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a b s t r a c t

In this paper, we develop methods for estimation and forecasting in large time-varying parameter vector
autoregressive models (TVP-VARs). To overcome computational constraints, we draw on ideas from the
dynamic model averaging literature which achieve reductions in the computational burden through the
use forgetting factors. We then extend the TVP-VAR so that its dimension can change over time. For
instance, we can have a large TVP-VAR as the forecastingmodel at some points in time, but a smaller TVP-
VAR at others. A final extension lies in the development of a newmethod for estimating, in a time-varying
manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions
are operationalized through the use of forgetting factor methods and are, thus, computationally simple.
An empirical application involving forecasting inflation, real output and interest rates demonstrates the
feasibility and usefulness of our approach.
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1. Introduction

Many recent papers (see, among many others, Banbura et al.,
2010; Carriero et al., 2011, 2009;Giannone et al., 2010; Koop, 2013)
have found large VARs, which have dozens or even hundreds of
dependent variables, to forecast well.1 In this literature, the re-
searcher typically works with a single large VAR and assumes it is
homoskedastic and its coefficients are constant over time. In con-
trast to the large VAR literature, with smaller VARs there has been
much interest in extending traditional (constant coefficient, ho-
moskedastic) VARs in two directions. First, researchers often find
it empirically necessary to allow for parameter change. That is, it
is common to work with TVP-VARs where the VAR coefficients
evolve over time and multivariate stochastic volatility is present
(see, among many others, Cogley and Sargent, 2005; Cogley et al.,
2005; Primiceri, 2005; Koop et al., 2009; Canova and Forero, 2012).
Second, there also may be a need for model change: to allow for
switches between different restricted TVPmodels so as tomitigate
over-parametrizationworrieswhich can arisewith parameter-rich
unrestricted TVP-VARs (e.g. Chan et al. (2012)). The question arises
as to whether these two sorts of extensions can be done with large
TVP-VARs. This paper attempts to address this question.

∗ Correspondence to: Department of Economics, University of Strathclyde, 130
Rottenrow, Glasgow G4 0GE, United Kingdom.

E-mail address: Gary.Koop@strath.ac.uk (G. Koop).
1 The definition of what constitutes a ‘‘large’’ VAR varies across papers. For

instance, Banbura et al. (2010)’s large VARhas 131 dependent variables and Carriero
et al. (2009)’s has 33. The largest VAR used in our paper has 25 dependent variables.
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Unfortunately, existing TVP-VAR methods used with small
dimensionalmodels cannot easily be scaled up to handle large TVP-
VARs with heteroskedastic errors. The main reason this is so is
computation. With constant coefficient VARs, variants of the Min-
nesota prior are typically used. With this prior, the posterior and
predictive densities have analytical forms and MCMCmethods are
not required. With TVP-VARs MCMC methods are required to do
exact Bayesian inference. Even the small (trivariate) TVP-VAR re-
cursive forecasting exercises of D’Agostino et al. (2011) and Koro-
bilis (2013) were hugely computationally demanding. Forecasting
with large TVP-VARs is typically, in practice, computationally in-
feasible using MCMC methods.

A first contribution of this paper is to develop approximate
estimation methods for large TVP-VARs which do not involve the
use of MCMC methods and are computationally feasible. To do
this, we use forgetting factors. Forgetting factors (also known as
discount factors), which have long been used with state space
models (see, e.g., Raftery et al. (2010), and the discussion and
citations therein), do not require the use of MCMC methods and
have been found to have desirable properties inmany contexts (e.g.
Dangl and Halling (2012)). Most authors simply set the forgetting
factors to a constant, but we develop methods for estimating
forgetting factors. This allows for the degree of variation of the VAR
coefficients to be estimated from the data (without the need for
MCMC).

A second contribution of this paper is to contribute to the
growing literature on estimating the prior hyperparameter(s)
which control shrinkage in large Bayesian VARs (see, e.g., Giannone
et al., 2012). Our approach differs from the existing literature in
treating different priors (i.e. different values for the shrinkage
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parameter) as defining different models and using dynamic model
selection (DMS) methods with a forgetting factor to select the
optimal value of the shrinkage parameter at different points in
time.We develop a simple recursive updating scheme for the time-
varying shrinkage parameter which is computationally simple to
implement.

A third contribution of this paper is to develop econometric
methods for doing model selection using a model space involving
the large TVP-VAR and various restricted versions of it. We define
small (trivariate), medium (seven variable) and large (25 variable)
TVP-VARs and develop methods for time-varying model selection
over this set ofmodels. Interest centres on forecasting the variables
in the small VAR and DMS is done using the predictive densities
for these variables (which are common to all the models). To
be precise, the algorithm selects between small, medium and
large TVP-VARs based on past predictive likelihoods for the set of
variables the researcher is interested in forecasting. A potentially
important advantage is that this allows for model switching. For
instance, with DMS, the algorithm might select the large TVP-
VAR as the forecasting model at some points in time, but at other
points it might switch to a small or medium TVP-VAR, etc. Such
model switching cannot be done in conventional approaches and
has been found to be useful in univariate regression applications
(e.g. Koop and Korobilis, 2012). Its incorporation has the potential
to be useful in improving the forecast performance of TVP-VARs of
different dimensions and to provide information on which model
forecasts best (and when it does so). Our treatment of TVP-VAR
dimension selection also involves the use of a forgetting factor
which is estimated from the data.

These methods are used in an empirical application involving
a standard large US quarterly macroeconomic data set, with a
focus on forecasting inflation, real output and interest rates. Our
empirical results are encouraging and demonstrate the feasibility
and usefulness of our approach. Relative to conventional VAR
and TVP-VAR methods, our results highlight the importance of
allowing for the dimension of the TVP-VAR to change over time
and allowing for stochastic volatility in the errors.

2. Large TVP-VARs

2.1. Overview

In this section, we describe our approach to estimating a single
TVP-VAR using forgetting factors. We write the TVP-VAR as:
yt = Ztβt + εt ,

and
βt+1 = βt + ut , (1)
where εt is i.i.d. N (0, Σt) and ut is i.i.d. N (0,Qt). εt and us are
independent of one another for all s and t . yt for t = 1, . . . , T is an
M × 1 vector containing observations on M time series variables
and Zt is M × k matrix defined so that each TVP-VAR equation
contains an intercept and p lags of each of the M variables. Thus,
k = M (1 + pM).

Once the researcher has selected a specification forΣt and Qt , a
prior for the initial conditions (i.e. β0 and possibly Σ0 and Q0) and
a prior for any remaining parameters of the model, then Bayesian
statistical inference can proceed in a straightforward fashion
(see, for instance, Koop and Korobilis (2009) for a textbook-level
treatment) using MCMC methods. That is, standard methods for
drawing from state space models (i.e. involving the Kalman filter)
can be used for drawing βt for t = 1, . . . , T (conditional on Σt ,Qt
and the remaining model parameters). Then Σt for t = 1, . . . , T
(conditional on βt ,Qt and the remaining model parameters) can
be drawn. Then Qt for t = 1, . . . , T (conditional on βt , Σt and the
remaining model parameters) can be drawn. Then any remaining
parameters are then drawn (conditional on Σt ,Qt and βt ).
This algorithm works well with small TVP-VARs, but can be
computationally very demanding in larger VARs due to the fact that
it is a posterior simulation algorithm. Typically, tens of thousands
of draws must be taken in order to ensure proper convergence of
the algorithm. And, in the context of a recursive forecasting exer-
cise, the posterior simulation algorithmmust be run repeatedly on
an expanding window of data. Even with constant coefficient large
VARs, Koop (2013) found the computational burden to be huge
when posterior simulation algorithms were used in the context of
a recursive forecasting exercise. With large TVP-VARs, the compu-
tational hurdle can simply be insurmountable.

In the next sub-section, we show how approximations using
forgetting factors can be used to greatly reduce the computational
burden by allowing the researcher to avoid the use of MCMC
algorithms. The basic idea is to replace Qt andΣt by estimates and,
once this is done, analytical formulae exist for the posterior (for βt )
and the one-step ahead predictive density.

2.2. Estimation of TVP-VARs using forgetting factors

Forgetting factor approaches were commonly used in the past,
when computing power was limited, to estimate state space mod-
els such as the TVP-VAR. See, for instance, Fagin (1964), Jazwinsky
(1970) or West and Harrison (1997) for a discussion of forgetting
factors in state space models and, in the context of the TVP-VAR,
see Doan et al. (1984). Dangl and Halling (2012) is a more recent
application which also uses a forgetting factor approach. Here we
outline the motivation for use of forgetting factor methods.

Let ys = (y1, . . . , ys)′ denote observations through time s.
Bayesian inference for βt involves the Kalman filter, formulae for
which can be found in many textbook sources and will not be re-
peated here (see, e.g., Fruhwirth-Schnatter, 2006, Chapter 13). But
key steps in Kalman filtering involve the result that

βt−1|yt−1
∼ N


βt−1|t−1, Vt−1|t−1


(2)

where formulae for βt−1|t−1 and Vt−1|t−1 are given in textbook
sources. Kalman filtering then proceeds using:

βt |yt−1
∼ N


βt|t−1, Vt|t−1


, (3)

where

Vt|t−1 = Vt−1|t−1 + Qt . (4)

This is the only placewhereQt enters the Kalman filtering formulae
and, thus, if we replace the preceding equation by:

Vt|t−1 =
1
λ
Vt−1|t−1 (5)

there is no longer a need to estimate or simulate Qt . λ is called a
forgetting factor which is restricted to the interval 0 < λ ≤ 1.
A detailed discussion of and motivation for forgetting factor ap-
proaches is given in places such as Jazwinsky (1970) and Raftery
et al. (2010). Eq. (5) implies that observations j periods in the past
have weight λj in the filtered estimate of βt . Note also that (4) and
(5) imply that Qt =


λ−1

− 1

Vt−1|t−1 from which it can be seen

that the constant coefficient case arises if λ = 1.
In papers such as Raftery et al. (2010), λ is simply set to a num-

ber slightly less than one. For quarterly macroeconomic data, λ =

0.99 implies observations five years ago receive approximately 80%
as much weight as last period’s observation. This leads to a fairly
stable models where coefficient change is gradual and has proper-
ties similar to what Cogley and Sargent (2005) call their ‘‘business
as usual’’ prior. These authors use exact MCMC methods to esti-
mate their TVP-VAR. In order to ensure that the coefficients βt vary
gradually they use a tight prior on their state covariance matrix Q
which depends on a prior shrinkage coefficient which determines
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the prior mean. It can be shown that their choice for prior shrink-
age coefficient allows for variation in coefficients which is roughly
similar to that allowed for by λ = 0.99.2

A contribution of our paper is to investigate the use of forgetting
factors in large TVP-VARs. However, we go beyond most of the
existing literature in estimating λ (as opposed to simply setting it
to a fixed value).3 Our estimationmethods are described in the next
sub-section.

A similar approximation is used to remove the need for a poste-
rior simulation algorithm for multivariate stochastic volatility in
the measurement equation. We use an Exponentially Weighted
MovingAverage (EWMA) tomodel volatility (see RiskMetrics, 1996
and Brockwell and Davis, 2009, Section 1.4). We adopt an EWMA
estimator for the measurement error covariance matrix:Σt = κΣt−1 + (1 − κ)εtε′

t , (6)
whereεt = yt − βt|tZt is produced by the Kalman filter. EWMA
estimators also require the selection of the decay factor, κ . Risk-
Metrics (1996) suggests values for κ in the region of (0.94, 0.98)
andwe focus on this region, althoughwe estimate κ (see next sub-
section for details). This estimator requires the choice of an initial
condition, Σ0 for which we use the sample covariance matrix of yτ

where τ+1 is the period inwhichwebegin our forecast evaluation.

2.3. Model selection using forgetting factors

TVP-VARs can be well-suited for modelling gradual evolution
of coefficients. However, they can work poorly for more sudden
changes. Allowing for switches between entirely different models
can accommodate more abrupt breaks. For this reason, model
switching is a potentially useful addition. Our previous exposition
applies to one model. Raftery et al. (2010), in a TVP regression
context, develops methods for doing dynamic model averaging
(DMA) which can also be used for DMS. The reader is referred to
Raftery et al. (2010) or Koop and Korobilis (2012) for a complete
derivation and motivation of DMA. Here we provide a general
description of what it does. In subsequent sections, we use the
general strategy outlined here in twoways. First, we use DMS so as
to allow for the TVP-VAR to change dimension over time. Second,
we use it to select optimal values for λ, κ and the VAR shrinkage
parameter in a time-varying manner.

Suppose the researcher is working with j = 1, . . . , J models.
The goal of DMA is to calculate πt|t−1,j which is the probability that
model j should be used for forecasting at time t , given information
through time t − 1. Once πt|t−1,j for j = 1, . . . , J are obtained they
can either be used to do model averaging or model selection. DMS
arises if, at each point in time, the model with the highest value
for πt|t−1,j is used for forecasting. Note that πt|t−1,j will vary over
time and, hence, the forecasting model can switch over time. The
contribution of Raftery et al. (2010) is to develop a fast recursive
algorithm using a forgetting factor for obtaining πt|t−1,j.

To doDMAorDMSwemust first specify the set ofmodels under
consideration. In papers such as Raftery et al. (2010) or Koop and
Korobilis (2012) themodels are TVP regressions with different sets
of explanatory variables. In the present paper, our model space is
of a different nature, including TVP-VARs of differing dimensions,
different priors or different values for the forgetting and decay
factors, but the basic algorithm still holds.

DMS is a recursive algorithm where the necessary recursions
are analogous to the prediction and updating equations of the
Kalman filter. Given an initial condition, π0|0,j for j = 1, . . . , J ,

2 Note that Cogley and Sargent (2005) have a fixed state equation error co-
variance matrix Q , while we use a time varying one. This does not affect the
interpretation of λ as a shrinkage factor similar to the one they use.
3 An exception to this is McCormick et al. (2011) which estimates forgetting

factors in an application using logistic regression using dynamic model averaging.
Raftery et al. (2010) derive a model prediction equation using a
forgetting factor α:

πt|t−1,j =
πα
t−1|t−1,j

J
l=1

πα
t−1|t−1,l

, (7)

and a model updating equation of:

πt|t,j =
πt|t−1,jpj


yt |yt−1


J

l=1
πt|t−1,lpl


yt |yt−1

 , (8)

where pj

yt |yt−1


is the predictive likelihood (i.e. the predictive

density for model j evaluated at yt ). Note that this predictive
density is produced by the Kalman filter and has a standard,
textbook, formula (e.g. Fruhwirth-Schnatter, 2006, p. 405). The
predictive likelihood is a measure of forecast performance.

The calculation of πt|t,j and πt|t−1,j is simple and fast, not
involving using of simulation methods. To help understand the
implication of the forgetting factor approach, note that πt|t−1,j (the
key probability used to select models), can be written as:

πt|t−1,j ∝

t−1
i=1


pj


yt−i|yt−i−1αi

.

Thus, model j will receive more weight at time t if it has forecast
well in the recent past (where forecast performance is measured
by the predictive density, pj


yt−i|yt−i−1


). The interpretation of

‘‘recent past’’ is controlled by the forgetting factor, α and we have
the same exponential decay as we do for the forgetting factor λ.
For instance, if α = 0.99, forecast performance five years ago re-
ceives 80% as much weight as forecast performance last period. If
α = 0.95, then forecast performance five years ago receives only
about 35% asmuchweight. The case α = 1 corresponds to conven-
tional model averaging using the marginal likelihood. These con-
siderations suggest that we focus on the interval α ∈ [0.95, 1.00].
In our empirical work, we also include an extremely small value
of α = 0.001 as this leads (approximately) to the equal weighting
of all models in all time periods. Since equal weight forecasts are
popular in many contexts, this is a useful benchmark to consider
in our set of models.

DMS, as we have described it so far, requires the choice of the
forgetting factors, α and λ, as well as the decay factor κ . These are
typically set to fixed constants. However, in this paper we estimate
λ and κ using the DMS methodology. To do this, we interpret
different values of the forgetting factors as defining different
models and then use DMS to select between them. We consider
a range values for the forgetting factor, λ ∈ {0.97, 0.98.0.99, 1},
covering everything from fairly rapid coefficient change to no
coefficient change. For the decay factor, we consider the grid of
values κ ∈ {0.94, 0.96, 0.98}. Altogether this leads to 12 different
combinations of λ and κ and DMS allows us to choose between
them in a time-varyingmanner. So, for instance, DMS could choose
λ = 1 (the constant coefficient VAR) at some points in time, but
then switch to λ = 0.97 (a TVP-VAR with more rapid coefficient
change). Or DMS could switch between rapid volatility change and
little volatility change. In general, most of the major specification
choices in a TVP-VAR can be made automatically in the context of
the DMS algorithm.

In order to investigate robustness of results to the forgetting
factor in the DMS procedure, we present results for a range of
values for α ∈ {0.001, 0.95, 0.99, 1} allowing for different degrees
of model switching.

2.4. Model selection among priors

In the preceding sub-section, we defined models in terms of
values for the forgetting and decay factors. But we can also define
different models as arising from different priors. Given that we use
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a forgetting factor approachwhich negates the need to estimate Qt
and use an EWMA estimate for Σt , prior information is required
only for β0. But this source of prior information is likely to be
important. That is, papers such as Banbura et al. (2010) areworking
with large VARs with many more parameters than observations
and prior information is crucial in obtaining reasonable results.
With TVP-VARs this need is even greater. Accordingly, we use a
tight Minnesota prior for β0. In the case where the time-variation
in parameters is removed (i.e. when Σt = Σ and λ = 1), this
Minnesota prior on β0 becomes a Minnesota prior in a constant
coefficient VAR and, thus, this important special case is included
as part of our approach.4

With large VARs and TVP-VARs it is common to use training
sample priors (e.g. Primiceri (2005) and Banbura et al. (2010))
to elicit hyperparameters which control the degree of shrinkage.
In training sample approaches, the same prior is used as each
point in time in a recursive forecasting exercise. However, in
this paper we adopt a different approach which allows for the
estimation of the shrinkage hyperparameter in a time-varying
fashion. In the context of a recursive forecasting exercise, an
alternative strategy for having time-varying shrinkage would be
to re-estimate the shrinkage priors at each point in time and re-
estimate themodel at each point in time (such an approach is used
in Giannone et al. (2012)). This can be computationally demanding
(particularly if the shrinkage parameter is estimated at a grid of
values). Our automatic updating procedure avoids this problem
and is computationally much less demanding.

For a TVP-VAR of a specific dimension, we use a Normal prior
for β0 which is similar to the Minnesota prior (see, e.g., Doan et al.
(1984)). Our empirical section uses a data set where all variables
have been transformed to stationarity and, thus, we choose the
prior mean to be E (β0) = 0.

The Minnesota prior covariance matrix for β0 is typically
assumed to be diagonal and we follow this practice. If we let
var (β0) = V and V i denote its diagonal elements, then our prior
covariance matrix is defined through:

V i =

 γ

r2
for coefficients on lag r for r = 1, . . . , p

a for the intercepts,
(9)

where p is lag length. The key hyperparameter in V is γ which con-
trols the degree of shrinkage on the VAR coefficients. We will es-
timate γ from the data. Note that this differs from the Minnesota
prior in that the latter contains two shrinkage parameters (corre-
sponding to own lags and other lags) and these are set to fixed val-
ues. Theoretically, allowing for two shrinkage parameters in our
approach is straightforward. To simplify computationweonly have
one shrinkage parameter (as does Banbura et al. (2010)). Finally,
we set a = 102 for the intercepts so as to be noninformative.

In large VARs and TVP-VARs, a large degree of shrinkage is nec-
essary to produce reasonable forecast performance. We achieve
this by estimating γ at each point in time using a strategy simi-
lar to that used to estimate the forgetting and decay factors. We
use a very wide grid for γ ∈


10−5, 0.001, 0.005, 0.01, 0.05, 0.1


.

Different values for γ can be thought of as defining different pri-
ors and, thus, different models. We can use the DMS methods de-
scribed in the preceding sub-section to find the optimal value for
γ at each point in time.

4 An alternative strategy, which reduces the importance of prior choice, is to
impose additional structure on themodel so as to reduce the number of parameters.
Examples include Canova and Ciccarelli (2009) and Carriero et al. (2012).Where the
imposition of such structure is warranted by the nature of the problem, economic
theory or empirical evidence, it can be an effective way of obtaining a more
parsimonious model.
2.5. Model selection among TVP-VARs of different dimension

DMA and DMS have previously been used in time-varying
regression contexts where each model is defined by the set of
included explanatory variables. In the previous sub-sections, we
described how DMS can be used where the models are defined by
different priors, forgetting or decay factors. We can also augment
themodel spacewithmodels of different dimensions. In particular,
we can do DMS over threemodels: a small, medium and large TVP-
VAR. Definitions of the variables contained in each TVP-VAR are
given in the Data Appendix.

The predictive density, pj

yt−i|yt−i−1


, plays the key role in

DMS.Whenworkingwith TVP-VARs of different dimension, yt , will
be of different dimension and, hence, predictive densities will not
be comparable. To get around this problem, we use the predictive
densities for the small TVP-VAR (i.e. these are the variables which
are common to all models). In our empirical work, this means
the dynamic model selection is determined by the joint predictive
likelihood for inflation, output and the interest rate. This strategy
is similar to one adopted in the VARmodel averaging study of Ding
and Karlsson (2012).

In summary, in this paper, a model is defined by a value for
λ, κ, γ and a TVP-VAR dimensionality. With six values for γ , three
TVP-VAR sizes and 12 λ, κ combinations, we have 216 different
models. Remember that our goal is to calculate πt|t−1,j for j =

1, . . . , J which is the probability that model j is the forecasting
model at time t , given information through time t − 1. When
forecasting at time t , we evaluate πt|t−1,j for every j and use the
values of γ , λ, κ and TVP-VAR dimension which maximizes it. The
recursive algorithm given in (7) and (8) can be used to evaluate
πt|t−1,j. This algorithm begins with an initial condition: π0|0,j =

1
J

with J = 216, which expresses a view that all possible models are
equally likely.

3. Empirical results

3.1. Data

Our data set comprises 25 major quarterly US macroeconomic
variables and runs from1959:Q1 to 2010:Q2.Weworkwith a small
TVP-VAR with three variables, a medium TVP-VAR with seven and
a large TVP-VAR with 25. Following, e.g., Stock andWatson (2008)
and recommendations in Carriero et al. (2011) we transform all
variables to stationarity. The choice ofwhich variables are included
in which TVP-VAR is motivated by the choices of Banbura et al.
(2010). The Data Appendix provides a complete listing of the
variables, their transformation codes and which variables belong
in which TVP-VAR.

We investigate the performance of our approach in forecasting
CPI, real GDP and the Fed funds rate (which we refer to as inflation,
GDP and the interest rate below). These are the variables in our
small TVP-VAR. The transformations are such that the dependent
variables are the percentage change in inflation (the second log
difference of CPI), GDP growth (the log difference of real GDP)
and the change in the interest rate (the difference of the Fed
funds rate). We also standardize all variables by subtracting off a
mean and dividing by a standard deviation.We calculate thismean
and standard deviation for each variable using data from 1959Q1
through 1969Q4 (i.e. data before our forecast evaluation period).

3.2. Other modelling choices and models for comparison

We use a lag length of 4 unless otherwise specified. This is con-
sistent with quarterly data. Worries about over-parametrization
with this relatively long lag length are lessened by the use of the
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Fig. 1. Values of shrinkage coefficients γ , estimated for each time period and for each VAR size.
Minnesota prior variance, (9), which increases shrinkage as lag
length increases. All of our remaining modelling choices are stated
above. We remind the reader of the important choices that have to
be made in our approach. We have a prior shrinkage parameter, γ ,
a forgetting factor, λ, which controls the degree of time-variation
in the VAR coefficients and a decay factor, κ , which is used in the
EWMA estimation of the error covariance matrix. Our approach
and all of the special cases considered below, unless stated oth-
erwise, estimate γ , λ and κ by optimizing over a grid of values.
We call our full approach, which involves selecting the single pre-
ferredmodel at each point in time, TVP-VAR-DMS.We also use our
approach for doingmodel averaging over TVP-VARdimensions and
call this TVP-VAR-DMA.

Our main results are for α = 0.99 (the value used in Raftery
et al. (2010)) and, unless otherwise specified, all approaches
involving use of DMS or DMA involve this choice. In addition we
have various special cases of our benchmarkmodel. These include:

• TVP-VARs of each dimension, with no DMS being done over
dimension.

• Heteroskedastic VARs of each dimension, obtained by setting
λ = 1 and κ = 0.96.

• Homoskedastic VARs of each dimension, obtained by setting
λ = 1.5

We also present results from several other approaches which
require the use of MCMC methods. These include:

• A small TVP-VAR with stochastic volatility as used in Primiceri
(2005).

• A small Bayesian VAR (with stochastic volatility) with Min-
nesota prior (expanding window forecasts).

• A small Bayesian VAR (with stochastic volatility) with Min-
nesota prior (rolling window of 10 years).

The Minnesota prior is specified as in our TVP-VAR-DMS
approach with γ = 0.1. The small TVP-VAR also uses this prior
for the initial condition for the VAR coefficients. This model also

5 When forecasting yt given information through t − 1, Σ is estimated by
1

t−1

t−1
i=1 εiε′

i .
requires a prior for the error covariance in the state equation and
we set Q ∼ IW (k + 1, 0.001 × I). In all cases stochastic volatility
is modelled using the specification of Primiceri (2005) using priors
as specified on page 831 of this paper.6

In addition, we include as standard benchmarks:

• A small VAR estimated using OLS methods.
• A small VAR with lag length of one estimated using OLS

methods.
• No change forecasts where yt−1 is used as a forecast of yt+h−1

for different forecast horizons, h.

3.3. Estimation results

The main focus of this paper is on forecasting, but it is useful
to briefly present some empirical evidence on other aspects of
our approach. Fig. 1 plots the selected value of γ , the shrinkage
parameter in the Minnesota prior, at each point in time for TVP-
VARs of different dimension. Note that, as expected, we are finding
that the necessary degree of shrinkage increases as the dimension
of the TVP-VAR increases.

Fig. 2 plots the optimal value of λ selected by DMS at each
point in time for the small, medium and large TVP-VARs. Note that,
although there is some variation over time, the optimal value for
λ tends to be one, indicating relatively little change in the VAR
coefficients. This holds true for TVP-VARs of all dimensions.

Fig. 3 plots the time-varying probabilities associated with the
TVP-VAR of each dimension. DMS forecasts using the TVP-VAR
of dimension with highest probability. It can be seen that this
leads to a great deal of switching between TVP-VARs of different
dimension. For unstable periods (e.g. between, approximately,
1975–1985 or after 2008), DMS uses medium or large TVP-VARs
to produce forecasts. In more stable times, the small TVP-VAR is
often used (although there are some exceptions to this pattern,
particularly in the 1990s when the medium TVP-VAR is chosen).

6 We do not use a training sample prior and set (using Primiceri’s notation)
log (σOLS) = 1 and V

AOLS


= I .
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Fig. 2. Values of forgetting factor coefficients λ, estimated for each time period and for each VAR size.
Fig. 3. Estimated Dynamic Model Selection probabilities of the small, medium and large TVP-VARs.
3.4. Forecast comparison

We present iterated forecasts for horizons of up to two
years (h = 1, . . . , 8) with a forecast evaluation period of 1975Q1
through 2010Q2. The use of iterated forecasts does increase the
computational burden since predictive simulation is required (i.e.
when h > 1 an analytical formula for the predictive density does
not exist). We do predictive simulation in two different ways. The
first (simpler) way uses the VAR coefficients which hold at time
T to forecast variables at time T + h. This assumes no VAR co-
efficient change between T and T + h. The second way, labelled
βT+h ∼ RW in the tables, does allow for coefficient change out-
of-sample and simulates from the random walk state equation (1)
to produce draws of βT+h. Both ways provide us with βT+h and
we simulate draws of yτ+h conditional on βT+h to approximate the
predictive density.7

The alternative would be to use direct forecasting, but recent
papers such as Marcellino et al. (2006) tend to find that iterated
forecasts are better. Direct forecasting would also require re-
estimating the model for different choices of h and would not
necessarily remove the need for predictive simulation since the
researcher may wish to simulate βT+h from (1) when h > 1.

7 For longer-term forecasting, this has the slight drawback that our approach is
based on the model updating equation (see Eq. (8)) which uses one-step ahead
predictive likelihoods (which may not be ideal when forecasting h > 1 periods
ahead).
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Table 1
MSFE relative to TVP-VAR-DMA, GDP.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR
TVP-VAR 0.99 0.90 1.00 0.94 0.95 0.98 0.95 0.93
TVP-VAR βT+h ∼ RW 1.00 0.90 0.98 0.93 0.94 0.99 0.95 0.92
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 0.98 0.88 1.00 0.94 0.95 0.98 0.93 0.90
TVP-VAR (α = 1) 0.99 0.90 0.96 0.95 0.94 0.97 0.94 0.91
TVP-VAR (α = 0.95) 0.98 0.89 1.01 0.97 0.96 1.01 0.95 0.92
TVP-VAR (α = 0.001) 1.02 0.90 1.07 1.00 1.08 1.09 1.04 0.97
VAR, heteroskedastic 0.97 0.90 0.96 0.95 0.95 0.97 0.95 0.91
VAR, homoskedastic 1.02 0.95 0.97 0.92 0.95 0.97 0.93 0.92

Medium VAR
TVP-VAR 1.03 0.97 0.96 1.00 0.99 0.94 0.98 0.98
TVP-VAR βT+h ∼ RW 1.06 0.97 0.96 0.98 0.99 0.95 0.97 0.99
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 1.01 0.92 0.98 0.99 0.99 0.96 0.96 0.96
TVP-VAR (α = 1) 1.05 0.96 0.95 0.96 0.97 0.97 0.99 0.98
TVP-VAR (α = 0.95) 1.00 0.93 0.95 1.00 1.00 0.96 0.97 0.99
TVP-VAR (α = 0.001) 1.05 0.88 1.11 1.13 1.12 1.02 0.95 0.96
VAR, heteroskedastic 1.04 0.96 0.96 0.97 0.99 0.94 0.97 0.97
VAR, homoskedastic 1.07 0.97 0.98 0.97 1.02 0.92 0.94 0.98

Large VAR
TVP-VAR 1.17 1.16 1.09 1.11 1.10 1.09 1.13 1.11
TVP-VAR βT+h ∼ RW 1.17 1.17 1.10 1.12 1.12 1.10 1.13 1.12
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 1.04 1.05 1.01 1.02 1.01 1.00 1.02 1.01
TVP-VAR (α = 1) 1.15 1.17 1.10 1.12 1.11 1.10 1.14 1.11
TVP-VAR (α = 0.95) 1.14 1.09 1.07 1.11 1.13 1.09 1.12 1.10
TVP-VAR (α = 0.001) 1.10 0.97 1.10 1.11 1.27 1.23 1.06 1.07
VAR, heteroskedastic 1.10 1.10 1.03 1.04 1.04 1.01 1.06 1.04
VAR, homoskedastic 1.13 1.03 1.03 1.05 1.08 1.06 1.10 1.08

Benchmark
No change 1.49 1.63 1.68 1.82 1.79 1.70 1.82 1.97
Small VAR OLS, one lag 1.10 1.00 0.94 0.97 0.93 0.94 0.96 0.95
Small VAR OLS 1.11 1.08 1.42 1.19 1.19 1.24 1.18 1.15
Small BVAR-MCMC-Min 1.08 1.00 0.93 0.95 0.95 0.94 0.95 0.93
Small BVAR-MCMC-Min rolling (10y) 1.16 1.01 0.94 0.97 0.96 0.94 0.94 0.91
Small TVP-BVAR-MCMC-Min 1.07 1.05 0.98 0.97 1.00 0.97 0.98 0.98

DMA/DMS VAR
TVP-VAR-DMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TVP-VAR-DMS 1.03 1.05 1.01 1.06 1.00 1.05 1.05 1.02
TVP-VAR-DMA βT+h ∼ RW 1.01 0.99 1.00 0.99 1.00 1.00 1.00 1.00
TVP-VAR-DMS βT+h ∼ RW 1.05 1.04 1.02 1.04 1.00 1.03 1.06 1.03
TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 0.95 0.93 0.96 0.94 0.94 0.96 0.95 0.94
TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 1.03 1.00 0.98 0.96 0.95 0.95 0.95 0.92
TVP-VAR-DMA (α = 1) 1.00 1.00 1.00 0.99 1.00 1.00 1.01 0.98
TVP-VAR-DMS (α = 1) 1.10 1.10 1.02 1.01 0.98 1.00 1.01 1.00
TVP-VAR-DMA (α = 0.95) 0.98 0.95 1.01 1.01 1.01 1.01 1.00 0.99
TVP-VAR-DMS (α = 0.95) 1.11 0.98 1.08 1.07 1.07 1.10 1.05 1.01
TVP-VAR-DMA (α = 0.001) 0.99 0.88 1.05 1.08 1.03 1.00 0.99 0.95
TVP-VAR-DMS (α = 0.001) 1.04 0.93 1.13 1.17 1.01 1.03 1.02 0.97
As measures of forecast performance, we use mean squared
forecast errors (MSFEs) and predictive likelihoods. The latter are
popular with many Bayesians since they evaluate the forecast
performance of the entire predictive density (as opposed tomerely
the point forecast). Thus, Tables 1 through 3 (Tables 4 through 6)
present MSFEs (sums of log predictive likelihoods) for each of our
three variables of interest separately.8 We do both TVP-VAR-DMS
and TVP-VAR-DMA and normalize our table relative to the latter.
Thus, MSFEs and sums of log predictive likelihoods are presented
relative to the TVP-VAR-DMAapproachwhich simulatesβT+h from
the random walk state equation. To be precise, the numbers in
Tables 1–3 are ratios of the MSFE for a particular model divided
by the MSFE of TVP-VAR-DMA and those in Tables 4 through 6 are
the sums of log predictive likelihoods for a specific model minus
the sum of log predictive likelihoods for TVP-VAR-DMA.

8 For the reader interested in the joint log predictive likelihood for all three
variables of interest, we note that this tends to be very similar to the sum of the
three individual log predictive likelihoods and, thus, is not presented for the sake of
brevity.
With three different variables, eight different forecast horizons
and two different forecast metrics, there are many ways of com-
paring our forecasts. Virtually every model can be found to do well
for some case. Broadly speaking, theMSFEs and log predictive like-
lihoods are telling the same story. Although our full TVP-VAR-DMS
orDMAapproaches are not always the best forecasting approaches,
they are typically among the best and never forecast poorly. It is a
safe forecasting procedure which never goes too far wrong and au-
tomaticallymakesmany of the necessary specification choices that
a researcher faces. In contrast, other strategies such as always us-
ing a TVP-VAR of a fixed dimension can sometimes forecast very
well, but also will sometimes forecast quite poorly.

With regards to the issue of TVP-VAR dimensionality, there is
no single dimension that dominates. Sometimes the dimension-
switching feature of our TVP-VAR-DMS approach leads to the
best forecasting performance, but each of the small, medium and
large TVP-VARs forecasts best for some forecast horizon for some
variable. A general finding is that (with some exceptions), small
TVP-VARs tend to be preferred for GDP, whereas large TVP-VARs
are preferred for inflation. With interest rates there is conflicting
evidence as to whether small, medium or large TVP-VARs are
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Table 2
MSFE relative to TVP-VAR-DMA, inflation.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR
TVP-VAR 1.00 1.00 1.01 1.03 1.01 0.99 1.01 1.01
TVP-VAR βT+h ∼ RW 1.00 1.00 1.01 1.04 1.01 0.98 1.01 1.01
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 0.99 1.02 1.06 1.08 1.04 1.02 1.04 0.98
TVP-VAR (α = 1) 0.99 1.01 1.01 1.03 1.01 1.00 1.02 0.99
TVP-VAR (α = 0.95) 1.02 1.03 1.01 1.06 1.02 0.99 1.02 1.01
TVP-VAR (α = 0.001) 1.02 1.02 1.10 1.10 1.09 1.02 1.07 0.93
VAR, heteroskedastic 0.99 1.01 1.01 1.03 1.01 1.00 1.01 1.00
VAR, homoskedastic 1.04 1.03 1.03 1.04 1.01 0.99 1.03 0.99

Medium VAR
TVP-VAR 1.03 1.03 1.01 1.01 1.00 1.01 1.01 1.01
TVP-VAR βT+h ∼ RW 1.03 1.02 1.00 1.01 1.00 1.00 1.00 1.02
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 1.03 1.02 1.03 1.04 1.00 1.00 1.02 1.00
TVP-VAR (α = 1) 1.03 1.02 1.00 1.01 1.01 1.00 1.01 1.02
TVP-VAR (α = 0.95) 1.01 1.02 1.05 1.02 1.01 1.01 1.00 1.01
TVP-VAR (α = 0.001) 0.90 0.98 1.39 1.16 1.19 1.16 1.05 0.98
VAR, heteroskedastic 1.03 1.02 1.01 1.02 1.01 1.00 1.01 1.02
VAR, homoskedastic 1.04 1.06 1.03 1.02 1.00 1.03 1.00 1.01

Large VAR
TVP-VAR 1.04 0.99 1.02 0.97 1.00 1.02 0.98 0.99
TVP-VAR βT+h ∼ RW 1.04 1.01 1.02 0.97 0.99 1.02 0.99 0.99
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 1.01 0.99 1.02 0.97 0.99 1.01 0.99 1.00
TVP-VAR (α = 1) 1.04 1.00 1.01 0.97 0.99 1.02 1.00 0.99
TVP-VAR (α = 0.95) 0.99 1.01 1.01 0.99 1.01 1.04 0.99 1.01
TVP-VAR (α = 0.001) 0.97 1.00 1.16 1.03 1.26 1.24 1.05 0.99
VAR, heteroskedastic 1.03 1.00 1.01 0.98 0.99 1.03 1.00 0.99
VAR, homoskedastic 1.00 1.02 1.03 1.02 1.01 1.04 1.00 1.02

Benchmark
No change 2.83 2.38 1.42 1.89 1.86 1.45 1.48 1.42
Small VAR OLS, one lag 1.08 1.10 0.99 0.97 1.01 0.99 1.01 0.99
Small VAR OLS 1.04 1.19 1.10 1.17 1.14 1.03 1.05 1.11
Small BVAR-MCMC-Min 1.04 1.01 1.01 0.98 1.00 1.01 1.01 0.99
Small BVAR-MCMC-Min rolling (10y) 1.14 1.03 1.00 0.97 1.00 1.01 1.01 1.00
Small TVP-BVAR-MCMC-Min 1.05 1.02 1.01 0.99 1.00 1.02 1.01 1.00

DMA/DMS VAR
TVP-VAR-DMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TVP-VAR-DMS 1.02 1.02 0.99 1.02 1.00 1.00 1.00 1.01
TVP-VAR-DMA βT+h ∼ RW 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00
TVP-VAR-DMS βT+h ∼ RW 1.02 1.01 0.99 1.02 1.00 1.00 1.00 1.01
TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 0.97 1.01 1.02 1.02 0.99 1.01 1.02 0.99
TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 0.99 1.00 1.02 1.04 1.01 1.03 1.03 0.96
TVP-VAR-DMA (α = 1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TVP-VAR-DMS (α = 1) 1.01 1.01 1.01 1.02 0.99 1.02 1.01 1.01
TVP-VAR-DMA (α = 0.95) 0.97 1.01 1.01 1.01 1.01 0.99 1.00 1.02
TVP-VAR-DMS (α = 0.95) 1.01 1.02 1.00 1.03 1.01 0.98 1.00 1.04
TVP-VAR-DMA (α = 0.001) 0.91 0.99 1.21 1.08 1.14 1.08 1.05 0.97
TVP-VAR-DMS (α = 0.001) 0.99 1.04 1.19 1.09 1.15 1.06 1.03 1.06
preferredwhichmay explainwhy our full TVP-VAR-DMS approach
tends to do particularly well for forecasting interest rates. Of
course, any VAR or TVP-VAR model accommodate forecasts of
several variables at the same time, so it is not surprising that no
single VAR dimension will be best for all variables. Our approach
takes into account the total predictive likelihood of the three
variables weighted equally. In practice, policy-makers might want
to give more weight to one variable (such as inflation) rather than
others. Itwould be simple tomodify our algorithm todo this. Such a
modification would enhance forecasts of inflation, probably at the
cost of deteriorating forecasts of the other variables.9

9 The finding that the forecast performance of individual variables changes with
TVP-VARdimension suggests that theremight be additional benefit fromcombining
an algorithm which selects explanatory variables with one which selects VAR
dimension. For instance, such an approach could select a high dimensional VAR,
but impose restrictions on explanatory variables such that the GDP equation only
contains lags of a small number of variables,whereas the inflation equation contains
lags of many more variables. We have used such algorithms in previous work (e.g.
Korobilis (2013) or Jochmann et al. (2010)), but they require the use of MCMC
methods and, thus, are computationally daunting with large TVP-VARs.
The value of doing DMS is also clear in that approaches where
this is done almost always beat benchmark approaches which
do not. With the exception of GDP forecasting at long horizons,
benchmark approaches involving small dimensional models such
as the TVP-VAR of Primiceri (2005) which is labelled Small TVP-
BVAR-MCMC-Min in the tables, the Minnesota prior VAR or the
VAR estimated using OLS methods, forecast poorly relative to
our TVP-VAR-DMS approach. For instance, if you look at Tables 1
through 6 and compare Small TVP-BVAR-MCMC-Min with the row
labelled small TVP-VAR (which does DMS), you can see that the
latter always forecasts better than the former for h = 1.With some
exceptions, this same patterns holds at longer forecast horizons.

Tables 1 through 6 also contain many variants of the TVP-VAR-
DMS approach where α is set to a particular value and where λ
and κ are not estimated but rather set to standard values. With the
exception of interest rates, the benefits of estimating λ and κ are
quite small. Indeed, for GDP forecasting, the case where λ and κ
are not estimated often leads to the best forecasting performance.
With regards to the forgetting factor, α, we find results to be fairly
robust over the commonly-used interval [0.95, 1]. However, it is
the α = 0.001 case which attaches equal probability to TVP-VARs
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Table 3
MSFE relative to TVP-VAR-DMA, interest rate.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR
TVP-VAR 1.07 1.03 1.06 1.15 1.06 1.00 1.11 1.09
TVP-VAR βT+h ∼ RW 1.07 1.05 1.07 1.16 1.05 1.00 1.11 1.08
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 1.08 1.05 1.07 1.19 1.07 1.01 1.16 1.12
TVP-VAR (α = 1) 1.06 1.02 1.02 1.06 1.05 0.98 1.05 1.04
TVP-VAR (α = 0.95) 1.09 1.07 1.08 1.24 1.09 1.01 1.21 1.18
TVP-VAR (α = 0.001) 1.02 1.02 1.12 1.01 1.07 1.03 1.09 1.10
VAR, heteroskedastic 1.07 1.04 1.05 1.08 1.03 0.97 1.05 1.07
VAR, homoskedastic 1.08 1.10 1.12 1.13 1.02 1.01 1.13 1.07

Medium VAR
TVP-VAR 1.10 1.02 1.00 1.02 1.01 1.03 1.03 0.99
TVP-VAR βT+h ∼ RW 1.11 1.03 1.02 1.02 1.02 1.02 1.01 0.99
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 1.10 1.09 1.05 1.08 1.02 1.01 1.03 1.02
TVP-VAR (α = 1) 1.11 1.02 1.00 1.00 1.03 1.03 1.02 0.98
TVP-VAR (α = 0.95) 1.13 1.05 1.04 1.10 1.04 1.03 1.08 1.02
TVP-VAR (α = 0.001) 1.11 1.07 1.08 1.03 1.11 1.13 1.06 1.05
VAR, heteroskedastic 1.10 1.01 1.01 1.02 1.01 1.01 1.03 1.03
VAR, homoskedastic 1.11 1.07 1.11 1.11 1.03 1.03 1.09 1.08

Large VAR
TVP-VAR 0.96 0.98 1.03 0.97 1.03 1.02 0.95 0.95
TVP-VAR βT+h ∼ RW 0.98 0.97 1.02 0.98 1.01 1.02 0.95 0.95
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 0.99 0.98 1.00 0.99 1.02 1.02 0.94 0.95
TVP-VAR (α = 1) 0.95 0.98 1.02 0.98 1.03 1.03 0.96 0.96
TVP-VAR (α = 0.95) 1.02 1.00 1.03 1.02 1.03 1.04 0.98 0.94
TVP-VAR (α = 0.001) 1.01 1.09 1.05 1.13 1.17 1.15 0.98 0.97
VAR, heteroskedastic 1.00 0.98 1.00 0.98 1.02 1.02 0.94 0.96
VAR, homoskedastic 1.05 0.98 0.98 1.01 1.02 1.06 0.98 1.01

Benchmark
No change 1.76 2.25 1.83 1.88 1.73 2.02 2.44 2.00
Small VAR OLS, one lag 1.12 1.07 1.01 0.93 1.00 1.01 0.96 0.93
Small VAR OLS 1.63 1.54 1.51 2.12 1.88 1.73 2.30 2.10
Small BVAR-MCMC-Min 1.05 1.01 1.02 0.96 1.03 1.03 0.96 0.93
Small BVAR-MCMC-Min rolling (10y) 1.03 1.01 1.02 0.98 1.06 1.06 0.97 0.94
Small TVP-BVAR-MCMC-Min 1.08 1.05 1.04 0.98 1.05 1.05 0.99 0.96

DMA/DMS VAR
TVP-VAR-DMA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TVP-VAR-DMS 0.97 1.03 0.99 0.95 1.01 1.00 0.99 1.00
TVP-VAR-DMA βT+h ∼ RW 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00
TVP-VAR-DMS βT+h ∼ RW 0.95 1.03 0.99 0.94 1.01 1.00 0.99 0.99
TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 0.98 1.01 1.01 1.02 1.02 1.01 1.00 1.00
TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 0.95 1.04 0.98 1.00 1.01 1.03 1.02 1.01
TVP-VAR-DMA (α = 1) 1.00 1.00 0.99 0.98 1.02 1.00 0.99 0.98
TVP-VAR-DMS (α = 1) 0.95 1.03 0.96 0.97 1.03 1.00 1.00 0.98
TVP-VAR-DMA (α = 0.95) 1.02 1.00 1.04 1.09 1.02 1.01 1.06 1.03
TVP-VAR-DMS (α = 0.95) 1.06 1.02 1.07 1.02 1.03 1.03 1.03 1.03
TVP-VAR-DMA (α = 0.001) 1.02 1.06 1.04 1.02 1.03 1.02 1.02 1.02
TVP-VAR-DMS (α = 0.001) 1.05 1.14 1.03 1.06 1.05 1.05 1.07 1.05
of each dimension, that sometimes forecasts best. This finding
is particularly interesting in light of recent work on prediction
pools (e.g. Amisano and Geweke (2012)) which often find equally
weighted pools of predictive densities to forecast well.

Model averaging and model selection methods tend to produce
similar forecasts. Overall TVP-VAR-DMA does forecast slightly
better than TVP-VAR-DMS, but there are many exceptions to
this pattern (particularly when using predictive likelihoods as a
forecast metric).

With regards to predictive simulation, our results suggest that
simulating βT+h from the random walk state equation yields
only modest forecast improvements over the simpler strategy of
assuming no change in VAR coefficients over the horizon that the
forecast is being made.

The importance of allowing for heteroskedastic errors in getting
the shape of the predictive density correct is clearly shown by the
poor performance of homoskedastic models in Tables 4 through 6.

In summary, our results suggest that ourmethods provide an ef-
fective way of estimating even large TVP-VARs with heteroskedas-
tic errors (whichwould be computationally infeasible usingMCMC
methods) and choosing prior shrinkage. In our application, it does
seem that there is a great deal of uncertainty over TVP-VAR di-
mensionality. Any researcher who just worked with one dimen-
sion would do well in some cases, but badly in other cases. Hence,
a method like ours which automatically selects the dimension in a
time varying fashion is potentially of great use.

Figs. 4 through 6 plot logs of one-step ahead predictive likeli-
hoods (relative to the benchmark TVP-VAR-DMA model) against
time for our three variables of interest with NBER recession dates
shaded. These figures allow for the comparison over time of our
approach against several plausible alternatives. In particular, we
compare the TVP-VAR-DMA approach to: (i) the small Bayesian
VAR with Minnesota prior; (ii) the fully-specified Small TVP-
BVAR-MCMC-Min model similar to that used by Primiceri (2005)
and D’Agostino et al. (2011); and (iii) the small TVP-VAR using
α = 0.99. Since all one-step ahead predictive likelihoods are rel-
ative to that of the benchmark TVP-VAR-DMA model, negative
(positive) numbers indicate that our benchmark model is a better
(worse) forecasting model for that time period.
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Table 4
Sum of log predictive likelihoods relative to TVP-VAR-DMA, GDP.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR
TVP-VAR 7.1 6.3 4.2 4.6 2.5 4.3 4.5 5.1
TVP-VAR βT+h ∼ RW 6.2 6.5 4.3 3.7 4.2 6.2 5.5 5.1
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 4.7 8.9 6.9 9.1 8.6 9.0 9.8 8.4
TVP-VAR (α = 1) 6.0 7.4 5.1 5.5 5.4 4.5 6.5 5.3
TVP-VAR (α = 0.95) 5.2 7.3 3.4 3.3 3.6 4.3 5.6 4.6
TVP-VAR (α = 0.001) 8.6 11.9 7.8 8.6 2.4 5.0 7.8 12.0
VAR, heteroskedastic 6.0 6.4 6.4 7.5 5.9 6.3 7.1 7.0
VAR, homoskedastic −6.0 1.3 2.6 6.7 6.6 5.7 5.6 4.5

Medium VAR
TVP-VAR 2.6 5.0 5.7 3.1 5.2 4.5 3.7 2.4
TVP-VAR βT+h ∼ RW 0.9 4.8 6.0 5.6 4.5 4.5 4.3 4.0
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 0.4 5.2 6.5 6.7 6.5 7.6 6.2 5.0
TVP-VAR (α = 1) 1.7 5.2 8.0 7.3 6.5 5.6 3.0 3.1
TVP-VAR (α = 0.95) 4.4 8.5 7.9 6.6 4.2 4.6 3.6 2.5
TVP-VAR (α = 0.001) 5.5 11.3 12.8 5.6 −3.5 −4.3 3.4 4.6
VAR, heteroskedastic −0.1 4.6 5.8 6.2 4.1 6.1 3.7 3.8
VAR, homoskedastic −7.7 −2.0 2.2 5.1 3.1 5.6 3.5 1.7

Large VAR
TVP-VAR −6.0 −9.8 −6.7 −6.3 −6.5 −7.2 −8.7 −8.4
TVP-VAR βT+h ∼ RW −6.3 −8.6 −8.2 −4.9 −6.2 −5.7 −8.1 −8.8
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) −3.2 −3.3 −2.3 −3.3 −4.4 −3.4 −6.9 −5.8
TVP-VAR (α = 1) −6.2 −8.1 −8.0 −6.0 −6.0 −6.5 −10.8 −9.2
TVP-VAR (α = 0.95) −2.8 −5.6 −6.5 −7.9 −8.2 −9.4 −10.8 −11.0
TVP-VAR (α = 0.001) −1.2 3.4 1.6 −1.5 −9.3 −14.8 −9.8 −8.8
VAR, heteroskedastic −2.0 −3.4 0.2 1.0 0.4 1.7 −1.6 −1.6
VAR, homoskedastic −14.1 −9.9 −5.1 −3.5 −4.8 −5.7 −8.5 −9.5

Benchmark
Small BVAR-MCMC-Min −3.4 1.7 8.4 10.7 10.3 10.3 9.0 8.4
Small BVAR-MCMC-Min rolling (10y) −38.9 −37.8 −36.4 −34.8 −38.7 −39.8 −43.6 −42.7
Small TVP-BVAR-MCMC-Min −2.2 3.5 8.6 14.2 12.8 12.8 12.7 10.2

DMA/DMS VAR
TVP-VAR-DMA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TVP-VAR-DMS −1.6 −2.6 −1.1 −4.3 −2.5 −2.2 0.6 0.5
TVP-VAR-DMA βT+h ∼ RW 0.7 0.3 0.8 1.3 0.0 0.9 −0.4 −0.3
TVP-VAR-DMS βT+h ∼ RW −1.0 −2.6 −0.5 −2.3 −1.5 −0.1 −1.2 −0.6
TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 3.1 6.1 6.4 7.2 5.8 7.6 6.1 5.5
TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 2.7 4.5 5.2 7.8 7.2 10.0 7.7 8.4
TVP-VAR-DMA (α = 1) 1.8 0.6 0.6 1.2 0.2 1.8 0.3 0.5
TVP-VAR-DMS (α = 1) 0.2 −4.2 −2.8 −1.6 0.6 0.8 0.0 0.0
TVP-VAR-DMA (α = 0.95) 2.0 3.3 0.5 −0.5 −0.6 0.1 −0.7 −0.3
TVP-VAR-DMS (α = 0.95) 1.5 5.4 −0.2 −2.1 −1.7 −0.6 1.9 2.9
TVP-VAR-DMA (α = 0.001) 3.9 8.3 5.8 4.1 −3.5 −5.4 1.0 2.7
TVP-VAR-DMS (α = 0.001) 4.4 9.0 3.9 3.3 −5.8 −4.2 0.5 1.5
Fig. 4. Relative log predictive likelihoods for GDP.
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Table 5
Sum of log predictive likelihoods relative to TVP-VAR-DMA, inflation.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR
TVP-VAR 6.1 −0.6 −0.2 −4.2 −4.8 0.5 −5.4 −6.5
TVP-VAR βT+h ∼ RW 4.4 −0.8 −1.0 −4.0 −4.2 1.6 −2.4 −4.1
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) 4.9 0.5 −0.4 −5.5 −6.7 2.3 −1.1 −2.2
TVP-VAR (α = 1) 5.3 −0.8 −2.5 −3.9 −5.3 −0.3 −5.2 −4.1
TVP-VAR (α = 0.95) 3.8 −0.8 −1.7 −4.3 −4.8 2.1 −4.8 −3.8
TVP-VAR (α = 0.001) 4.2 2.4 −1.8 −6.1 −5.6 5.2 −0.8 11.8
VAR, heteroskedastic 3.7 −1.3 −2.3 −7.5 −5.4 −0.3 −3.6 −4.6
VAR, homoskedastic −6.3 −3.2 −5.5 −9.0 −5.4 1.9 −3.7 −0.3

Medium VAR
TVP-VAR −2.1 −2.6 −0.1 −1.7 0.9 0.4 −1.3 0.5
TVP-VAR βT+h ∼ RW −1.7 −1.7 −1.6 0.6 1.5 2.2 0.3 −0.5
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) −2.5 −1.0 −1.8 −5.3 0.8 1.2 −0.3 2.4
TVP-VAR (α = 1) −1.0 −3.0 −0.3 −1.9 −0.4 −1.2 −2.1 −1.1
TVP-VAR (α = 0.95) −1.7 −1.8 −1.6 −0.1 1.3 0.5 −0.1 2.0
TVP-VAR (α = 0.001) 11.0 4.2 7.6 −0.6 2.0 3.1 4.8 7.5
VAR, heteroskedastic −3.0 −2.8 −0.4 −3.8 −1.5 −0.2 0.2 −0.1
VAR, homoskedastic −3.1 −4.3 −2.9 −3.9 0.5 −3.1 −0.5 1.3

Large VAR
TVP-VAR −3.2 2.4 −0.7 5.2 4.2 1.5 4.0 5.4
TVP-VAR βT+h ∼ RW −3.6 0.8 −1.5 4.3 5.7 0.2 5.4 6.1
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) −1.2 0.7 −2.6 2.6 4.0 1.1 2.6 4.0
TVP-VAR (α = 1) −3.1 0.6 0.0 3.9 6.5 1.6 4.1 7.6
TVP-VAR (α = 0.95) 2.7 1.7 1.1 1.8 5.0 −3.5 4.9 5.0
TVP-VAR (α = 0.001) 4.9 5.3 4.1 −3.5 −3.8 −0.2 1.1 11.0
VAR, heteroskedastic −3.8 −0.7 −3.2 1.5 2.8 −0.5 3.2 5.8
VAR, homoskedastic −4.6 −1.3 −5.4 −2.1 1.1 −1.5 0.4 1.0

Benchmark
Small BVAR-MCMC-Min −16.8 −10.1 −10.8 −7.2 −7.9 −10.1 −9.9 −3.0
Small BVAR-MCMC-Min rolling (10y) −36.4 −31.3 −28.9 −25.5 −28.0 −32.0 −35.9 −41.9
Small TVP-BVAR-MCMC-Min 3.6 4.1 1.4 2.0 0.9 −2.3 −1.6 −2.6

DMA/DMS VAR
TVP-VAR-DMA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TVP-VAR-DMS 2.5 1.8 −1.0 1.0 −0.7 −1.3 1.9 4.2
TVP-VAR-DMA βT+h ∼ RW 0.4 0.2 −1.5 −0.5 0.5 1.0 0.6 1.4
TVP-VAR-DMS βT+h ∼ RW 2.8 2.2 −2.0 1.2 −0.2 1.4 2.5 4.2
TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) 3.6 1.7 0.4 −0.2 1.0 3.7 2.2 3.1
TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) 4.5 0.4 −1.9 −2.3 −4.8 1.2 1.1 −0.6
TVP-VAR-DMA (α = 1) 0.9 −0.9 −1.2 0.1 −1.2 −0.1 −1.1 −0.2
TVP-VAR-DMS (α = 1) 4.5 0.8 −1.2 −1.5 −2.3 −1.6 −3.2 −0.4
TVP-VAR-DMA (α = 0.95) 3.1 −0.2 −0.6 −0.4 0.4 1.2 −0.8 −0.5
TVP-VAR-DMS (α = 0.95) 7.9 0.3 −1.8 1.8 2.0 2.2 −4.4 −2.1
TVP-VAR-DMA (α = 0.001) 7.3 3.1 3.8 −4.7 −5.1 2.9 2.3 9.2
TVP-VAR-DMS (α = 0.001) 7.8 3.2 7.5 −4.1 −9.3 3.9 4.2 1.4
Fig. 5. Relative log predictive likelihoods for inflation.
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Table 6
Sum of log predictive likelihoods relative to TVP-VAR-DMA, interest rate.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Small VAR
TVP-VAR 1.7 0.5 0.7 1.0 −1.8 −1.7 −2.4 −0.7
TVP-VAR βT+h ∼ RW 2.4 −0.5 2.0 0.0 −1.0 0.2 −1.6 −2.3
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) −14.0 −9.8 −9.3 −11.0 −10.2 −7.7 −11.2 −12.5
TVP-VAR (α = 1) −0.7 0.0 0.1 0.4 −4.1 −0.6 −1.7 −4.3
TVP-VAR (α = 0.95) 2.6 0.2 −0.3 −1.3 −2.1 −0.4 −1.4 −3.2
TVP-VAR (α = 0.001) 4.1 4.7 −2.1 1.9 −1.2 4.3 −2.4 −0.2
VAR, heteroskedastic −12.4 −8.0 −7.4 −5.6 −7.5 −3.5 −5.4 −7.1
VAR, homoskedastic −34.0 −34.1 −36.7 −30.3 −25.4 −21.7 −26.9 −28.0

Medium VAR
TVP-VAR −8.9 −3.6 −1.6 −2.9 0.6 4.6 3.6 2.9
TVP-VAR βT+h ∼ RW −10.5 −2.5 −3.4 −1.0 −1.6 3.9 4.1 2.2
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) −16.6 −10.1 −7.5 −11.0 −8.7 −4.1 −3.5 −6.0
TVP-VAR (α = 1) −7.5 −2.3 −1.2 −1.9 −4.1 −0.9 −0.5 0.7
TVP-VAR (α = 0.95) −8.9 −2.6 −1.5 −3.2 −1.8 1.6 2.8 4.0
TVP-VAR (α = 0.001) −0.9 5.2 2.2 7.4 −6.3 6.7 −0.8 4.7
VAR, heteroskedastic −16.8 −8.2 −5.2 −6.6 −2.6 0.4 −1.6 −2.3
VAR, homoskedastic −39.0 −28.5 −25.4 −22.2 −19.3 −14.9 −17.9 −18.5

Large VAR
TVP-VAR 3.0 0.7 −0.9 −1.4 −3.2 −0.4 0.8 −1.2
TVP-VAR βT+h ∼ RW 2.5 0.5 −0.4 −0.4 0.9 −2.9 1.5 0.2
TVP-VAR (λ = 0.99, κ = 0.96, α = 0.99) −12.0 −9.6 −10.8 −14.3 −12.5 −8.4 −8.0 −6.4
TVP-VAR (α = 1) 3.2 1.4 0.4 −2.1 −4.4 −2.0 0.0 0.7
TVP-VAR (α = 0.95) −0.4 −0.5 −2.3 −5.5 −7.0 −4.1 0.4 1.2
TVP-VAR (α = 0.001) 8.3 11.9 4.2 3.3 −12.3 −2.6 −1.2 −5.1
VAR, heteroskedastic −9.7 −5.9 −7.1 −7.6 −6.1 −3.1 −3.9 −5.4
VAR, homoskedastic −32.5 −25.1 −23.2 −23.2 −24.5 −22.5 −21.2 −25.8

Benchmark
Small BVAR-MCMC-Min −51.4 −43.1 −45.1 −41.8 −46.8 −45.9 −45.1 −44.7
Small BVAR-MCMC-Min rolling (10y) −79.0 −89.2 −101.5 −106.0 −105.9 −105.8 −99.3 −93.1
Small TVP-BVAR-MCMC-Min −30.2 −25.7 −32.2 −18.1 −25.5 −27.7 −28.8 −29.4

DMA/DMS VAR
TVP-VAR-DMA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TVP-VAR-DMS 3.3 1.5 −0.4 0.8 −3.0 −0.9 −1.6 −1.1
TVP-VAR-DMA βT+h ∼ RW 0.0 −0.6 −0.5 0.6 0.1 0.1 0.9 0.9
TVP-VAR-DMS βT+h ∼ RW 3.8 0.7 −0.6 1.0 −2.0 −1.9 −0.4 −0.9
TVP-VAR-DMA (λ = 0.99, κ = 0.96, α = 0.99) −9.5 −7.0 −7.3 −9.0 −7.6 −5.3 −6.2 −6.8
TVP-VAR-DMS (λ = 0.99, κ = 0.96, α = 0.99) −5.9 −8.7 −7.1 −8.7 −9.0 −6.7 −9.8 −8.3
TVP-VAR-DMA (α = 1) −0.4 −0.4 −0.2 −0.1 −4.3 −0.6 0.1 −1.2
TVP-VAR-DMS (α = 1) 5.2 0.1 2.6 1.9 −4.3 −0.6 −0.4 −0.2
TVP-VAR-DMA (α = 0.95) −1.7 −1.3 −2.7 −2.1 −2.4 −0.4 1.3 −0.3
TVP-VAR-DMS (α = 0.95) −2.4 −0.3 −3.8 0.8 −2.1 −0.9 0.3 0.2
TVP-VAR-DMA (α = 0.001) 5.4 6.1 1.1 4.1 −6.4 1.8 −1.5 −0.3
TVP-VAR-DMS (α = 0.001) 9.6 4.8 1.0 2.8 −5.7 −1.3 −4.1 −1.7
Fig. 6. Relative log predictive likelihoods for interest rates.
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A pattern worth noting in these figures is that the small VAR
model (with some exceptions) is forecasting relatively poorly
during recessions (especially at their start). This holds particularly
true for inflation and GDP forecasting of the early 1980s recessions
and the financial crisis.10 This pattern is also true for the Small
TVP-BVAR-MCMC-Min model, but to a lesser extent. The fact that
the TVP-VAR-DMS approach is forecasting particularly well during
these recessions is consistent with patterns in Fig. 3 where there
is strong evidence for TVP-VAR dimension switching during these
recessions.

However, it is not the case that TVP-VAR-DMS is always fore-
casting better in recessions, since for the recessions in the early
1990s and 2000s other methods are forecasting as well and some-
times better. And in the pre-Lehman part of the recent NBER-
dated recession, TVP-VAR-DMS is also not forecasting particularly
well.

Thus, when forecasting inflation and GDP, we are finding a
superior performance of TVP-VAR-DMS in at least the major
recessions. However, it is interesting to note that this finding does
not completely carry over for interest rates. In the recessions of
the early 1980s we are finding TVP-VAR-DMS to forecast interest
rates better than other approaches. But this does not occur for
the most recent recession. Instead, the superior average forecast
performance of TVP-VAR-DMS for interest rates is obtainedmostly
during the long expansionary periods between the early 1990s and
2001 and between 2002 and 2007.

4. Conclusions

In this paper, we have developed computationally feasible
methods for forecasting with large TVP-VARs through the use of
forgetting factors. We use forgetting factors in several ways. First,
they allow for simple forecasting within a single TVP-VAR model.
However, inspired by the literature on dynamic model averaging
and selection (see Raftery et al. (2010)), we also use forgetting
factors so as to allow for fast and simple dynamic model selection.
That is, we develop methods so that the forecasting model can
change at every point in time.

DMS can be used with any type of model. We have found it
useful to define our models in terms of their dimension, the priors
that they use and the values of the decay and forgetting. These
features allow us to estimate: (i) the desired degree of evolution
of VARs coefficients and volatilities, (ii) the shrinkage parameter
of the Minnesota prior and (iii) the dimension of the TVP-VAR.
Furthermore, all of these can change in a time-varying fashion
and involve only a simple recursive updating scheme. In our
empirical exercise, we have found our approach to offer moderate
improvements in forecast performance over other VAR or TVP-VAR
approaches.
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10 Note that the NBER dates the recent recession as beginning in December 2007.
However, the large deterioration in forecast performance of the small VAR did not
happen until about the time of the collapse of Lehman Brothers.
Table A.1
Series used in the small TVP-VAR with n = 3.

Series ID Tcode Description

GDPC96 5 Real gross domestic product
CPIAUCSL 6 Consumer price index: all items
FEDFUNDS 2 Effective federal funds rate

Table A.2
Additional series used in the medium TVP-VAR with n = 7.

Series ID Tcode Description

PMCP 1 NAPM commodity prices index
BORROW 6 Borrowings of depository institutions from the fed
SP500 5 S&P 500 index
M2SL 6 M2 money stock

Table A.3
Additional series used in the large TVP-VAR with n = 25.

Series ID Tcode Description

PINCOME 6 Personal income
PCECC96 5 Real personal consumption expenditures
INDPRO 5 Industrial production index
UTL11 1 Capacity utilization: manufacturing
UNRATE 2 Civilian unemployment rate
HOUST 4 Housing starts: total: new privately owned housing units
PPIFCG 6 Producer price index: all commodities
PCECTPI 5 Personal consumption expenditures: chain-type price

index
AHEMAN 6 Average hourly earnings: manufacturing
M1SL 6 M1 money stock
OILPRICE 5 Spot oil price: west Texas intermediate
GS10 2 10-year treasury constant maturity rate
EXUSUK 5 US/UK foreign exchange rate
GPDIC96 5 Real gross private domestic investment
PAYEMS 5 Total nonfarm payrolls: all employees
PMI 1 ISM manufacturing: PMI composite index
NAPMNOI 1 ISM manufacturing: new orders index
OPHPBS 5 Business sector: output per hour of all persons

Appendix. Data appendix

All series were downloaded from St. Louis’ FRED database
and cover the quarters 1959:Q1 to 2010:Q2. Some series in the
database were observed only on a monthly basis and quarterly
values were computed by averaging the monthly values over the
quarter. All variables are transformed to be approximately sta-
tionary following Stock and Watson (2008). In particular, if zi,t is
the original untransformed series, the transformation codes are
(column Tcode below): 1—no transformation (levels), xi,t = zi,t ;
2—first difference, xi,t = zi,t − zi,t−1; 3—second difference, xi,t =

zi,t − zi,t−2; 4—logarithm, xi,t = log zi,t ; 5—first difference of log-
arithm, xi,t = ln zi,t − ln zi,t−1; 6—second difference of logarithm,
xi,t = ln zi,t − ln zi,t−2 (see Tables A.1–A.3).
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