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Nonnormal & nonlinear dynamic
models

Most nonnormal and nonlinear dynamic models are defined by

e Observation equation
P(Ye+1lxe+1,0)
e System or evolution equation
p(xet1lxe, 6)
e Initial distribution

p(x0l6)

The fixed parameters that drive the state space model, 6, is
kept known and omitted for now.
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Forward filtering

Posterior at time t:

p(xely”)-
Prior at time t + 1:
plenly’) = [plenlx)  pbaly) o
—_———— ——— ——
prior at t evolution posterior at t-1

Posterior at time t + 1:

t+1)

p(xe+1ly o8 P(Yt+1|Xt+1)P(Xt+1|yt)

These densities are usually unavailable in closed form.



Boostrap filter
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Boostrap filter (BF)

Gordon, Salmond and Smith's (1993) seminal paper uses SIR to
obtain draws from p(x;;1|yt*!) based on draws from p(x:|y?).

Let xt() be a draw from p(x;|y?), for i=1,...,N.

Let Xt(le be a draw from p(xt+1|xt(')), fori=1,...,
Then X§+)1 is a draw from p(xqy1|yttt), fori=1,...

SIR argument: Sample k' from {1,..., M} with
(unnormalized) weights

w9 o pyesal59))

and let x§+)1 = it(il)

Then x( )1 is a draw from p(x;i1]yt*?), fori=1,...

N.
N
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SIS with Resampling (SISR)

{at,.. .2}~ plaly’)
ii+1 ~ P&}

Wi o p(ye|Fi)

{Z%—f—la' . -yl‘ffm} ~ P(Zt+1|yt+1)

i'i+2 ~ P(zt+2|$i+1 )

Wiy o p(YeralE,) ! i .

Uniform weights is the goal!



Boostrap filter
(BF)

Sample-resample
filters: BF and
OBF

Resample
sample filters
APF and OAPF

Resampling or not?

Theoretically, the resampling step is not necessary. Within a
given time t, resampling always increases the variability of
estimators.

For instance, let

N N
b= rEw and k= Z
i=1 i=1

be two MC estimators of E(h(x;)|y") with /; based on
(normalized) weights

2 \

(1)

W) — Wi

e ZN 1W§J)

It can be shown (Raoblackwellization) that

V(L) < V(h).

AS
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Effective sample size

Liu and Chen (1995, 1998) argue that resampling at every time
t is usually neither necessary nor efficient since it induces
excessive variations.

Kong et al. (1994) and Liu (1996) proposed resampling
whenever the effective sample size

Neft , = W

is less than a certain threshold.

a /A9
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Example 1: Local level model
The model is

_yt‘xt ~ N(Xt,O'z)

Xt|Xt—1 ~ N(Xt—17 7'2)

with (xo|y®) ~ N(mg, o).

If (xe_1|y®t) ~ N(m¢_1, Ct_1), then
(xely™™) ~ N(mi-1, Re)
where Ry = C;_1 + 72 and
(xely®) ~ N(me, C)

where mg = (]. — At)mt_]_ + At}’t. Ct = At0'2 and
At = Rt/(Rt + 0'2).

q/A8



Example 1: SIS and bootstrap

filters
Sequential importance sampling (SIS):
o {(xe—1,we—1)" N~ p(xe—1ly™h).
Exanr;[:le 1|: ° {()h('hwt_l)(i) INZI ~ p(Xt’yt_l), Where
model
)?EI) ~ N(Xt(l—)lvTZ)'
o {(%,we) NN ~ p(xt|yt), where
wgi) x wfﬂl fn(ye; )?,_Si), a?).
SHFP‘ Resampling:
AP and OAPF Resample {xt(l), e ,XSN)} from {)"(t(l), .. ,)"(,_gN)} with
(normalized) weights {Wt(l), cey Wt(N)}.

In this case, {(x¢,ws) DN, ~ p(x¢|yt) with weights w; oc 1.

10 / A8



Example 1: local level model

Nonnormal & 2 2

ronines n=50,x =0, 72 = 0.5 and 02 = (0.25,0.5,1.0).
dynamic

models

Si02:0.25 sigz=0s sigz=1

Boostrap filter o
(BF) - M

Example 1:
Local level
model

m

Auxiliary
particle filter
(APF)

Sample-
resample and
resample-
sample
filters

Sample-resample
filters: BF and
OBF

Resample-
sample filters:
APF and OAPF

Example 2
AR(1) plus
noise

Basic | . e
references

117 /A8



Nonnormal &
nonlinear
dynamic
models

Boostrap filter
(BF)

Example 1:
Local level
model

Auxiliary
particle filter
(APF)

Sample-
resample and
resample-
sample

filters
Sample-resample

filters: BF and
OBF

Resample-
sample filters:
APF and OAPF

Example 2:
AR(1) plus
noise

Basic
references

Enecve sanpie sie

5ig20.25

SIS filter

sigz=1

[E—

Efecre sampio sizo

1000

P
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Bootstrap filter
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SISg5: SIS filter with resampling
when N.g < 0.2N
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m
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Comparing estimates of E(x;|y?).

SIS, BF, SISq
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Comparing BF and SISy, when
n =50
MAE=3"7_, |xe — E(xe|yt)|/n; RMAE = MAE,s/MAE;

Mi1=500 M1=800

Example 1: :
T == il = il T
model i ‘ i —— i :
- . - T h T
s s
H 3 H ' H -
H
' N e E—
Sample-resample N - N i K :
filters: BF and B B B —
OBF
Resample-
sample filters:
APF and OAPF
—
: —1 | —

16 / A8
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Relive MAE

Reatve MAE

Relatve MAE

08 09 10 11 12 13 14

08 09 10 11 12 13 14

Comparing BF and SISy, when

n = 200

wi1=200 wi=500 wi=g00
E % B ! % B
] L  e— L ——
M1=200 M1=500 M1=800
1 E H : H B
E 2
sz0s saz0s fres
M1=200 M1=500 M1=800
E HE . H :
q FEh . H '
szt szt sazet
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Auxiliary particle filter (APF)
Recall the two main steps in any dynamic model:
plxely™") = /P(Xt|Xt1)P(Xt1|yt_1)dXt1
p(xely) o P(Yt‘xt)P(Xt‘yt_l)
Auxiliary = /p(yt|Xt)p(Xt’Xt]_)p(Xt]_|yt_1)dXt]_

particle filter
(APF)

AN
Based on {(xe—1,we-1)},_; ~ p(xe—1]y*):

N
Sample-re: e i
L Blxely ™) o D plxelx ey
i=1

F
sample filters:
APF and OAPF

and

=

pxely") OCZP Yelxe)p xt!xt(’,)l)wgfl.
i=1

10/ AQ



Pitt and Shephard’s (1999) idea

The previous mixture approximation suggests an augmentation
scheme where the new target distribution is

P(xe, kly*) o P(Yt|Xt)P(Xt|X§5)1)W£l:)1~

Auxiliary

Fzgi;;e filter A natural proposal distribution is

q(xe, klyt) oc p(yelg (X)) (e )™,

S where, for instance, g(xt—1) = E(x¢|x¢—1).
filters: BF and
OBF

Resample-
sample filters

o iz By a simple SIR argument, the weight of the particle x; is

p(yelxt)
P(yelg(xe-1))

270 / A8



APF algorithm

Y . _
. {(xt,l,wt,l)(’)}izl summarizes p(x;_1|yt™1).
e Forj=1,....N

e Draw K/ from {1,..., N} with weights {(Z)El_)l,. &M +

NP S
~() () ()

Paxdifery 02y = w1 p(yelg(x:21))
particle filter
(APF) B j

e Draw xt(J) from p(Xt\Xt(fl)).

e Compute associated weight

()
- X

Sample-resample wgJ) x P(}/t| t )
filters: BF and
OBF

(K)\y "
i P(Yt|g(xt71))
Resample-
sample filters
APF and OAPF

. {(Xt,wt)(i)}ll.vzl summarizes p(x:|y?).

e Maybe add a SIR step to replenish x;s.

27T / A8
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Sample-resample filters

@ Sample xg}l from qs(xt+1|x,_p),yt+1);

® Resample XEle from {xtJrl} ', with weights

() p(Yt+1|Xt+1)p(Xt+1’Xt )
t+1 X 0 .
qs( t+1‘Xt 7yt+1)

w

Bootstrap filter (BF)

BF: gs(xt41|xt, Yer1) = p(Xev1|xt) - blinded sampling.
BF: wiy1 = wep(Yet1|xer1) - likelihood function.

Optimal bootstrap filter (OBF)

OBF: gs(Xt41/xt, ye+1) = p(Xet1|Xe, yer1) - perfectly adapted.
OBF: wiy1 = wep(yet1|xt) - predictive density.

297 /A8



Resample-sample filters
@ Resample )”(fi) from {xt(j)}j'\’:l with weights qr(x,fj)|yt+1);

@ Sample (", from a(xe 111547, yeor):

©® New weights

o PO e 1)

t+1 = (i NG :
Qr(Xt( )’)’t+1)qs(X§+)1’Xt( )7)/t+1)

(S

Auxiliary particle filter (APF)
APF: g (xtlye+1) = pyes1lg(xe)) - g(xt) is guess of x¢y1.
o APF: qs(Xeta|xe, yer1) = p(Xe+1[xe) - blinded sampling.

OBF . _ P(Yt+1\Xt+1) H H H
APF: w = Wt 7=y - /Ike/IhOOd ratio.
t+1 tp(yer1le(x))

APF and OAPF
Optimal auxiliary particle filter (OAPF)
OAPF: gr(xt|yt+1) = p(ye+1|xt) - predictive density.
OAPF: G(xe11/1, ye11) = P(xes1lxe, 1) - perfectly adapted.
OAPF: wgﬁl = wg').

27 /A8
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Step-by-step filtering

Consider the nonlinear dynamic model (Gordon et al., 1993):

2
X
BRI
Xt|Xt71 ~ N(g(th]_), 10)

where
X¢—

1
—1) = 0.5x— 25 ———
g(Xt 1) Xt—1 + 1 + thil

+ 8cos(1.2(t — 1))
fort =1,2 and xp = 0.1.

The two simulated observations are y; = 8.385527 and
5.336167.

The prior for xp is N(0, 2).

BF and APF are run based on N = 20 particles.

24 / AS
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The bootstrap filter

Posterior at t=0

Prior at t=1

y(t) att=1

Weights at t=1

Posterior at t=1

Prior at t=2

() att=2

Weights at t=2

Posterior at t=2

1 ERR:t

T
10
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The auxiliary particle filter

Posterior at t=0

() att=1

Resampling weights at t=1

Resample at t=1

Propagation at t=1

Final weights at t=1

Posterior at t=1

(1) at t=2

Resampling weights at t=2

Resample at t=2

Propagation at t=2

Final weights at t=2

Posterior at t=2

oo e cmmm e oo

3

mea 1

T
10
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Example 2: Simulation exercise

Three data sets (72 = (0.25,0.5,0.75)) with n = 100
observations were generated from

Velxe ~ N(xt,az)
Xe|Xe—1 ~ N(a+5xt—1a7'2)

with (a, 8,02) = (0.05,0.95,1.0) and xo = 0.5.
xo ~ N(0.5,10) and true p(x¢|y*) are available in closed form.

R = 20 replications based on N = 1000 particles.

T 4
MAE = > i1 168 — af'l/T.
where g¢ and §{'; are the true and approximate ath percentile
of p(xe|y®).

7
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s: ers
APF and OAPF

Example 2:
AR(1) plus
noise

BF, APF, OBF and OAPF

BF is based on p(x¢|x;—1) and p(y¢|xt).
APF is based on p(x:|x;—1) and
Gr(xe-1lye) = N(pe, 7°),

where y1; = g(x¢—1) = a + Bx¢—1.

OBF and OAPF are based on

p(velxe-1) = N(pe,0” +17°)
p(xelxe-1,y%) = N((1— A)p: + Ay, AUz)

where A = 72/(0? + 72).

299 /A8



s: ers:
APF and OAPF

Example 2:
AR(1) plus
noise

2.5th, 50th and 97.5th percentiles
of p(xe|y’)

Column 1: y; (black) versus x; (red).

Columns 2 and 4: BF and APF (true:black, filter:gray)
Columns 4 and 5: OBF and OAPF (true:black, filter:gray)

o

oy
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Relative MAE

S = 20 datasets
n = 100 observations
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S = 20 datasets

n = 1000 observations

Relative MAE
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Example 2:
AR(1) plus
noise

Empirical findings

BF and OBF are similar.

OAPF is significantly better than APF.

OAPF is uniformly better than BF and OBF.

The above findings are more significant when n = 1000.

The above findings are more pronounced for larger values of 72.

25 /a8
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APF:

100, 000 particles.

n M=

p(xelyt) fort =1,...,
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Sample-resample
filters: BF and
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Resample-
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APF and OAPF

Example 2:
AR(1) plus

noise

APF's resampling proposal is

fN(}/t; g(Xt—1)7 02)-

An alternative (potentially better) proposal is
fu(ye; g(xe—1), 728 (x¢—1)/100 4 o2),

which is based on a 1st order Taylor expansion of
h(x:) = x2/20 around g(x¢_1).

2/
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Another APF:

p(xt|yt) Vt. M = 100,000 particles.

M

hA L
i
M
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Example 2:
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Root MSE:

Based on R = 100 data sets, n = 100 and M = 1,000 particles.

Root MSE is /1 37 (xe — X{)2, where X{ = Er(xly").

Root MSE

T T T
BF APF APF better

2d’ /AR



BF + learning (02, 72):

p(xelyt) fort =1,..., n. M = 1,000,000 particles.

iy
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APF + learning (02, 72):

p(xelyt) fort =1,..., n. M = 1,000,000 particles.
bm :: L‘Jﬂ 1

L

=P




Parameter learning:
p(a?|yt) and p(72|yt) for t = 1,...,n. M = 1,000,000
particles. Left column: BF. Right column: APF.

o o o

o 10 o ® 4w s o 1 2 e o 1 2 B 4
Tine Tine Time
© @ @

Sample-resample

filters: BF and 2l BN

OBF k g

Resample
sample filters 8
APF and OAPF s ER
Example 2:
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. 2 2
noise




Parameter learning:
Root MSE based on R = 100 data sets, n = 100 and
M = 1,000 particles.

Root MSE

Sample-resample
filters: BF and
OBF

Resample-
sample filters
APF and OAPF < -

Example 2:
AR(1) plus
noise

T T T
BF APF APF better
AT/ AS



Sample-resample

filters: BF and
OBF

ilters:
1 OAPF

sam f
APF and
Example 2:
AR(1) plus

noise

p(a?|y™) and p(72|y").
MCMC size=1, 000.

MCMC:

Burn-in=10, 000, Lag=100 and

v g,
~ P A T T}
b L L A E
T T T T T T — T — T
0 20 40 60 800 1000 0 0 15 2 5 2 4 5 8 1 12
Herations Lag
2
&
® < g g
o [T T
] TTT T T A
R T T T T A e o S T
0 20 40 60 800 1000 o s 10 15 2 2 2 4 5 8 0 12 4 16




Comparison:

p(a?|y") and p(72|y™). MCMC is based on burn-in=10, 000,
Lag=100 and MCMC size=1,000. Particle filters are based on

M = 1,000, 000 particles.

Sample-resample .
filters: BF and :
OBF i
i:
Resample- :

sample filters
APF and OAPF

xxxxxxxx

Example 2:

AAAAAAAAA

AR"(I) plus ] ’_H_LL

A4

AS



Nonnormal &
nonlinear
dynamic
models

Boostrap filter
(BF)

Example 1:
Local level
model

Auxiliary
particle filter
(APF)

Sample-
resample and
resample-
sample
filters

Sample-resample
filters: BF and
OBF

Resample-
sample filters:
APF and OAPF

Example 2:
AR(1) plus
noise

Basic
references

Autocorrelation functions for
MCMC draws from p(x|y").

Top graph: based on all 110,000 draws.

Bottom graph: based on 1,000 draws (after burn-in=10, 000

and keeping only 100th draw.

ACF
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0.2
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Example 2:
AR(1) plus
noise

M = 1,000, 000 particles.

000 002 004 005 005 010 012 014

Meme

I

p(xaly™). MCMC is based on burn-in=10, 000, Lag=100 and
MCMC size=1,000. Particle filters are based on

BF

A

APF better

A

A

AR
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2.5th, 50th and 97.5th percentiles of p(x¢|y") for t =1,...,n.
MCMC is based on burn-in=10, 000, Lag=100 and MCMC
size=1,000. True values x;s are the red dots.

| |H | |

ALY
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Sample-resample
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sample filters:
APF and OAPF

Example 2: !
AR(1) plus o
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Sample-resample
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OBF
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APF and OAPF

Basic
references

Basic references

Gordon, Salmond and Smith (1993) Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. Radar and Signal Processing, IEE Proceedings F 140,
107-113.

Pitt and Shephard (1999) Filtering via simulation: auxiliary particle filters.
Journal of the American Statistical Association, 94, 590-599.

Lopes and Tsay (2011) Particle filters and Bayesian inference in financial
econometrics, Journal of Forecasting, 30, 168-209. R code for the examples can
be found in
http://faculty.chicagobooth.edu/hedibert.lopes/research/JForecasting-PF.html
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