A bit of history

methods

MC integration

MC via IS

Rejection method

SIR method

3-component

mixture

2-componen mixture

Monte Carlo Methods

Hedibert Freitas Lopes
Professor of Statistics
hedibert.org

Insper

Outline

history

Monte Carlo methods

nicegratio

Rejection

SIR method

3-componer mixture

2-component

- 1 A bit of history
- 2 Monte Carlo methods
- **3** MC integration
- 4 MC via IS
- 6 Rejection method
- 6 SIR method
- Examples3-component mixture
 - 2-component mixture
- 8 References

A bit of history

Monte Carlo methods

integratio

MC via I

Rejectio method

SIK method

3-componer mixture

mixture

MC in the 40s and 50s

Stan Ulam soon realized that computers could be used in this fashion to answer questions of neutron diffusion and mathematical physics;

He contacted John Von Neumann and they developed many Monte Carlo algorithms (importance sampling, rejection sampling, etc);

In the 1940s Nick Metropolis and Klari Von Neumann designed new controls for the state-of-the-art computer (ENIAC);

Metropolis and Ulam (1949) The Monte Carlo method. *Journal of the American Statistical Association*. Metropolis *et al.* (1953) Equations of state calculations by fast computing machines. *Journal of Chemical Physics*.

Monte Carlo methods

Monte Carlo

methods MC

MC via IS

Rejection method

SIR method

3-component

2-component

Reference

We introduce several Monte Carlo (MC) methods for integrating and/or sampling from nontrivial densities.

- MC integration
 - Simple MC integration
 - MC integration via importance sampling (IS)
- MC sampling
 - · Rejection method
 - Sampling importance resampling (SIR)
- Iterative MC sampling
 - · Metropolis-Hastings algorithms
 - Simulated annealing
 - Gibbs sampler

Based on the book by Gamerman and Lopes (1996).

A few references

A bit of history

Monte Carlo methods

MC integration

Rejection method

SIR method

3-componen

2-componen

- MC integration (Geweke, 1989)
- Rejection methods (Gilks and Wild, 1992)
- SIR (Smith and Gelfand, 1992)
- Metropolis-Hastings algorithm (Hastings, 1970)
- Simulated annealing (Metropolis et al., 1953)
- Gibbs sampler (Gelfand and Smith, 1990)

Rejection method

SIR method

JIK IIIetilot

3-compone

mixture 2-componen

Reference

1 Compute high dimensional integrals:

$$E_{\pi}[h(\theta)] = \int h(\theta)\pi(\theta)d\theta$$

Obtain

a sample
$$\{\theta_1,\ldots,\theta_n\}$$
 from $\pi(\theta)$

when only

a sample
$$\{\tilde{\theta}_1,\ldots,\tilde{\theta}_m\}$$
 from $q(\theta)$

is available.

 $q(\theta)$ is known as the proposal/auxiliary density.

Bayes via MC

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MC methods appear frequently, but not exclusively, in modern Bayesian statistics.

Posterior and predictive densities are hard to sample from:

Posterior :
$$\pi(\theta) = \frac{f(x|\theta)p(\theta)}{f(x)}$$

Predictive :
$$f(x) = \int f(x|\theta)p(\theta)d\theta$$

Other important integrals and/or functionals of the posterior and predictive densities are:

- Posterior modes: $\max_{\theta} \pi(\theta)$;
- Posterior moments: $E_{\pi}[g(\theta)]$;
- Density estimation: $\hat{\pi}(g(\theta))$;
- Bayes factors: $f(x|M_0)/f(x|M_1)$;
- Decision: $\max_d \int U(d,\theta)\pi(\theta)d\theta$.

A bit o

Monte Carlo methods

integration

Rejection method

SIR method

3-componer mixture

2-componen mixture

MC integration

history

Monte Carlo methods

MC integration

MC via IS

Rejection method

SIR method

3-compone

2-componen

References

The objective here is to compute moments

$$E_{\pi}[h(\theta)] = \int h(\theta)\pi(\theta)d\theta$$

If $\theta_1, \ldots, \theta_n$ is a random sample from $\pi(\cdot)$ then

$$ar{h}_{mc} = rac{1}{n} \sum_{i=1}^{n} h(heta_i)
ightarrow E_{\pi}[h(heta)] \qquad ext{as } n
ightarrow \infty.$$

If, additionally, $E_{\pi}[h^2(\theta)] < \infty$, then

$$V_{\pi}[\bar{h}_{mc}] = \frac{1}{n} \int \{h(\theta) - E_{\pi}[h(\theta)]\}^2 \pi(\theta) d\theta$$

and

$$v_{mc}=rac{1}{n^2}\sum_{i=1}^n(h(heta_i)-ar{h}_{mc})^2
ightarrow V_{\pi}[ar{h}_{mc}] \qquad ext{as } n
ightarrow \infty.$$

Example i.

history

methods

MC integration

Rejection

CID

SIK method

3-componen

mixture

2-compone mixture The objective here is to compute¹

$$p = \int_0^1 [\cos(50\theta) + \sin(20\theta)]^2 d\theta$$

by noticing that the above integral can be rewritten as

$$E_{\pi}[h(\theta)] = \int h(\theta)\pi(\theta)d\theta$$

where $h(\theta) = [\cos(50\theta) + \sin(20\theta)]^2$ and $\pi(\theta) = 1$ is the density of a U(0,1). Therefore

$$\hat{\rho} = \frac{1}{n} \sum_{i=1}^{n} h(\theta_i)$$

where $\theta_1, \ldots, \theta_n$ are i.i.d. from U(0, 1).

¹True value is 0.965.

MC integration

3-component mixture

2-component mixture

The objective is still the same, ie to compute

$$E_{\pi}[h(\theta)] = \int h(\theta)\pi(\theta)d\theta$$

by noticing that

$$E_{\pi}[h(\theta)] = \int \frac{h(\theta)\pi(\theta)}{q(\theta)}q(\theta)d\theta$$

where $q(\cdot)$ is an importance function.

Reference

If $\theta_1, \ldots, \theta_n$ is a random sample from $q(\cdot)$ then

$$\Rightarrow \bar{h}_{i\mathsf{s}} = \frac{1}{n} \sum_{i=1}^n \frac{h(\theta_i) \pi(\theta_i)}{q(\theta_i)} \to \mathcal{E}_{\pi}[h(\theta)]$$

as $n \to \infty$.

Ideally, $q(\cdot)$ should be

- As *close* as possible to $h(\cdot)\pi(\cdot)$, and
- Easy to sample from.

A bit of history

methods

MC via IS

Rejection

SIR method

on concense

3-compone

mixture 2-componer

Reference

The objective here is to estimate

$$p = Pr(\theta > 2) = \int_{2}^{\infty} \frac{1}{\pi(1+\theta^{2})} d\theta = 0.1475836$$

where θ is a standard Cauchy random variable.

A natural MC estimator of p is

$$\hat{p}_1 = \frac{1}{n} \sum_{i=1}^n I\{\theta_i \in (2, \infty)\}$$

where $\theta_1, \ldots, \theta_n \sim \text{Cauchy}(0,1)$.

References

A more elaborated estimator based on a change of variables from θ to $u=1/\theta$ is

$$\hat{p}_2 = \frac{1}{n} \sum_{i=1}^{n} \frac{u_i^{-2}}{2\pi [1 + u_i^{-2}]}$$

where $u_1, \ldots, u_n \sim U(0, 1/2)$.

References

The true value is p = 0.147584.

n	$\hat{ ho}_1$	\hat{p}_2	$v_1^{1/2}$	$v_2^{1/2}$
100	0.100000	0.1467304	0.030000	0.001004
1000	0.137000	0.1475540	0.010873	0.000305
10000	0.148500	0.1477151	0.003556	0.000098
100000	0.149100	0.1475591	0.001126	0.000031
1000000	0.147711	0.1475870	0.000355	0.000010

With only n=1000 draws, \hat{p}_2 has roughly the same precision that \hat{p}_1 , which is based on 1000n draws, ie. three orders of magnitude.

Rejection method

The objective is to draw from a target density

$$\pi(\theta) = c_{\pi}\tilde{\pi}(\theta)$$

when only draws from an auxiliary density

$$q(\theta) = c_q \tilde{q}(\theta)$$

is available, for normalizing constants c_{π} and c_{q} .

If there exist a constant $A < \infty$ such that

$$0 \leq rac{ ilde{\pi}(heta)}{A ilde{q}(heta)} \leq 1 \;\; ext{for all} \; heta$$

then $q(\theta)$ becomes a *blanketing density* or an *envelope* and A the *envelope constant*.

A bit of history

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

3-componer mixture

2-componen mixture

A bit of

Monte Carlo

MC

Rejection method

SID mothod

3-componer

mixture

2-componen mixture

IIIALUIC

Blanket distribution

Bad draw

history

MC ..

MC ..:. IC

Rejection method

SIR method

3-componer

mixture

2-componer mixture

Good draw

history

MC integration

MC via IS

Rejection method

SIR method

_ .

3-componer

mixture

mixture

A bit of

Monte Carlo

MC integration

Rejection method

SID mothor

3117 method

3-componer

3-componer mixture

2-componen

References

Acceptance probability

Reference

Drawing from $\pi(\theta)$.

- **1** Draw θ^* from $q(\cdot)$;
- 2 Draw u from U(0,1);
- **3** Accept θ^* if $u \leq \frac{\tilde{\pi}(\theta^*)}{A\tilde{g}(\theta^*)}$;
- 4 Repeat 1, 2 and 3 until n draws are accepted.

Normalizing constants c_{π} and c_{q} are not needed.

The theoretical acceptance rate is $\frac{c_q}{Ac_{\pi}}$.

The smaller the A, the larger the acceptance rate.

Example iii.

history

MC

integratio

Rejection method

SIR method

3-compone mixture

mixture 2-componen mixture

Reference

Enveloping the standard normal density

$$\pi(\theta) = \frac{1}{\sqrt{2\pi}} \exp\{-0.5\theta^2\}$$

by a Cauchy density $q_C(\theta) = 1/(\pi(1+\theta^2))$, or a uniform density $q_U(\theta) = 0.05$ for $\theta \in (-10, 10)$.

Bad proposal: The maximum of $\pi(\theta)/q_U(\theta)$ is roughly $A_U=7.98$ for $\theta\in(-10,10)$. The theoretical acceptance rate is 12.53%.

Good proposal: The max of $\pi(\theta)/q_C(\theta)$ is equal to $A_C = \sqrt{2\pi/e} \approx 1.53$. The theoretical acceptance rate is 65.35%.

A bit of history

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

3-compone

mixture 2-componer

Reference

Empirical rates: 0.1265 (Uniform) and 0.6483 (Cauchy) Theoretical rates: 0.1253 (Uniform) and 0.6535 (Cauchy)

References

No need to rely on the existance of A!

Algorithm

- **1** Draw $\theta_1^*, \dots, \theta_n^*$ from $q(\cdot)$
- 2 Compute (unnormalized) weights

$$\omega_i = \pi(\theta_i^*)/q(\theta_i^*)$$
 $i = 1, \ldots, n$

3 Sample θ from $\{\theta_1^*, \dots, \theta_n^*\}$ such that

$$Pr(\theta = \theta_i^*) \propto \omega_i$$
 $i = 1, ..., n$.

4 Repeat *m* times step 3.

Rule of thumb: n/m = 20. Ideally, $\omega_i = 1/n$ and $Var(\omega) = 0$.

Example iii. revisited

Monte Carlo

MC integration

integratio

Rejection method

SIR method

3-componer

mixture 2-componer

Reference

Fraction of redraws: 0.391 (Uniform) and 0.1335 (Cauchy) Variance of weights: 4.675 (Uniform) and 0.332 (Cauchy)

mixture

Assume that we are interested in sampling from

$$\pi(\theta) = \alpha_1 p_N(\theta; \mu_1, \Sigma_1) + \alpha_2 p_N(\theta; \mu_2, \Sigma_2) + \alpha_3 p_N(\theta; \mu_3, \Sigma_3)$$

where $p_N(\cdot; \mu, \Sigma)$ is the density of a bivariate normal distribution with mean vector μ and covariance matrix Σ . The mean vectors are

$$\mu_1 = (1,4)'$$
 $\mu_2 = (4,2)'$ $\mu_3 = (6.5,2),$

the covariance matrices are

$$\Sigma_1 = \left(\begin{array}{cc} 1.0 & -0.9 \\ -0.9 & 1.0 \end{array} \right) \ \ \text{and} \ \ \Sigma_2 = \Sigma_3 = \left(\begin{array}{cc} 1.0 & -0.5 \\ -0.5 & 1.0 \end{array} \right),$$

and weights $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$.

Target $\pi(\theta)$

A bit of history

MC

integration

Rejection method

SIR method

3-component mixture

2-component mixture

A bit of history

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

Evamples

3-component mixture

2-component mixture

References

Target $\pi(\theta)$

Proposal $q(\theta)$

 $q(\theta) \sim N(\mu, \Sigma)$ where

$$\mu_2 = (4,2)'$$
 and $\Sigma = 9 \begin{pmatrix} 1.0 & -0.25 \\ -0.25 & 1.0 \end{pmatrix}$

A bit of

Monte Carlo

MC

MC via IS

method

SIR method

3-component mixture

2-componen

mixture

A bit of

Monte Carlo

MC integration

Poinction

SIK method

3-component mixture

2-componer

Reference

Rejection method

Acceptance rate: 9.91% of n = 10,000 draws.

SIR method

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

3-component

mixture 2-componen

.....

Fraction of redraws: 29.45% of (n = 10,000, m = 2,000).

Rejection & SIR

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

Examples

3-component mixture

2-component mixture

Example v. 2-component mixture

history

methods

MC integration

Rejection

SIR method

3-componen mixture

2-component mixture

IIIIXture

Let us now assume that

$$\pi(\theta) = \alpha_1 p_N(\theta; \mu_1, \Sigma_1) + \alpha_3 p_N(\theta; \mu_3, \Sigma_3)$$

where mean vectors are

$$\mu_1 = (1,4)'$$
 $\mu_3 = (6.5,2),$

the covariance matrices are

$$\Sigma_1 = \left(\begin{array}{cc} 1.0 & -0.9 \\ -0.9 & 1.0 \end{array} \right) \ \text{ and } \ \Sigma_3 = \left(\begin{array}{cc} 1.0 & -0.5 \\ -0.5 & 1.0 \end{array} \right),$$

and weights $\alpha_1 = 1/3$ and $\alpha_3 = 2/3$.

Target $\pi(\theta)$

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

Examples

3-component

2-component mixture

A bit of history

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

3-component

2-component mixture

References

Target $\pi(\theta)$

Proposal $q(\theta)$

Monte Carlo

MC integration

Rejection

CID

JIIV IIICEIIOC

3-componen

2-component mixture

A bit of

Monte Carlo

MC integratio

Rejection

SIR method

3-componer

2-component

Defenses

Rejection method

Acceptance rate: 10.1% of n = 10,000 draws.

SIR method

Monte Carlo

MC integration

MC via IS

Rejection method

SIR method

3-componer

2-component mixture

Defenses

Fraction of redraws: 37.15% of (n = 10,000, m = 2,000).

Rejection & SIR

Monte Carlo

MC integration

Dalastian

method

SIR method

3-componer

2-component mixture

- nistory
- methods
- integration
-
- method
- SIR method
- .
- 3-componer mixture
- 2-component mixture
- References

- Metropolis and Ulam (1949) The Monte Carlo method. JASA, 44, 335-341.
- Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, Number 21, 1087-1092.
- 3 Hastings (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
- Peskun (1973) Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60, 607-612.
- Besag (1974) Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36, 192-236.
- 6 Geman and Geman (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
- 7 Jennison (1993) Discussion of the meeting on Gibbs sampling and other Markov chain Monte Carlo methods. JRSS-B, 55, 54-6.
- 8 Kirkpatrick, Gelatt and Vecchi (1983) Optimization by simulated annealing. Science, 220, 671-80.
- 9 Pearl (1987) Evidential reasoning using stochastic simulation. Articial Intelligence, 32, 245-257.
- Tanner and Wong (1987) The calculation of posterior distributions by data augmentation. JASA, 82, 528-550.
- Geweke (1989) Bayesian inference in econometric models using Monte Carlo integration. Econometrica, 57, 1317-1339.
- Gelfand and Smith (1990) Sampling-based approaches to calculating marginal densities, JASA, 85, 398-409.
- Casella and George (1992) Explaining the Gibbs sampler. The American Statistician,46,167-174.
- Morita and Gelfand (1992) Bayesian statistics without tears: a sampling-resampling perspective. American Statistician, 46, 84-88.
- Gilks and Wild (1992) Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-48.
 - Chib and Greenberg (1995) Understanding the Metropolis-Hastings algorithm. The American Statistician, 49, 327-335.
- Dongarra and Sullivan (2000) Guest editors' introduction: The top 10 algorithms. Computing in Science and Engineering, 2, 22-23.