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Learning 6 offline

Two-step strategy: On the first step, approximate p(6|y") by

N¢,,n
pM(6ly") = E P o oMot

where p"(y"|#) is a SMC approximation to p(y"|#). Then, on

the 2nd step, sample 8 via a MCMC scheme or a SIR scheme!.

Problem 1: SMC looses its appealing sequential nature.

Problem 2: Overall sampling scheme is sensitive to p"(y|6).

1See Fernandes-Villaverde and Rubio-Ramirez (2007) “Estimating Macroeconomic Models: A Likelihood
Approach”, DeJong, Dharmarajan, Liesenfeld, Moura and Richard (2009) “Efficient Likelihood Evaluation of
State-Space Representations” for applications of this two-step strategy to DSGE and related ‘models.



Example i: Exact integrated
| likelihood p(y"|o?, 72)

level model Let us revisit our 1st order DLM, where
n=100,x) = 0,02 = 1,72 = 0.5 and xg ~ N(0.0,100)
30 x 30 grid: 02 = (0.1,...,2) and 72 = (0.1,...,3)
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Learning 6 sequentially
Sequentially learning x; and 6.

Posterior at t :  p(x¢|0, y")p(0|y")

4
Prior ate t+1 :  p(xt+1|0,y")p(0]y")

N3
Posterior at t+1 p(Xt+1|9,yt+1)P(9’yt+1)

Advantages:

Sequential updates of p(0|y*), p(xt|y*) and p(0, x¢|y*)
Sequential h-steps ahead forecast p(y:+nly?)
Sequential approximations for p(y:|yt 1)

Sequential Bayes factors




nple i: local
level model

Liu and West
filter

Liu and West filter
Liu and West (2001) approximates p(6|y*) by

% Zwt fn (026 + (1 — a)fy, (1 — 2®)V5)

where 0; and V; approximate the mean and variance of 6,
given yt.
This leads to
Oepr|x?, 080 0ri1]a08) + (1 — 2)0, (1 — )V,
p( t+1|Xt ) = fn(Bes1]ads” + (1 —a)f, (1 —a%)Ve)
and weights

() _ 0 PUer| (e, 6e41))
ql((;(’t’et)(l))’yt—f—l)




xample i: local
level model

Liu and West
filter

Resampling step

q1(xe, Ot ye+1) = p(ye+1lg(xe), m(0¢))

g(xt) = E(xet1|xe, m(0¢))
m(0;) = ab;+ (1 — a)d:

The weights are then

(N _ 0 P(yr+1IX§21,0§21)

t ~(7 ~(f
pyer1g(87), m(@))
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Choice of a

Liu and West (2001) use a discount factor argument (see West

and Harrison, 1997) to set the parameter a:

35-1
28

a

For example,

e § = 0.50 leads to a = 0.500
6 = 0.75 leads to a = 0.833
0 = 0.95 leads to a = 0.974
6 = 1.00 leads to a = 1.000.

In the last case, i.e. a = 1.0, the particles of 6 will degenerate
over time to a single particle.

q /20
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LW algorithm
For particles {(Xt,Ht,wt)U)}JN 1 summarizing p(x¢, 0|y*?),
estimates 0; = va LW ()9( and

)
Vi = E, LW ) ( t - ét)(eg’) —0;), and given shrinkage
parameter a, the algorithm runs as follows.

e Fori=1,..., N, compute
. m(eg')—ae“ (l—a) .
g(x") = ECxalx” . m(0

. wﬁﬁl p(yes1lg(x), m(69)).

e Fori=1,...,N _

Resample (;(taet)(i) from {(x¢, O, wey1)V}L,
Sample 0;2, ~ N(m(@:"), 1 VL)

Sample Xt(+)1 from p(Xl’+1|)?§’)791(521)'
Compute weight

G POl 00
t+1 — Wt ) OIS
p(yer1lg (7). m(6;:"))

w




Example ii. State and parameter

learning in the NDLM
<™ Let us consider the following NDLM

Liu and West
filter

Ye|xe, 0~ N(xt, 02)
Xt|Xt_]_,9 ~ N(O[+BXt—17T2)

with xo ~ N(mg, G) and 6 = («, 8,02, 72).

The optimal resampling distribution is

Examp\e i
between LWF, ) )
SF and PL

Sl (velxe—1,0) ~ N(a + Bxt—1,0° + 77).
Sample-resample

or PL?

Example iv
Computing

<quentalBaves The optimal sampling distributions is

factors

(xe|xe-1.¥%,6) ~ N((1 = A)(a + Bxe_1) + Ayr, Ad?),

where A = 72/(0? + 72).

11 /20
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Example ii. Learning 6

Assume that the prior of 8 = (o, 3,72, 0) is

p(0]s0) = pic(a?; no/2, o5 /2)pnic (v, 725 gos Gos v0/2, 1076 /2),
where v = (, 8) and known sy = (no, 03, g0, Go, 10, 74 )-

It follows that

p(0ls:) = pic(?; ne/2, nto? /2)pnic (7, 725 8¢, Ge, ve /2, veTE /2),

where np = ne_1+1, vy =ve1 + 1, ze = (1, xe—1)’,

ntO‘?

Gt
-1
Gt 8t

Vtth

and

2 2
ne_105_1 + (ye — xt)
-1 !
G, +zz,
-1
G, 18t—1 + ztx¢

2 2 ! ~—1
Vi-1Ti_q + Xt — 8:Gr 8t

St = (nt7 Utz'agta Gi’7 Vl’aTt2) — S(Stfluxtflaxtayt)'

175 /20
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Particle learning

For particle set {(x;—1,5:—1,0))}" |, the algorithm is:

@ Resample (X¢—1, 51, 5)(i) from the above set with weights
Wt(rl) X p(yt‘xlgl—)l’ e(i));

® Sample x" ~ p(Xf|Xt 1yt 0y,
© Update st( ) — 5(551)1,%( )1,X§ )7.yt);

© Sample () ~ p(9|s£i)).

13 /20
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Storvik's filter

For particle set {(x;_1,5:—1,0))}_,, the algorithm is:

@ Sample xt ~ p(xt|xt LY yt, 00

® Resample (xt,l,xt,st,l,Q)(i) from the above set with

weights "
1

Wi’ X P(Yt‘x(i)p 9(:‘));

® Update sgi) = S(§£i)1, "t( )1,>~<§ )7yt)
@ Sample 61) ~ p(d]s");
0 Set x" =z,

See Storvik (2002) and Fearnhead (2002).



Integrating x;_1 out

T Let (xe—1]y®™ ! ,0) = (x¢—1|re—1,0) ~ N(m¢—1, Ct—1), where
level model

r—1= (mt—17 Ct—1)~

Goal: ry = R(rtf]_,e).

B The optimal resampling distribution is

(Yt‘ytflve) = ()/t|ft—1,9) ~ N(an Qt)
Example ii
Comparison

between LWF, where a=a+ /Bmt—l and Qt — /B2Ct_1 + 7_2 4 0.2.

SF and PL

Example iii.
Sample-resample
or PL?

E It is easy to see that
(Xt|yta0) = (Xt‘_ytv rt—lve) ~ N(mn Ct)

where my = (]_ —A )at + Ath and Ct = /4[-0'2 for At Rt/Qt-

factors
15 /20
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However, in order to update s; (and sample #) we need to
sample
(xt—1,Xt) ~ p(Xe—1, Xt|yt, re—1,0)

It can be shown that
(Xt’Xt—la}/t’ re—1, 9) ~ N((l - A)(a + ﬁxt—l) + A}/taAUZ)

and
(Xt—l‘ytv ”t—1,9) ~ N(an Vx)
where
A = 72/(c®+7%)
Vit = GL+ AR
Vilve = Cooimi1 + AT 28(y: — )

16 / 20
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PL with state sufficient statistics

For particle set {(r;—1,5:—1,0)D}V , the algorithm is:

©® Resample (7_1,5:_1,0)(") from the above set with weights

Wi oc plye| Py, 00);

® Sample X(i)l ~ p(xe—1|ye, Ft(i)l,@("));
© Sample x\ ~ p(xe|x,, ye, 77, 60);

t—1»
© Update st = 530, xD X 1),

t—19 t_17Xt » Yt
© Sample () ~ p(8]st”);
@ Update rl) = R(#7,, 6(1).

t—1>

17 /20



Example ii. Bootstrap filter with
learning 6

Example i: local
level model

For particle set {(x¢—1,St— 1,9) }, 1 the algorithm is:

® Sample %7 ~ p(x|x";, 00);
sPtuLfchiE:tState @® Sample k' ~ {1,..., M} with wgi) x p(yt|>"<t(i));
k')

e © Set x\) = 1.

between LWF,

SF and PL .

<omple i () (k1) (k) (i)
SR O Update s; ' = S(5;2{, X;_1,X; |, Yt);
Example iv. i )

© Sample 60) ~ p(6]s{).

factors

19 /20
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Example ii. Auxiliary particle filter

with learning 6
For particle set {(x;—1,5:—1,0))} |, the algorithm is:

@ Resample (X¢—1, 51, 0~)(i) from the above set with weights
wi o p(yelg(x™y), 00);

® Sample X,E ~ p(xt|xt 1,9("));
® Sample k' ~ {1,..., M} with

m o plyel%() 80) /),
O Set x,_gi) = N,_gki);
® Update s = S(3), 1) x" ye);
® Sample 0() ~ p(0|s£i)).

10 / 20



Example ii. Comparison between
LWEF, SF and PL

T = 200 obs. simulated from ¢ = (0.0,0.9,0.5,1.0) and
xo = 0.

The prior hyperparameters are mg = 0, Cy = 10,
go = (0.0,0.9), Go = h, no =19 =10, 78 = 0.5 and o = 1.0.

Comporzon

between LWF, . . . . .

SF and PL Each N = 1000 particle filter is replicated R = 100 times.
et

Sample-resample

A very long PL (N = 100000) is run to serve as a benchmark
for comparison.

20 / 2



Example i: local
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Example ii.
Comparison
between LWF,
SF and PL

m

Let g(7, , t) be the 100ath percentile of p(vy|y*), where v is
an element of . We define the root mean squared error as the
square root of

MSE (v, o, f, t) Z[q (v, t) — gg (v, o, 1)]?/R

for filter f in {LW,STORVIK,PL} and replication r =1,...,R.

All filters are fully adapted.
e LW differs from PL only through the estimation of 6.
e Storvik: sample-resample

e PL: resample-sample

271 /
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PL and SF are significantly better than the LWF.

PL is

Root MSE

Root MSE
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Example iii. Sample-resample or
PL?

Three time series of length T = 1000 were simulated from

)/t|Xta o ~ N(Xtv 02)

Xt|Xt—17 %~ N(Xt—lv 7'2)

with xp = 0 and (02, 72) in
{(0.1,0.01),(0.01,0.01),(0.01,0.1)}. Throughout o is kept
fixed.

The independent prior distributions for xg and 72 are

xo ~ N(mg, Vo) and 72 ~ IG(a, b), for a =10, b= (a + 1)7&,
mg = 0 and Vy = 1, where 7'02 is the true value of 72 for a
given study.

We also include BBF in the comparison, for completion.

In all filters 72 is sampled offline from p(72|S;) where S; is the
vector of conditional sufficient statistics:

27 /
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Example iii. Mean absolute error

The three filters are rerun R = 100 times, all with the same
seed within run, for each one of the three simulated data sets.
Five different number of particles N were considered: 250, 500,
1000, 2000 and 5000.

Mean absolute errors (MAE) taken over the 100 replications
are constructed by comparing percentiles of the true sequential
distributions p(x¢|yt) and p(72|y?) to percentiles of the
estimated sequential distributions py(x¢|y®) and pn(72|y?).

For a =0.1,0.5,0.9, true and estimated values of g, and q{l
were computed, for Pr(x; < q¥,|y*) = Pr(m? < q[fa]yt) = a.

For ain {x,72} and « in {0.01,0.50,0.99},

R
1 N
MAE?,a = E Z |qta,a - q?,a,r
r=1

24 /
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Ex. iii. M = 5000 and learn 72.
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Ex. iii. M = 5000 and learn x;.
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Example iv. Computing sequential
Bayes factors

A time series y; is simulated from a AR(1) plus noise model:

(YestlXer1,0) ~ N(xer1,07)
(Xt+1|Xt,9) ~ /V(ﬁXt,T2)

fort=1,...,T.
We set T =100, xo = 0, 8 = (3,02,72) = (0.9,1.0,0.5).

o2 and 72 are kept known and the independent prior
distributions for 5 and xo are both N(0, 1).

20 /20
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Example iv. Simulated data

y(t) and x(t)

40 60 80 100

Time
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Example iv. PL pure filter versus
PL

We run two filters:
e PL pure filter - our particle learning algorithm for learning
x¢ and keeping [ fixed;
e PL - our particle learning algorithm for learning x; and
sequentially.

The filters are based on N = 10,000 particles.

271 / 2



Learning 6
offline

Example i: local
level model

Liu and West
filter

Particle
learning

Storvik's filter

Integrating
Xt_—1 out

PL with state
sufficient
statistics
Example ii
Comparison
between LWF,
SF and PL
Example iii.
Sample-resample
or PL?

Example iv.
Computing
sequential Bayes
factors

Basic
references

(8 was fixed at the true value.

-2

-4

-6

Example iv. PL pure filter versus
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