Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Sequential Monte Carlo: Parameter Learning

Hedibert Freitas Lopes Professor of Statistics hedibert.org

Insper

<ロト < 団 ト < 臣 ト < 臣 ト 王 2000 1/39

Outline

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

1 Learning θ offline

Example i: local level model

- 2 Liu and West filter
- **3** Particle learning
- 4 Storvik's filter
- **5** Integrating x_{t-1} out

6 PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL Example iii. Sample-resample or PL? Example iv. Computing sequential Bayes factors

Learning θ offline

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Two-step strategy: On the first step, approximate $p(\theta|y^n)$ by

$$p^{N}(\theta|y^{n}) = rac{p^{N}(y^{n}| heta)p(heta)}{p(y^{n})} \propto p^{N}(y^{n}| heta)p(heta)$$

where $p^{N}(y^{n}|\theta)$ is a SMC approximation to $p(y^{n}|\theta)$. Then, on the 2nd step, sample θ via a MCMC scheme or a SIR scheme¹.

Problem 1: SMC looses its appealing sequential nature.

Problem 2: Overall sampling scheme is sensitive to $p^{N}(y|\theta)$.

¹See Fernándes-Villaverde and Rubio-Ramírez (2007) "Estimating Macroeconomic Models: A Likelihood Approach", DeJong, Dharmarajan, Liesenfeld, Moura and Richard (2009) "Efficient Likelihood Evaluation of State-Space Representations" for applications of this two-step strategy to DSGE and related models.

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with star sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

2.5

20

r 12

10

0.5

0

Basic references Example i: Exact integrated likelihood $p(y^n | \sigma^2, \tau^2)$

Let us revisit our 1st order DLM, where $n = 100, x_0 = 0, \sigma^2 = 1, \tau^2 = 0.5$ and $x_0 \sim N(0.0, 100)$ 30 × 30 grid: $\sigma^2 = (0.1, ..., 2)$ and $\tau^2 = (0.1, ..., 3)$

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with sta sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example i: Approximated $p^N(y^n | \sigma^2, \tau^2)$

Based on N = 1000 particles

<ロ> <四> <四> <四> <三</td>

226

Learning θ sequentially

Sequentially learning x_t and θ .

Example i: local level model

Example iii.

Example iv.

Posterior at t :
$$p(x_t|\theta, y^t)p(\theta|y^t)$$

 \Downarrow
Prior at t+1 : $p(x_{t+1}|\theta, y^t)p(\theta|y^t)$
 \Downarrow
osterior at t+1 : $p(x_{t+1}|\theta, y^{t+1})p(\theta|y^{t+1})$

Advantages:

Ρ

Sequential updates of $p(\theta|y^t)$, $p(x_t|y^t)$ and $p(\theta, x_t|y^t)$ Sequential *h*-steps ahead forecast $p(y_{t+h}|y^t)$ Sequential approximations for $p(y_t|y^{t-1})$ Sequential Bayes factors

$$B_{12t} = \frac{\prod_{j=1}^{t} p(y_j | y^{j-1}, M_1)}{\prod_{j=1}^{t} p(y_j | y^{j-1}, M_2)}$$

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Liu and West filter Liu and West (2001) approximates $p(\theta|y^t)$ by

$$p^{N}(\theta|y^{t}) = \sum_{i=1}^{N} \omega_{t}^{(i)} f_{N}(\theta|a\theta_{t}^{(i)} + (1-a)\overline{\theta}_{t}, (1-a^{2})V_{t})$$

where $\bar{\theta}_t$ and V_t approximate the mean and variance of θ , given y^t .

This leads to

$$p(\theta_{t+1}|x_t^{(i)}, \theta_t^{(i)}) = f_N(\theta_{t+1}|a\theta_t^{(i)} + (1-a)\bar{\theta}_t, (1-a^2)V_t)$$

and weights

$$\omega_{t+1}^{(i)} = \omega_t^{(i)} \frac{p(y_{t+1}|(x_{t+1},\theta_{t+1})^{(i)})}{q_1((\tilde{x}_t,\tilde{\theta}_t)^{(i)})|y_{t+1})}.$$

Resampling step

<ロト < 団 ト < 臣 ト < 臣 ト 王 2000 8/39

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integratin x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

$$q_1(x_t,\theta_t|y_{t+1}) = p(y_{t+1}|g(x_t),m(\theta_t))$$

where

$$g(x_t) = E(x_{t+1}|x_t, m(\theta_t))$$

$$m(\theta_t) = a\theta_t + (1-a)\overline{\theta}_t$$

The weights are then

$$\omega_{t+1}^{(i)} = \omega_t^{(i)} \frac{p(y_{t+1}|x_{t+1}^{(i)}, \theta_{t+1}^{(i)})}{p(y_{t+1}|g(\tilde{x}_t^{(i)}), m(\tilde{\theta}_t^{(i)}))}$$

Choice of a

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Liu and West (2001) use a discount factor argument (see West and Harrison, 1997) to set the parameter *a*:

$$a = \frac{3\delta - 1}{2\delta}$$

For example,

- $\delta = 0.50$ leads to a = 0.500
- $\delta = 0.75$ leads to a = 0.833
- $\delta = 0.95$ leads to a = 0.974
- $\delta = 1.00$ leads to a = 1.000.

In the last case, i.e. a = 1.0, the particles of θ will degenerate over time to a single particle.

LW algorithm

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

For particles $\{(x_t, \theta_t, \omega_t)^{(j)}\}_{j=1}^N$ summarizing $p(x_t, \theta|y^t)$, estimates $\bar{\theta}_t = \sum_{i=1}^N \omega_t^{(i)} \theta_t^{(i)}$ and $V_t = \sum_{i=1}^N \omega_t^{(i)} (\theta_t^{(i)} - \bar{\theta}_t) (\theta_t^{(i)} - \bar{\theta}_t)'$, and given shrinkage parameter *a*, the algorithm runs as follows.

• For i = 1, ..., N, compute • $m(\theta_t^{(i)}) = a\theta_t^{(i)} + (1 - a)\overline{\theta}_t$. • $g(x_t^{(i)}) = E(x_{t+1}|x_t^{(i)}, m(\theta_t^{(i)}))$. • $w_{t+1}^{(i)} = p(y_{t+1}|g(x_t^{(j)}), m(\theta_t^{(j)}))$.

• For *i* = 1, ..., *N*

- Resample $(\tilde{x}_t, \tilde{\theta}_t)^{(i)}$ from $\{(x_t, \theta_t, w_{t+1})^{(j)}\}_{j=1}^N$.
- Sample $heta_{t+1}^{(i)} \sim N(m(ilde{ heta}_t^{(i)}), h^2 V_t).$
- Sample $x_{t+1}^{(i)}$ from $p(x_{t+1}|\tilde{x}_t^{(i)}, \theta_{t+1}^{(i)})$.
- Compute weight

$$\omega_{t+1}^{(i)} = \omega_t^{(i)} \frac{p(y_{t+1}|x_{t+1}^{(i)}, \theta_{t+1}^{(i)})}{p(y_{t+1}|g(\tilde{x}_t^{(i)}), m(\tilde{\theta}_t^{(i)}))}.$$

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example ii. State and parameter learning in the NDLM

Let us consider the following NDLM

$$y_t | x_t, \theta \sim N(x_t, \sigma^2)$$

 $x_t | x_{t-1}, \theta \sim N(\alpha + \beta x_{t-1}, \tau^2)$

with
$$x_0 \sim N(m_0, C_0)$$
 and $\theta = (\alpha, \beta, \sigma^2, \tau^2)$.

The optimal resampling distribution is

$$(y_t|x_{t-1},\theta) \sim N(\alpha + \beta x_{t-1},\sigma^2 + \tau^2).$$

The optimal sampling distributions is

$$(x_t|x_{t-1}, y^t, \theta) \sim N((1-A)(\alpha + \beta x_{t-1}) + Ay_t, A\sigma^2)$$

<ロ> <昂> < 言> < 言> 、 言 : 12/3

where
$$A = \tau^2/(\sigma^2 + \tau^2)$$
.

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic reference Example ii. Learning θ Assume that the prior of $\theta = (\alpha, \beta, \tau^2, \sigma)$ is $p(\theta|s_0) = p_{IG}(\sigma^2; n_0/2, n_0\sigma_0^2/2)p_{NIG}(\gamma, \tau^2; g_0, G_0, \nu_0/2, \nu_0\tau_0^2/2),$ where $\gamma = (\alpha, \beta)$ and known $s_0 = (n_0, \sigma_0^2, g_0, G_0, \nu_0, \tau_0^2).$

It follows that

$$\begin{split} p(\theta|s_t) &= p_{IG}(\sigma^2; n_t/2, n_t \sigma_t^2/2) p_{NIG}(\gamma, \tau^2; g_t, G_t, \nu_t/2, \nu_t \tau_t^2/2), \\ \text{where } n_t &= n_{t-1} + 1, \ \nu_t = \nu_{t-1} + 1, \ z_t = (1, x_{t-1})', \\ n_t \sigma_t^2 &= n_{t-1} \sigma_{t-1}^2 + (y_t - x_t)^2 \\ G_t^{-1} &= G_{t-1}^{-1} + z_t z_t' \\ G_t^{-1} g_t &= G_{t-1}^{-1} g_{t-1} + z_t x_t \\ \nu_t \tau_t^2 &= \nu_{t-1} \tau_{t-1}^2 + x_t^2 - g_t' G_t^{-1} g_t \end{split}$$

and

 $s_t = (n_t, \sigma_t^2, g_t, G_t, \nu_t, \tau_t^2) = \mathcal{S}(\underbrace{s_{t-1}, x_{t-1}, x_t, y_t}_{\texttt{C}}).$

Particle learning

For particle set
$$\{(x_{t-1}, s_{t-1}, \theta)^{(i)}\}_{i=1}^N$$
, the algorithm is

1 Resample $(\tilde{x}_{t-1}, \tilde{s}_{t-1}, \tilde{\theta})^{(i)}$ from the above set with weights

$$\omega_t^{(i)} \propto p(y_t | x_{t-1}^{(i)}, \theta^{(i)});$$

2 Sample
$$x_t^{(i)} \sim p(x_t | \tilde{x}_{t-1}^{(i)}, y^t, \tilde{\theta}^{(i)});$$
3 Update $s_t^{(i)} = S(\tilde{s}_{t-1}^{(i)}, \tilde{x}_{t-1}^{(i)}, x_t^{(i)}, y_t);$
4 Sample $\theta^{(i)} \sim p(\theta | s_t^{(i)}).$

Learning θ offline

Example i: local level model

Liu and We filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Storvik's filter

<ロ > < 回 > < 国 > < 国 > < 国 > 目 2000 14/39

Learning θ offline

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references For particle set $\{(x_{t-1}, s_{t-1}, \theta)^{(i)}\}_{i=1}^N$, the algorithm is:

1 Sample $x_t^{(i)} \sim p(x_t | x_{t-1}^{(i)}, y^t, \theta^{(i)});$

2 Resample $(\tilde{x}_{t-1}, \tilde{x}_t, \tilde{s}_{t-1}, \tilde{\theta})^{(i)}$ from the above set with weights

$$\omega_t^{(i)} \propto p(y_t | x_{t-1}^{(i)}, \theta^{(i)});$$

- **3** Update $s_t^{(i)} = S(\tilde{s}_{t-1}^{(i)}, \tilde{x}_{t-1}^{(i)}, \tilde{x}_t^{(i)}, y_t);$
- 4 Sample $\theta^{(i)} \sim p(\theta|s_t^{(i)});$ 5 Set $x_t^{(i)} = \tilde{x}_t^{(i)}.$

See Storvik (2002) and Fearnhead (2002).

Example i: loca level model L

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example III. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Integrating
$$x_{t-1}$$
 out
et $(x_{t-1}|y^{t-1}, \theta) \equiv (x_{t-1}|r_{t-1}, \theta) \sim N(m_{t-1}, C_{t-1})$, where
 $r_{t-1} = (m_{t-1}, C_{t-1}).$

.

Goal: $r_t = \mathcal{R}(r_{t-1}, \theta)$.

The optimal resampling distribution is

$$(y_t|y^{t-1},\theta) \equiv (y_t|r_{t-1},\theta) \sim N(a_t,Q_t)$$

where $a_t = \alpha + \beta m_{t-1}$ and $Q_t = \beta^2 C_{t-1} + \tau^2 + \sigma^2$.

It is easy to see that

$$(x_t|y^t,\theta) \equiv (x_t|y_t,r_{t-1},\theta) \sim N(m_t,C_t)$$

where $m_t = (1 - A_t)a_t + A_ty_t$ and $C_t = A_t\sigma^2$, for $A_t = R_t/Q_t$.

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references However, in order to update s_t (and sample θ) we need to sample

$$(x_{t-1}, x_t) \sim p(x_{t-1}, x_t | y_t, r_{t-1}, \theta)$$

It can be shown that

 $(x_t|x_{t-1}, y_t, r_{t-1}, \theta) \sim \mathcal{N}((1-A)(\alpha + \beta x_{t-1}) + Ay_t, A\sigma^2)$

and

$$(x_{t-1}|y_t, r_{t-1}, \theta) \sim N(v_x, V_x)$$

<ロト<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<16/39

where

$$A = \frac{\tau^2}{(\sigma^2 + \tau^2)}$$

$$V_x^{-1} = C_{t-1}^{-1} + A\tau^{-2}\beta^2$$

$$V_x^{-1}v_x = C_{t-1}m_{t-1} + A\tau^{-2}\beta(y_t - \alpha)$$

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

PL with state sufficient statistics

For particle set
$$\{(r_{t-1}, s_{t-1}, \theta)^{(i)}\}_{i=1}^N$$
, the algorithm is:

1 Resample $(\tilde{r}_{t-1}, \tilde{s}_{t-1}, \tilde{\theta})^{(i)}$ from the above set with weights $\omega_t^{(i)} \propto p(\gamma_t | r_{t-1}^{(i)}, \theta^{(i)});$

<ロト<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<日、<17/39

2 Sample
$$x_{t-1}^{(i)} \sim p(x_{t-1}|y_t, \tilde{r}_{t-1}^{(i)}, \tilde{\theta}^{(i)});$$
3 Sample $x_t^{(i)} \sim p(x_t|x_{t-1}^{(i)}, y_t, \tilde{r}_{t-1}^{(i)}, \tilde{\theta}^{(i)});$
4 Update $s_t^{(i)} = S(\tilde{s}_{t-1}^{(i)}, x_{t-1}^{(i)}, x_t^{(i)}, y_t);$
5 Sample $\theta^{(i)} \sim p(\theta|s_t^{(i)});$
6 Update $r_t^{(i)} = \mathcal{R}(\tilde{r}_{t-1}^{(i)}, \tilde{\theta}^{(i)}).$

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integration x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example ii. Bootstrap filter with learning θ

For particle set $\{(x_{t-1}, s_{t-1}, \theta)^{(i)}\}_{i=1}^N$, the algorithm is:

1 Sample
$$\tilde{x}_{t}^{(i)} \sim p(x_{t}|x_{t-1}^{(i)}, \theta^{(i)});$$

2 Sample $k^{i} \sim \{1, \dots, M\}$ with $\omega_{t}^{(i)} \propto p(y_{t}|\tilde{x}_{t}^{(i)});$
3 Set $x_{t}^{(i)} = \tilde{x}_{t}^{(k^{i})};$
4 Update $s_{t}^{(i)} = S(s_{t-1}^{(k^{i})}, x_{t-1}^{(k^{i})}, x_{t}^{(i)}, y_{t});$
5 Sample $\theta^{(i)} \sim p(\theta|s_{t}^{(i)}).$

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references Example ii. Auxiliary particle filter with learning θ

For particle set $\{(x_{t-1}, s_{t-1}, \theta)^{(i)}\}_{i=1}^N$, the algorithm is:

• Resample $(\tilde{x}_{t-1}, \tilde{s}_{t-1}, \tilde{\theta})^{(i)}$ from the above set with weights $\omega_t^{(i)} \propto p(y_t | g(x_{t-1}^{(i)}), \theta^{(i)});$

2 Sample $\tilde{x}_t^{(i)} \sim p(x_t | \tilde{x}_{t-1}^{(i)}, \tilde{\theta}^{(i)});$ 3 Sample $k^i \sim \{1, \dots, M\}$ with

$$\pi_t^{(i)} \propto p(y_t | \tilde{x}_t^{(i)}, \tilde{\theta}^{(i)}) / \omega_t^{(k^i)};$$

4 Set $x_t^{(i)} = \tilde{x}_t^{(k^i)}$; 5 Update $s_t^{(i)} = S(\tilde{s}_{t-1}^{(k^i)}, \tilde{x}_{t-1}^{(k^i)}, x_t^{(i)}, y_t)$; 6 Sample $\theta^{(i)} \sim p(\theta|s_t^{(i)})$.

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integratin x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example ii. Comparison between LWF, SF and PL

T = 200 obs. simulated from $\theta = (0.0, 0.9, 0.5, 1.0)$ and $x_0 = 0$.

The prior hyperparameters are $m_0 = 0$, $C_0 = 10$, $g_0 = (0.0, 0.9)'$, $G_0 = I_2$, $n_0 = \nu_0 = 10$, $\tau_0^2 = 0.5$ and $\sigma_0^2 = 1.0$.

Each N = 1000 particle filter is replicated R = 100 times.

A very long PL (N = 100000) is run to serve as a benchmark for comparison.

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references Let $q(\gamma, \alpha, t)$ be the 100 α th percentile of $p(\gamma|y^t)$, where γ is an element of θ . We define the root mean squared error as the square root of

$$MSE(\gamma, \alpha, f, t) = \sum_{t,r} [q(\gamma, \alpha, t) - q_{fr}(\gamma, \alpha, t)]^2 / R$$

for filter f in {LW,STORVIK,PL} and replication r = 1, ..., R.

All filters are fully adapted.

• LW differs from PL only through the estimation of θ .

<ロト < 団 ト < 臣 ト < 臣 ト 三 20,00 21/39

- Storvik: sample-resample
- PL: resample-sample

PL and SF are significantly better than the LWF. PL is moderately better than SF.

Learning θ offline

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filte

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

223

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integratin x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example iii. Sample-resample or PL?

Three time series of length T = 1000 were simulated from

$$y_t | x_t, \sigma^2 \sim N(x_t, \sigma^2)$$

 $x_t | x_{t-1}, \tau^2 \sim N(x_{t-1}, \tau^2)$

with $x_0 = 0$ and (σ^2, τ^2) in $\{(0.1, 0.01), (0.01, 0.01), (0.01, 0.01)\}$. Throughout σ^2 is kept fixed.

The independent prior distributions for x_0 and τ^2 are $x_0 \sim N(m_0, V_0)$ and $\tau^2 \sim IG(a, b)$, for a = 10, $b = (a + 1)\tau_0^2$, $m_0 = 0$ and $V_0 = 1$, where τ_0^2 is the true value of τ^2 for a given study.

We also include BBF in the comparison, for completion.

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example iii. Mean absolute error

The three filters are rerun R = 100 times, all with the same seed within run, for each one of the three simulated data sets. Five different number of particles *N* were considered: 250, 500, 1000, 2000 and 5000.

Mean absolute errors (MAE) taken over the 100 replications are constructed by comparing percentiles of the true sequential distributions $p(x_t|y^t)$ and $p(\tau^2|y^t)$ to percentiles of the estimated sequential distributions $p_N(x_t|y^t)$ and $p_N(\tau^2|y^t)$.

For $\alpha = 0.1, 0.5, 0.9$, true and estimated values of $q_{t,\alpha}^x$ and $q_{t,\alpha}^{\tau^2}$ were computed, for $Pr(x_t < q_{t,\alpha}^x | y^t) = Pr(\tau^2 < q_{t,\alpha}^{\tau^2} | y^t) = \alpha$.

For *a* in $\{x, \tau^2\}$ and α in $\{0.01, 0.50, 0.99\}$,

$$MAE_{t,\alpha}^{a} = \frac{1}{R} \sum_{r=1}^{R} |q_{t,\alpha}^{a} - \hat{q}_{t,\alpha,r}^{a}|$$

Ex. iii. M = 500 and learn τ^2 . BBF, sample-resample, PL.

MAE

801 1000

801 1000

Example i: local level model

Example ii.

Example iii. Sample-resample or PL?

200 ann (tau2.sig2.g)=(0.1.0.01.10%) 0.0045 MAE WΕ

Sme

ann

200

0.0012 MAE

> **Sme** (tau2.sig2.g)=(0.1.0.01.50%)

200

200

э

Ex. iii. M = 5000 and learn τ^2 .

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integratin x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

・ロト ・聞ト ・ヨト ・ヨト

э

Ex. iii. M = 500 and learn x_t .

Learning θ offline

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with star sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

◆□▶ ◆圖▶ ◆国▶ ◆国▶

Ex. iii. M = 5000 and learn x_t .

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with star sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

(tau2,sig2,q)=(0.01,0.01,50%)

1000

(tau2.sig2.g)=(0.1.0.01.10%)

(tau2,sig2,q)=(0.01,0.01,10%)

(tau2.sig2.g)=(0.1.0.01.90%)

(tau2,sig2,q)=(0.01,0.01,90%)

time

(tau2.sig2.g)=(0.1.0.01.50%)

・ロト ・聞ト ・ヨト ・ヨト

28/36

æ

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example iv. Computing sequential Bayes factors

A time series y_t is simulated from a AR(1) plus noise model:

$(y_{t+1} x_{t+1},\theta)$	\sim	$N(x_{t+1},\sigma^2)$
$(x_{t+1} x_t, \theta)$	\sim	$N(\beta x_t, \tau^2)$

for t = 1, ..., T.

We set T = 100, $x_0 = 0$, $\theta = (\beta, \sigma^2, \tau^2) = (0.9, 1.0, 0.5)$.

<ロト<団ト<臣ト<臣ト 29/39

 σ^2 and τ^2 are kept known and the independent prior distributions for β and x_0 are both N(0, 1).

Example iv. Simulated data

references

Example ii. Comparison between LWF, SF and PL Example iii.

Sample-resample or PL? Example iv. Computing sequential Bayes factors

Example i: local level model

Time

・ロン ・四 ・ ・ 田 ・ ・ 田 ・ 三田・

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example iv. PL pure filter versus PL

We run two filters:

- PL pure filter our particle learning algorithm for learning x_t and keeping β fixed;
- PL our particle learning algorithm for learning x_t and β sequentially.

<ロト < 団 ト < 臣 ト < 臣 ト 三 つのの 31/39

The filters are based on N = 10,000 particles.

Example iv. PL pure filter versus PL

Xt

β was fixed at the true value.

N -0 ñ 4 PL pure filter PL φ 0 20 40 60 80 100 Time

(日)、

æ

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with sta sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with sta sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example iv. PL - learning β

Example iv. PL - learning β

Comparing $p^{N}(\beta|y^{t})$ with true $p(\beta|y^{t})$.

Learning θ offline

Example i: local level model

Liu and Wes filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example iv. Sequential Bayes factor

Example iv. Posterior model probabilities: 4 models

Time

・ロト ・ 雪 ト ・ ヨ ト

- 2

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filte

Integrating x_{t-1} out

PL with sta sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Example iv. Posterior model probabilities: 31 models

・ロト ・四ト ・ヨト ・ヨト

æ

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filte

Integrating

PL with sta sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references

Basic references

Learning θ offline

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with state sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references Briers, Doucet and Maskell (2010) Smoothing algorithms for state-space models. Annals of the Institute Statistical Mathematics, 62, 61-89.

Carlin and Polson (1991). Inference for Nonconjugate Bayesian Models Using the Gibbs Sampler. The Canadian Journal of Statistics, 19, 399-405.

Carvalho, Johannes, Lopes and Polson (2010) Particle learning and smoothing, Statistical Science, 25, 88-106.

Chen and Liu (2000). Mixture Kalman filter. Journal of the Royal Statistical Society, Series B, 62, 493-508.

Fearnhead (2002). Markov chain Monte Carlo, sufficient statistics and particle filter. Journal of Computational and Graphical Statistics, 11, 848-62.

Fearnhead, Wyncoll and Tawn (2010) A sequential smoothing algorithm with linear computational cost. Biometrika, 97,447-464.

Frühwirth-Schnatter and Frühwirth (2007) Auxiliary mixture sampling with applications to logistic models. Computational Statistics and Data Analysis, 51, 3509-3528.

Godsill SJ, Doucet A, West M. 2004. Monte Carlo smoothing for non-linear time series. Journal of the American Statistical Association, 99, 156-168.

Gordon, Salmond and Smith (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *Radar and Signal Processing, IEE Proceedings F 140*, 107-113.

Example i: local level model

Liu and West filter

Particle learning

Storvik's filter

Integrating x_{t-1} out

PL with stat sufficient statistics

Example ii. Comparison between LWF, SF and PL

Example iii. Sample-resample or PL?

Example iv. Computing sequential Bayes factors

Basic references Hans (2009) Bayesian lasso regression. Biometrika, 96, 835-845.

Kong, Liu and Wong (1994). Sequential imputation and Bayesian missing data problems. Journal of the American Statistical Association, 89, 590-99.

Liu and West (2001) Combined parameters and state estimation in simulation-based filtering. In *Sequential Monte Carlo Methods in Practice* (Eds. A. Doucet, N. de Freitas and N. Gordon). New York: Springer-Verla, 197-223.

Lopes, Carvalho, Johannes and Polson (2011) Particle learning for sequential Bayesian computation (with discussion), Bayesian Statistics 9, 2011, 317-360.

Lopes and Tsay (2011) Particle filters and Bayesian inference in financial econometrics, Journal of Forecasting, 30, 168-209.

Pitt and Shephard (1999) Filtering via simulation: auxiliary particle filters. *Journal of the American Statistical Association*, 94, 590-599.

Prado and West (2010) *Time Series: Modelling, Computation and Inference.* Baton Rouge: Chapman & Hall/CRC.

Storvik (2002) Particle filters in state space models with the presence of unknown static parameters. *IEEE Transactions of Signal Processing*, 50, 281-289.

<ロト < 団 ト < 臣 ト < 臣 ト 三 39/39