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MC in the 40s and 50s

A bit of
history

Stan Ulam soon realized that computers could be used in this
fashion to answer questions of neutron diffusion and
mathematical physics;

He contacted John Von Neumann and they developed many
Monte Carlo algorithms (importance sampling, rejection
3-component sampling, etc);

mixture

2-component
mixture

In the 1940s Nick Metropolis and Klari Von Neumann designed
new controls for the state-of-the-art computer (ENIAC);

Metropolis and Ulam (1949) The Monte Carlo method. Journal of the American Statistical Association.
Metropolis et al. (1953) Equations of state calculations by fast computing machines. Journal of Chemical
Physics.
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Monte Carlo methods

We introduce several Monte Carlo (MC) methods for
integrating and/or sampling from nontrivial densities.

e MC integration

e Simple MC integration
e MC integration via importance sampling (IS)

e MC sampling

e Rejection method

e Sampling importance resampling (SIR)
e |terative MC sampling

e Metropolis-Hastings algorithms
e Simulated annealing
o Gibbs sampler

Based on the book by Gamerman and Lopes (1996).
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MC integration (Geweke, 1989)

o Rejection methods (Gilks and Wild, 1992)

SIR (Smith and Gelfand, 1992)
Metropolis-Hastings algorithm (Hastings, 1970)

SIR method

Examples
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Simulated annealing (Metropolis et al., 1953)
Gibbs sampler (Gelfand and Smith, 1990)
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Two main tasks

Monte Carlo

methods @ Compute high dimensional integrals:

E.[h(0)] = / h(0)r(6)do

® Obtain
a sample {01, ...,0n} from w(0)
when only
a sample {01, ...,0,} from q(0)
is available.

q(0) is known as the proposal/auxiliary density.
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Bayes via MC

MC methods appear frequently, but not exclusively, in modern
Monte Carlo Bayesian statistics.

methods

Posterior and predictive densities are hard to sample from:

Posterior : 7(0) = f(XJC?))f;(Q)

Predictive f(x):/f(x|0)p(c9)d9

Other important integrals and/or functionals of the posterior
and predictive densities are:

e Posterior modes: maxy 7(6);
e Posterior moments: E;[g(0)];

Density estimation: 7(g(0));
Bayes factors: f(x|Mp)/f(x|M1);
Decision: maxy [ U(d, 0)7(0)d6.
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MC
integration

MC integration

The objective here is to compute moments

E.[h(0)] = / h(0)7(0)d0

If 61,...,0, is a random sample from () then

n

Fine — %Z h6;) = EA[h(6)]  as n— .
i=1

If, additionally, E;[h?(6)] < oo, then

Vellime] = / {h(0) — EA[H(0)]}27(0)do

and

1 ¢ - -
Vme = — Z(h(@,-) — hme)? = Vie[hme] as n — oo.

i=1



Example i.

The objective here is to compute?

1
mc p= / [cos(500) + sin(200)]2d6
integration 0

by noticing that the above integral can be rewritten as

E.[h(0)] = / h(0)x(0)d0

where h(6) = [cos(500) + sin(200)]? and 7(#) = 1 is the
density of a U(0,1). Therefore

where 01,...,60, are i.i.d. from U(0,1).
True value is 0.965.
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MC via IS

The objective is still the same, ie to compute

MC via IS

EL[h(0)] = / h(0)=(0)d0
by noticing that

etno = [ Om D q)a0

where g(-) is an importance function.
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If 61,...,0, is a random sample from g(-) then

- 1 h(6;)m(6;
o = Fe= 30 MO £ o

as n — oQ.

Ideally, g(-) should be

e As close as possible to h(-)m(-), and

e Easy to sample from.
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Example ii.

The objective here is to estimate

ee 1
MC via IS p = Pr(@ > 2) = /; mda = 01475836

where 0 is a standard Cauchy random variable.

A natural MC estimator of p is

1 n
== 1{6; (2,
= 210 € (2.)

where 01, ...,60, ~ Cauchy(0,1).

13/ A0



A more elaborated estimator based on a change of variables

_ fromfOtou=1/0is
MC via IS

3-component
where vz, ..., u, ~ U(0,1/2).
mixture
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The true value is p = 0.147584.

, A P
100 0.100000 0.1467304 0.030000 0.001004

MC via IS

1000 0.137000 0.1475540 0.010873 0.000305
10000 0.148500 0.1477151 0.003556 0.000098
100000 | 0.149100 0.1475591 0.001126 0.000031
1000000 | 0.147711 0.1475870 0.000355 0.000010

With only n = 1000 draws, p» has roughly the same precision
that p1, which is based on 1000n draws, ie. three orders of
magnitude.
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Rejection method
The objective is to draw from a target density
7(0) = c,7(0)
when only draws from an auxiliary density

a(0) = cai(0)

Rejection
method

3-component is available, for normalizing constants ¢, and c¢,.

mixture

2-component
mixture

If there exist a constant A < oo such that

#(6)
0= A4(6)

<1 forall @

then g(0) becomes a blanketing density or an envelope and A
the envelope constant.
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Blanket distribution
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Acceptance probability
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Acceptance probability
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Rejection
method

3-component
mixture
2-component
mixture

Algorithm

Drawing from 7(6).
@ Draw 6* from q(-);
® Draw v from U(0,1);
© Accept 0" if u < 25%3);
O Repeat 1, 2 and 3 until n draws are accepted.

Normalizing constants ¢, and ¢4 are not needed.

The theoretical acceptance rate is ACT".

The smaller the A, the larger the acceptance rate.
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Example iii.

Enveloping the standard normal density

1
7(0) = Wor exp{—0.560%}
method by a Cauchy density gc(6) = 1/(m(1 + 6?)), or a uniform

density qy(#) = 0.05 for 6§ € (—10, 10).

Bad proposal: The maximum of 7(6)/qu(0) is roughly
Ay =7.98 for 6 € (—10,10). The theoretical acceptance rate
is 12.53%.

Good proposal: The max of m(0)/qc(0) is equal to
Ac = y/27m/e =~ 1.53. The theoretical acceptance rate is
65.35%.
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Empirical rates: 0.1265 (Uniform) and 0.6483 (Cauchy)
Theoretical rates: 0.1253 (Uniform) and 0.6535 (Cauchy)
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SIR method

No need to rely on the existance of Al

Algorithm
® Draw 07,...,6;, from q(-)
® Compute (unnormalized) weights

SIR method Wi :7‘(‘(0;.()/(](0;‘() I = 1,...,”

® Sample 6 from {07,...,6}} such that

Pr(6 = 07) x wj i=1,...,n.
O Repeat m times step 3.

Rule of thumb: n/m = 20.
Ideally, w; =1/n and Var(w) = 0.
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Example iii. revisited

UNIFORM PROPOSAL CAUCHY PROPOSAL

0.4
04

SIR method

0.2
0.2

0.0
0.0

Fraction of redraws: 0.391 (Uniform) and 0.1335 (Cauchy)
Variance of weights: 4.675 (Uniform) and 0.332 (Cauchy)
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Example iv. 3-component mixture

Assume that we are interested in sampling from

7(0) = capn(8; p1, X1) + copn(0; pi2, X2) + azpn(0; 13, X3)

where py(-; i, X) is the density of a bivariate normal
distribution with mean vector p and covariance matrix . The
mean vectors are

3-component

pr=(1,4) p2=(4,2) pz=(65,2),

the covariance matrices are

1.0 -0.9 1.0 -05
1= < 09 1.0 ) and 2p=123= < —05 1.0 )
and weights a3 = ap = a3 = 1/3.

296 / A0
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Target 7(0)
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Proposal g(6)

3-component
mixture

2-component
mixture

q(0) ~ N(p,X) where

= (4.2) and Z:9< 1.0 —0.25>

—-0.25 1.0
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Rejection method

3-component P
mixture

2-component

mixture

Acceptance rate: 9.91% of n = 10,000 draws.
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3-component
mixture
2-component
mixture

SIR method

Fraction of redraws: 29.45% of (n = 10,000, m = 2,000).
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Example v. 2-component mixture

Let us now assume that
7(0) = a1pn(8; p1, 1) + azpn(8; 3, T3)
where mean vectors are

H1 = (174)/ H3 = (6572)7

3-component
mixture

Bzt the covariance matrices are

10 —09 10 —05
21= ( 09 1.0 > and >3 = < 05 1.0 >

and weights oy = 1/3 and a3 = 2/3.

27T /A0
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Proposal g(6)
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Rejection method

3-component - .
mixture

2-component

mixture

Acceptance rate: 10.1% of n = 10,000 draws.
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SIR method

3-component - .
mixture

2-component

mixture

Fraction of redraws: 37.15% of (n = 10,000, m = 2,000).
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