Example 2: AR(1) plus noise

Basic references S = 20 datasets n = 1000 observations

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resampl filters: BF and OBF

Resamplesample filters: APF and OAF

Example 2: AR(1) plus noise

Basic references

Empirical findings

BF and OBF are similar.

OAPF is significantly better than APF.

OAPF is uniformly better than BF and OBF.

The above findings are more significant when n = 1000.

The above findings are more pronounced for larger values of τ^2 .

Nonnormal & nonlinear dynamic

Boostrap filter (BF)

Example 1 Local level

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resampl filters: BF and OBF Resample-

Example 2: AR(1) plus

noise Basic

Revisiting the nonlinear dynamic model

Nonnormal nonlinear dynamic models

Boostrap filte (BF)

Example 1 Local leve model

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resample filters: BF and OBF

Resamplesample filters: APF and OAP

Example 2: AR(1) plus noise

Basic references $\widehat{p}(x_t|y^t)$ for $t=1,\ldots,n$. M=100,000 particles.

APF:

Nonnormal & nonlinear dynamic

Boostrap filte

Example : Local leve model

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAF

Example 2: AR(1) plus noise

Basic references $\widehat{p}(x_t|y^t)$ for $t=1,\ldots,n$. M=100,000 particles.

Basic references

APF's resampling proposal is

$$f_N(y_t; g(x_{t-1}), \sigma^2).$$

An alternative (potentially better) proposal is

$$f_N(y_t; g(x_{t-1}), \tau^2 g^2(x_{t-1})/100 + \sigma^2),$$

which is based on a 1st order Taylor expansion of $h(x_t) = x_t^2/20$ around $g(x_{t-1})$.

Another APF:

Nonnormal & nonlinear dynamic

Boostrap filter

Example 1 Local leve model

Auxiliary particle filter (APF)

Sampleresample and resamplesample filters

Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAF

Example 2: AR(1) plus noise

Basic references $\widehat{p}(x_t|y^t) \ \forall t. \ M = 100,000 \ \text{particles}.$

Example 1 Local level model

Auxiliary particle filte (APF)

Sampleresample

resamplesample

filters: BF and OBF Resamplesample filters:

Example 2: AR(1) plus noise

Basic references

Root MSE:

Based on R=100 data sets, n=100 and M=1,000 particles. Root MSE is $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_t-\widehat{x}_t^f)^2}$, where $\widehat{x}_t^f=\widehat{E}_f(x_t|y^t)$.

Boostrap filte (BF)

Example I Local leve model

Auxiliary particle filter (APF)

resample and resample sample filters

Sample-resampl filters: BF and OBF

Resamplesample filters: APF and OAF

Example 2: AR(1) plus noise

Basic references

$BF + learning(\sigma^2, \tau^2)$:

 $\widehat{p}(x_t|y^t)$ for $t=1,\ldots,n$. M=1,000,000 particles.

Nonnormal & nonlinear dynamic

Boostrap filte

Example 1 Local leve model

Auxiliary particle filter (APF)

resample and resamplesample filters

Sample-resamp filters: BF and OBF

Resamplesample filters: APF and OAF

Example 2: AR(1) plus noise

Basic references

APF + learning (σ^2, τ^2) :

 $\widehat{p}(x_t|y^t)$ for $t=1,\ldots,n$. M=1,000,000 particles.

Boostrap filte (BF)

Example 1 Local level model

Auxiliary particle filter (APF)

resample and resample-sample

filters: BF and OBF Resamplesample filters:

Example 2: AR(1) plus noise

Basic references

Parameter learning:

 $\widehat{p}(\sigma^2|y^t)$ and $p(\tau^2|y^t)$ for $t=1,\ldots,n$. M=1,000,000 particles. Left column: BF. Right column: APF.

Boostrap filte (BF)

Example 1 Local level model

particle filter
(APF)

resample and resamplesample filters

Sample-resampl filters: BF and OBF Resamplesample filters: APF and OAPF

Example 2: AR(1) plus noise

Basic reference

Parameter learning:

Root MSE based on R = 100 data sets, n = 100 and M = 1,000 particles.

MCMC:

 $\widehat{p}(\sigma^2|y^n)$ and $\widehat{p}(\tau^2|y^n)$. Burn-in=10,000, Lag=100 and MCMC size=1,000.

Boostrap filte

Example 1 Local level

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resamp filters: BF and OBF Resamplesample filters:

Example 2: AR(1) plus noise

Basic references

Iterations

Boostrap filte (BF)

Example 1 Local level

Auxiliary particle filte (APF)

Sampleresample and resamplesample filters

Sample-resampl filters: BF and OBF Resamplesample filters:

Example 2: AR(1) plus noise

Basic references

Comparison:

 $\widehat{p}(\sigma^2|y^n)$ and $\widehat{p}(\tau^2|y^n)$. MCMC is based on burn-in=10,000, Lag=100 and MCMC size=1,000. Particle filters are based on M=1,000,000 particles.

Boostrap filte (BF)

model

Auxiliary

Auxiliary particle filter (APF)

resample and resamplesample

filters: BF and OBF Resample-

Example 2: AR(1) plus noise

Basic references

Autocorrelation functions for MCMC draws from $p(x_t|y^n)$.

Top graph: based on all 110,000 draws. Bottom graph: based on 1,000 draws (after burn-in=10,000

and keeping only 100th draw.

Nonnormal & nonlinear dynamic

Boostrap filte (BF)

Example 1 Local level model

particle fil (APF)

resample and resamplesample

Sample-resampl filters: BF and OBF Resamplesample filters:

Example 2: AR(1) plus noise

Basic references

 $\widehat{p}(x_n|y^n)$. MCMC is based on burn-in=10,000, Lag=100 and MCMC size=1,000. Particle filters are based on M=1,000,000 particles.

Boostrap filte

Example 1 Local leve

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resamp filters: BF and OBF Resamplesample filters: APF and OAP

Example 2: AR(1) plus noise

Basic references

2.5th, 50th and 97.5th percentiles of $\widehat{p}(x_t|y^n)$ for $t=1,\ldots,n$. MCMC is based on burn-in=10,000, Lag=100 and MCMC size=1,000. True values x_t s are the red dots.

Nonnormal & nonlinear dynamic

Boostrap filte (BF)

Example 1 Local leve model

Auxiliary particle filter (APF)

Sampleresample and resamplesample

Sample-resamp filters: BF and OBF Resamplesample filters:

Example 2: AR(1) plus

Basic references

Basic references

Gordon, Salmond and Smith (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *Radar and Signal Processing, IEE Proceedings F 140*, 107-113.

Pitt and Shephard (1999) Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association, 94, 590-599.

Lopes and Tsay (2011) Particle filters and Bayesian inference in financial econometrics, *Journal of Forecasting*, 30, 168-209. $\tt R$ code for the examples can be found in

 $\verb|http://faculty.chicagobooth.edu/hedibert.lopes/research/JForecasting-PF.html| \\$