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SUMMARY
In this paper we discuss how the point and density forecasting performance of Bayesian vector autoregressions
(BVARs) is affected by a number of specification choices. We adopt as a benchmark a common specification in
the literature, a BVAR with variables entering in levels and a prior modeled along the lines of Sims and Zha
(International Economic Review 1998; 39: 949–968). We then consider optimal choice of the tightness, of the
lag length and of both; evaluate the relative merits of modeling in levels or growth rates; compare alternative
approaches to h-step-ahead forecasting (direct, iterated and pseudo-iterated); discuss the treatment of the error
variance and of cross-variable shrinkage; and assess rolling versus recursive estimation. Finally, we analyze the
robustness of the results to the VAR size and composition (using also data for France, Canada and the UK, while
the main analysis is for the USA). We obtain a large set of empirical results, but the overall message is that we find
very small losses (and sometimes even gains) from the adoption of specification choices that make BVAR modeling
quick and easy, in particular for point forecasting. This finding could therefore further enhance the diffusion of the
BVAR as an econometric tool for a vast range of applications. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Forecasting future developments in the economy is a key element of the decision process in policy
making, consumption and investment decisions, and financial planning. For example, members of
the Federal Open Market Committee often stress that, because monetary policy affects the economy
with a lag, policy must be forward-looking. Looking ahead means relying on forecasts of output
growth, inflation, and other key indicators.

Recently there has been a resurgence of interest in applying Bayesian methods to point and density
forecasting, particularly with Bayesian vector autoregressions (BVARs). BVARs have a long history in
forecasting, stimulated by their effectiveness documented in the seminal studies of Doan et al. (1984)
and Litterman (1986). In recent years, the models seem to be used even more systematically for policy
analysis and forecasting macroeconomic variables (e.g. Kadiyala and Karlsson, 1997; Koop, 2013).
At present, there is considerable interest in using BVARs for these purposes in a large dataset context
(e.g. Carriero et al., 2009, 2011; Banbura et al., 2010; Koop, 2013).

However, putting BVARs to use in practical forecasting raises a host of detailed questions about
model specification, estimation and forecast construction.

With regard to model specification, the researcher needs to address issues such as (i) the choice of
the tightness and of the lag length of the BVAR; (ii) the treatment of the error variance and the
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imposition of cross-variable shrinkage1; (iii) whether or not to transform the variables to get
stationarity, and whether to complement this choice with the imposition of priors favoring
cointegration and unit roots.
Accordingly, a first point of this paper is to examine the effects that such specification choices have

on the forecast accuracy of the BVAR. We adopt as a benchmark a common specification in the
literature, a Bayesian VAR with variables entering in levels and a prior modeled along the lines of Sims
and Zha (1998), Robertson and Tallman (1999), Waggoner and Zha (1999), Zha (1998) and, more
recently, Giannone et al. (2012).
With regard to model estimation and forecast construction, under some approaches estimating and

forecasting with a BVAR can be technically and computationally demanding. For the homoskedastic
BVAR with natural conjugate prior, the posterior and one-step-ahead predictive densities have
convenient analytical forms (Student’s t). However, even for this prior, multi-step predictive densities
do not have analytical forms and simulation methods are required. Under a Normal-inverted Wishart
prior and posterior that treat each equation symmetrically, Monte Carlo methods can be used to
efficiently simulate the multi-step predictive densities, taking advantage of a Kronecker structure to
the posterior variance of the model’s coefficients.
Other priors or model extensions (such as allowing for asymmetric prior variances across equations,

or time series heteroskedasticity in the disturbances) mean that neither posteriors nor predictive
densities have analytical forms. In these cases, simulations become more computationally intensive
because the posterior variance of the model’s coefficients no longer has a Kronecker structure. To
avoid costly simulation, Litterman’s (1986) specification of the Minnesota prior treats the error vari-
ance matrix as fixed and diagonal. Litterman (1986) imposes such a strong assumption to allow for
equation-by-equation ridge estimation of the system; treating the error variance matrix as random would
have required Markov chain Monte Carlo (MCMC) simulations of the entire system of equations.
While improved computational power has made simulation of models under a Normal-inverted

Wishart prior specification more tractable, some researchers and practitioners may prefer to avoid sim-
ulation methods and use alternatives considered in such studies as Banbura et al. (2010) and Koop
(2013). This preference could stem from the computational hurdles of conducting simulations with
very large models. Also, it can stem from very tight time constraints for the production of the forecasts,
as can be the case for market strategists, for example. Alternatively, the preference could be a function
of software choice and the coding burden of simulation. Common software such as RATS and Eviews
provides commands for estimating BVARs and forecasting without simulation; simulation requires more
significant programming by the user. Similarly, while many users of Matlab are capable of programming
simulation, the absence of simple procedures or toolboxes may make simulation costly to other users.
Accordingly, a second point of this paper is to examine approaches that make the computation of

point and density forecasts from BVARs quick and easy, for example by making specific choices on
the priors and by using direct rather than iterated forecasts (e.g. Marcellino et al., 2006). In most cases,
the resulting forecasts represent approximations of the posterior distribution. Hence we then assess
whether such approximations yield significant losses in terms of decreased forecast precision, as
measured by either the root mean squared forecast error or the predictive score, in the case of density
forecasts. We show that, for users focused on point forecasts, there is little cost to methods that do not
involve simulation.
Since it is difficult to rank the alternative modeling and forecasting choices from a purely theoretical

point of view, given that their relative performance will be determined by the unknown data-generating
process, we take a more practical perspective. Specifically, we consider a set of variables whose future
evolution is of key interest for central banks and more generally for economic policy making, and we

1 That is, whether to shrink more towards 0 the coefficients related to the regressors which are not lags of the dependent variable
of a given equation.
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evaluate the performance of different BVAR modeling choices in this context. In light of recent
evidence on the success of larger models relative to smaller ones and interest in large datasets
(e.g. Banbura et al., 2010; Koop, 2013), we focus on mid-size models applied to monthly data:
18-variable BVARs for US macroeconomic and financial data.

To ensure our results have broad applicability, we check their robustness to changes in both the time
series and cross-sectional dimension of the system. In particular, we consider recursive and rolling
estimation, a reduction in the size of the VAR to a subset of seven of the 18 US variables, and we
repeat the analysis for some other datasets—specifically, data for Canada, France and the UK.

We obtain a large set of empirical results, but we can summarize them by saying that we find very
small losses (and sometimes even gains) from the adoption of BVAR modeling choices that make
forecast computation quick and easy, in particular for point forecasting. An approach that works well
is to specify a Normal-inverted Wishart prior along the lines of Sims and Zha (1998) on the VAR in
levels, preferably optimizing its tightness and lag length. Optimizing over the lag length is generally
helpful, and optimal selection of the tightness never harms, though the average gains are small in
our empirical applications. For the accuracy of point forecasts, there proves to be essentially no payoff
to using MCMC methods to obtain multi-step forecasts from the posterior distribution. For density
forecasting, simulation methods work better than a direct multi-step approach, especially at longer
horizons (and less so at shorter horizons). Specifications in levels benefit a lot from the imposition
of the sum of coefficients and dummy initial observation priors of Doan et al. (1984) and Sims
(1993). Instead, there is no payoff to using a Litterman (1986) prior that treats the error variance matrix
as fixed and diagonal and is tighter for lags of other variables than for lags of the dependent variable.
Using forecast robustifying methods, such as rolling estimation or modeling in differences, can
enhance the density forecasting performance, while in terms of mean squared error it is difficult to
do better than the benchmark. The finding that simple methods work well could therefore further
enhance the diffusion of the BVAR as an econometric tool for a vast range of applications.

The paper is structured as follows. In Section 2 we describe the US data and the design of the
forecasting exercise. In Section 3 we present the baseline case. In the following three sections we
evaluate changes in three main features of the benchmark. Specifically, In Section 4 we consider
optimal choice of the tightness, lag length and both. In Section 5 we consider modeling in levels or
growth rates. In Section 6 we compare the alternative approaches to multi-step forecasting, with a
special focus on the non-simulation-based ones. In Section 7 we discuss the treatment of the error variance
and of cross-variable shrinkage. Next we evaluate the robustness of our findings. In particular, in Section 8
we consider the relative merits of rolling and recursive estimation. In Section 9 we look at the size of the
VAR and in Section 10 we summarize the results for Canada, France and the UK, comparing them with
those for the US. Finally, in Section 11 we summarize the main findings and conclude. Supplemental
material referred to in the text is available upon request.

2. DATA AND DESIGN OF THE FORECASTING EXERCISE

Our dataset for the USA has monthly frequency and runs from January 1973 to March 2010.2 The data
include 18 macroeconomic and financial series of major interest to policymakers and forecasters, listed
in Table I (panel A).

In the paper we will report results based on both a VAR for the variables in levels or log-levels
(which we label VAR in levels), and a VAR estimated after transforming variables as needed to get
stationarity (which we label VAR in growth rates). In this growth rates specification, we log-difference

2 While most of the US data series are available before 1973, the exchange rate index is only available back to 1973. Like most
other studies assessing forecasting with larger models, we do not consider real-time data, owing to limited availability for the
series of interest.
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variables such as employment to make them stationary, but we do not difference interest rates and
diffusion indexes from surveys because, conceptually, they should be stationary. For all variables,
the prior means of the coefficients will be set accordingly to 1 (for the VAR in levels) or 0 (for the
VAR in growth rates). The transformations used on each variable are listed in Table I.
While we estimate the models in both levels form and (for some variables) difference form, we

always report the forecast results in units corresponding to stationary variables, given in the last
column of Table I. For example, the forecast results for industrial production (IP) are for annualized
growth rates of IP. For models estimated in levels, we must transform some of the model-produced
forecasts to use the same units.
The main forecasting exercise is performed in pseudo-real time, i.e. we never use information which

is not available at the time the forecast is made. For all models, we use a recursive estimation window,
except in section 8, where we assess the robustness of the results to the use of a rolling sample
estimation scheme. We have data starting from 1973:1, but after differencing the first observation is
missing. Moreover, as we plan to compare models in levels featuring up to 13 lags (and 12 lags in
growth rates), we start with the estimation sample of 1974:2 to 1985:12 in order to have the same
number of data points for each model. We produce forecasts for all the horizons up to 12 steps ahead;
for a horizon of h periods, the first available forecast is for 1986:1 + h-1. Our last estimation sample is
1974:2 to 2009:3, yielding a forecast for horizon h for date 2009:4 + h-1.

Table I. Description of dataset and transformations

Code Series

Transformation

VAR in Levels VAR in growth rates

Panel A: USA
UR Unemployment rate None None
PCEPI PCE price index 1200lnyt 1200ln(yt/yt� 1)
PCEXFEPI Core PCE price index (ex food and energy) 1200lnyt 1200ln(yt/yt� 1)
PAYROLLS Nonfarm payroll employment 1200lnyt 1200ln(yt/yt� 1)
WEEKLYHRS Weekly hours worked None None
CLAIMS New claims for unemployment insurance None None
RETAILSALES Nominal retail sales 1200lnyt 1200ln(yt/yt� 1)
CONSCONF Index of consumer confidence None None
STARTS Single-family housing starts 100lnyt 100ln(yt/yt� 1)
IP Industrial production 1200lnyt 1200ln(yt/yt� 1)
CU Index of capacity utilization None None
PMISUPDELIV Purchasing Managers’ Index of supplier delivery times None None
PMIORDERS Purchasing Managers’ Index of new orders None None
POIL Price of oil (West Texas Intermediate) 100lnyt 100ln(yt/yt� 1)
SP500 S&P 500 index of stock prices 100lnyt 100ln(yt/yt� 1)
ITB10y Yield on 10-year Treasury bonds None None
FFR Federal funds rate None None
REALXR Real exchange rate 100lnyt 100ln(yt/yt� 1)

Panel B: Canada, France, UK

UNRATE Unemployment rate None None
EMPLOY Total employment 1200ln(yt) 1200ln(yt/yt� 1)
IP Industrial production 1200ln(yt) 1200ln(yt/yt� 1)
CPI CPI inflation 1200ln(yt) 1200ln(yt/yt� 1)
OIL Spot commodity price—crude oil 100ln(yt) 100ln(yt/yt� 1)
XRATE Real exchange rate vs. major currencies 100ln(yt) 100ln(yt/yt� 1)
STOCKPRICE Stock price index 100ln(yt) 100ln(yt/yt� 1)
POLRATE Official policy rate None None
BONDRATE 10-year government bond yield None None

Note: The used stock price index is TSE-300 for Canada, SPF-250 for France, and FTSE-100 for the UK. The used policy rate is
Overnight target rate for Canada, Banque de France Official Lending Rate and ECB policy rate for France, and Bank of England
official bank rate for the UK. Data are taken from the Forecasting Analysis and Modeling Environment Database, OECD,
Conference board, BIS, ECB and Bank of England.
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We will evaluate both the point and density forecast ability of the examined models. For point
forecasts, we evaluate our results in terms of root mean squared forecast error (RMSFE) for a given

model. Let ŷ ið Þ
tþh Mð Þ denote the forecast of the ith variable y ið Þ

tþh made by model M. The RMSFE made
by model M in forecasting the ith variable at horizon h is

RMSFEM
i;h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

X
ŷ ið Þ
tþh Mð Þ � y ið Þ

tþh

� �2
r

(1)

where the sum is computed over all the P forecasts produced.
The overall calibration of the density forecasts can be measured with log predictive density scores,

motivated and described in Geweke and Amisano (2010), for example.3 At each forecast origin, we
compute the log predictive score using the quadratic approximation of Adolfson et al. (2007). Specifically,
using the simulated distributions of forecasts, we compute the log score in predicting variable i as

st y ið Þ
tþh

� �
¼ �0:5 ln 2pð Þ þ ln Vi

tþhjt
� �

þ y ið Þ
tþh � �ytþhjt

� �2
=Vi

tþhjt

� �
(2)

where �ytþh tij and Vtþh tij denote the posterior mean and variance of the simulated forecast distribution for
variable i at h steps ahead. The average score obtained by modelM in predicting variable i h steps ahead is

SCOREM
i;h ¼

1
P

X
st y ið Þ

tþh

� �
(3)

To compare each model M against the benchmark B we therefore consider the percentage gains in
terms of RMSFE, defined as

1� RMSFEM
i;h=RMSFEB

i;h

� �
� 100 (4)

and the percentage gain in terms of score, which is

SCOREM
i;h � SCOREB

i;h

� �
� 100 (5)

Finally, to have an indication of the statistical significance of differences in forecasting performance,
we provide the results of the Diebold and Mariano (1995) test for equal mean squared forecast error,
compared against standard normal critical values. Following the recommendation of Clark and
McCracken (2011c), to reduce the chances of spurious rejections at longer forecast horizons, we
compute the Diebold–Mariano test with the Harvey et al. (1997) adjustment of the variance that enters
the test statistic. Our use of the Diebold–Mariano test with forecasts that are, in many cases, nested is a
deliberate choice. Monte Carlo evidence in Clark and McCracken (2011a,2011b) indicates that, with
nested models, the Diebold–Mariano test compared against normal critical values can be viewed as
a somewhat conservative (in the sense of tending to have size modestly below nominal size) test for
equal accuracy in finite samples. Nonetheless, we obtain many rejections of the null of equal accuracy.
This reflects the higher power of the test due to our long forecast sample (269 one-step observations for
the USA) compared to many other studies in the literature.

To provide a rough gauge of the statistical significance of differences in average log scores, we use
the Amisano and Giacomini (2007) t-test of equal means, applied to the log score for each model
relative to the baseline forecast. We view the tests as a rough gauge because the asymptotic validity
of the Amisano and Giacomini (2007) test requires that, as forecasting moves forward in time, the

3 The scores are averages of predictive likelihoods. The predictive likelihood is closely related to the marginal likelihood, as the
marginal likelihood can be expressed as the product of a sequence of one-step-ahead predictive likelihoods.
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models be estimated with a rolling, rather than expanding, sample of data. The t-statistics are computed
with a serial correlation-robust variance, using a rectangular kernel, h-1 lags, and the small-sample
adjustment of Harvey et al. (1997).

3. BASELINE CASE

3.1. Baseline Specification

The baseline specification, against which we will compare alternative modeling choices, is a standard
BVAR with a Normal-inverted Wishart (N-IW) conjugate prior. Given N different variables grouped in
the vector yt= (y1t y2t . . . yNt)0, we consider the following VAR:

yt ¼ Φc þΦ1yt�1 þΦ2yt�2 þ . . .þΦpyt�p þ et; et � i:i:d:N 0;Σð Þ (6)

where t= 1, . . .,T. Each equation hasM =Np+ 1 regressors. By grouping the coefficient matrices in the
N� M matrix Φ

0 ¼ Φc Φ1 . . .Φp

� �
and defining xt= (1 y0t� 1 . . . y0t� p)0 as a vector containing an

intercept and p lags of yt, the VAR can be written as

yt ¼ Φ
0
xt þ et: (7)

An even more compact notation is

Y ¼ XΦþ E (8)

where Y= [y1, . . ., yT]0, X= [x1, . . ., xT]0, and E= [e1, . . ., eT]0 are, respectively, T�N, T�M and T�N
matrices. Finally, for representing multi-step forecasts, another useful notation is the companion form:

xtþ1 ¼ Φþxt þeet (9)

where eet is an M� 1 vector containing et and 0’s elsewhere and

Φþ ¼

1 0 0 . . . 0
Φc Φ1 Φ2 . . . Φp

0 IN 0 . . . 0
⋮ 0 ⋱ ⋮
0 0 IN 0

2
66664

3
77775 (10)

Note that in this notation yt corresponds to rows 2, . . .,N+ 1 of xt+ 1, so we can write yt = sxt+ 1,
defining s to be a selection matrix selecting the appropriate rows (i.e. row 2 to row N+ 1) of xt+ 1. With

this representation, multi-step forecasts can be obtained as x̂tþh ¼ Φþð Þhxt.
We use the conjugate N-IW prior:

Φ Σ � N Φ0;Σ�Ω0ð Þ;Σ � IW S0; v0ð Þj (11)

As the N-IW prior is conjugate, the conditional posterior distribution of this model is also N-IW
(Zellner 1971):

Φ Σ; Y � N �Φ;Σ��Ωð Þ;Σj jY � IW �S;�vð Þ (12)

Defining Φ̂ and Ê as the OLS estimates, we have that �Φ ¼ Ω�1
0 þ X

0
X

� ��1
Ω�1

0 Φ0 þ X
0
Y

� �
,

�Ω ¼ Ω�1
0 þ X

0
X

� ��1
, �v ¼ v0 þ T , and �S ¼ Φ0 þ Ê

0
Ê þ Φ̂

0
X

0
XΦ̂ þΦ

0
0Ω�1

0 Φ0 � �Φ
0 �Ω�1 �Φ. In the
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case of the natural conjugate N-IW prior, the marginal posterior distribution of Φ is matricvariate-t with
expected value �Φ.

Finally, in the baseline specification in levels we choose a lag length of 13.

3.2. Baseline Prior Parametrization

In our baseline specification we impose the prior expectation and standard deviation of the coefficient
matrices to be

E Φ ijð Þ
k

h i
¼ Φ� ifi ¼ j; k ¼ 1

0 otherwise
; SD Φ ijð Þ

k

h i
¼

l1l2
k

si
sj
; k ¼ 1; . . . ; p

l0si; k ¼ 0

8<
:

8<
: (13)

where Φ ijð Þ
k denotes the element in position (i,j) in the matrix Φk. The prior mean Φ* is set to 1 in the

VAR in levels specifications and to 0 in the VAR in growth rates specification. For the intercept we
assume an informative prior with mean 0 and standard deviation l0si. The shrinkage parameter l1
measures the overall tightness of the prior: when l1! 0 the prior is imposed exactly and the data do
not influence the estimates, while as l1!1 the prior becomes loose and the prior information does
not influence the estimates, which will approach the standard OLS estimates. The parameter l2
implements additional shrinkage on lags of other variables than for lags of the dependent variable. We
refer to this as the cross-shrinkage parameter, and in our baseline specification we set it to l2 = 1, which
implies that no cross-variable shrinkage takes place, as required for the Normal-inverted Wishart case.
To set each scale parameter si we follow common practice (see, for example, Litterman, 1986; Sims and
Zha, 1998) and set it equal to the standard deviation of the residuals from a univariate autoregressive model.

Note that the prior beliefs in (13), defining the traditional Minnesota prior, only include the prior
mean and variances of the coefficients, and do not elicit any prior beliefs about the correlations among
the coefficients. Doan et al. (1984) and Sims (1993) have proposed to complement the prior beliefs in
(13) with additional priors which favor unit roots and cointegration, and introduce correlations in prior
beliefs about the coefficients in a given equation. Both these priors were motivated by the need to avoid
having an unreasonably large share of the sample period variation in the data accounted for by
deterministic components (Sims, 1993). These priors are also in line with the belief that macroeconomic
data typically feature unit roots and cointegration.

Accordingly, in our benchmark specification, to the prior beliefs in (13) we add the ‘sum of coefficients’
and ‘dummy initial observation’ priors proposed in Doan et al. (1984) and Sims (1993), respectively. Both
these priors can be implemented by augmenting the system with dummy observations.

More specifically, the ‘sum of coefficients’ prior expresses a belief that when the average of lagged
values of a variable is at some level �y0i , that same value �y0i is likely to be a good forecast of future
observations, and is implemented by augmenting the system in (8) with the dummy observations
Yd1 and Xd1 with generic elements:

yd i; jð Þ ¼ �y0i=l3 ifi ¼ j
0 otherwise

; xd i; sð Þ ¼ �y0i=l3 ifi ¼ j; s < M
0 otherwise

		
(14)

where i and j go from 1 to N while s goes from 1 toM. When l3 ! 0 the model tends to a form that can
be expressed entirely in terms of differenced data, there are as many unit roots as variables and there is
no cointegration.

The ‘dummy initial observation’ prior introduces a single dummy observation such that all values of all
variables are set equal to the corresponding averages of initial conditions up to a scaling factor (1/l4). It is
implemented by adding to the system in (8) the dummy variables Yd2 and Xd2 with generic elements:
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yd jð Þ ¼ �y0j=l4; xd sð Þ ¼ �y0j=l4 fors < M
1=l4 fors ¼ M

	
(15)

where j goes from 1 to N while s goes from 1 toM. As l4! 0 the model tends to a form in which either
all variables are stationary with means equal to the sample averages of the initial conditions, or there
are unit root components without drift terms, which is consistent with cointegration.
To summarize, the prior mean and variance of the VAR coefficients in our benchmark specification

are represented by combining a fictitious sample that imposes the mean and variances in (13) (in the
interest of brevity, we refer the reader to sources such as Banbura et al. (2010) and Karlsson (2012)
for the details in lieu of spelling out here the necessary dummy variable matrices) with the fictitious
samples given by the dummy variables defined by (14) and (15). The prior specification is completed
by choosing v0 and S0 so that the prior expectation of Σ is equal to a fixed diagonal residual variance
E Σ½ � ¼ diag s21; . . . ; s

2
N


 �
. In particular, following Kadiyala and Karlsson (1997), we set the diagonal

elements of S0 to s0ii ¼ v0 � N � 1ð Þs2i and v0 =N+ 2.
This prior is similar to that proposed by Sims and Zha (1998), with the subtle difference that in the

original implementation the prior is elicited on the coefficients of the structural representation of the
VAR rather than on the reduced form.4 This prior has been widely used in the literature (see, for
example, Leeper et al., 1996; Sims and Zha, 1996; Zha, 1998; Robertson and Tallman, 1999; Waggoner
and Zha, 1999; andmore recently, Giannone et al., 2012), and it is available ready-packaged in at least two
widely used econometric software packages (Eviews and RATS). Finally, we note the baseline prior is
very close to that used by Banbura et al. (2010), the only difference being the addition of the ‘dummy
initial observation’ component prior.5

Most of the studies cited above have considered the following parametrization for the prior, which
we adopt in our baseline model specification:

l0 ¼ 1; l1 ¼ 0:2; l2 ¼ 1; l3 ¼ 1; l4 ¼ 1: (16)

After discussing the results for this baseline specification, in the following sections we will assess
the consequences of varying l1 (the tightness), l2 (related to cross-variable shrinkage), l3, l4 (related,
respectively, to the unit root and cointegration prior), and modeling in growth rates rather than levels.
We note here that our baseline model is featuring the N-IW natural conjugate prior, which has

several advantages and some costs. In particular, as is clear from equation (11), the prior variance of
the coefficients has a Kronecker structure. This means that the prior variances of the coefficients are
symmetric across equations (they differ only up to a scaling factor given by the elements of the error
variance Σ). This structure of the prior variance matrix is what gives rise to the conjugacy of the prior,
as it implies that also the posterior in (12) has the same form. As we shall see, this leads to relevant
computational gains. However, the assumption that the prior variances of the coefficients are
symmetric across equations can be restrictive. For example, in the original Litterman (1986) implementation
of the prior, the parameter l2 is fixed to a value smaller than 1, reflecting the belief that own-lags are more
relevant than lags of other variables in explaining the behavior of a given dependent variable in a given
equation of the VAR. While such a belief makes sense, it is not implementable within the N-IW conjugate
framework, as fixing l2 to a value different from 1 would break down the Kronecker structure in (11) and
therefore the conjugacy of the prior and posterior.

4 Note that this prior does not necessarily have the same N-IW conjugate form as that in Kadiyala and Karlsson (1997), but it is
still computationally tractable. As discussed by Sims and Zha (1998), this prior is more general, and will coincide with that in
Kadiyala and Karlsson (1997) when the prior covariance matrix in the structural representation of the VAR is the same across
equations. This is the case in our forecasting application.
5 Our specifications also differ in that Banbura et al. (2010) use prior means of 0 on some first-lag coefficients, while we follow
studies such as Sims and Zha (1998) in using prior means of 1 on all first-lag coefficients in our baseline specification in levels.
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3.3. Forecasting

Under the standard N-IW prior described above, the full distribution of the one-step-ahead forecasts is
matricvariate-t (MT):

y
0
Tþ1jx

0
Tþ1 � MT x

0
Tþ1 �Φ; x

0
Tþ1 �ΩxTþ1 þ 1

� ��1
; �S;�v

� 
(17)

Multi-step-ahead forecasts obtained by iteration are not available in closed form, but can be
simulated using an MC algorithm which draws a sequence of Σ and parameters Φ from (12) and shocks

and at each draw j computes the implied path of ŷ jð Þ
tþh . Drawing a sequence of Φ can, in general, be

rather demanding from a computational point of view, but in this specific case the matricvariate struc-
ture of the N-IW prior ensures there are efficient algorithms that considerably speed up the computa-
tions. An intuitive way to draw Φ, conditionally on a draw of the error variance Σ, is to vectorize it
and draw from a multivariate normal. In this case a draw of Φ from (12) is obtained as follows:

vec Φð Þ ¼ vec �Φð Þ þ chol Σ��Ωð Þ � v (18)

where v is an MN� 1 standard Gaussian vector process. The Choleski decomposition above requires
(MN)3 elementary operations. The scheme outlined in (18) does not take advantage of the matricvariate
structure of the distribution of Φ. Indeed, by organizing the elements of v in an M�N matrix V such
that v = vec(V), one could draw the matrix Φ as follows:

Φ ¼ �Φþ chol �Ωð Þ � V � cholðΣÞ0 (19)

This can considerably speed up the computations, because the two Choleski decompositions
chol �Ωð Þ and chol(Σ) require only M3 +N3 operations, but can only be implemented when the variance
matrix of the prior coefficients has a Kronecker structure.

Table II in the supporting information reports, for each of the 18 variables under evaluation, the
RMSFEs (panel A) and average log scores (panel B) over the entire forecast sample 1986–2010. Most
of the subsequent results will be expressed as values relative to these baseline losses.

Note that, as mentioned, following Banbura et al. (2010), among others, we estimate the baseline
BVAR in levels but produce and evaluate forecasts on the growth rates for the trending variables identified
in Table I, as these are the quantities of interest for such a prototypical macroeconomic dataset.

4. SELECTION OF HYPERPARAMETERS AND LAG LENGTH

4.1. Selection of Hyperparameters (Tightness)

To make the prior operational, one needs to choose the value of the hyperparameter l1 which controls
the overall tightness of the prior. To consider the effect of prior optimization on forecast accuracy, we
follow Carriero et al. (2012) and at each point we choose θ by maximizing the marginal data density of
the model6:

l�1t ¼ argmax
l1

lnp Yð Þ (20)

6 Giannone et al. (2012) propose a similar strategy for forecasting a macroeconomic dataset. While our strategy implicitly as-
sumes a flat prior on a discrete set of possible values for l1, their strategy assumes a proper (albeit uninformative) prior on a con-
tinuum of values. Still other studies, such as Banbura et al. (2010), have selected hyperparameters using alternative strategies
based on RMSFEs.
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The marginal data density (or marginal likelihood) p(Y) can be obtained by integrating out all the
coefficients of the model. Defining Y as the set of all the coefficients of the model, we have

p Yð Þ ¼
Z

p Y Yj Þp Yð ÞdYð (21)

Under our Normal-inverted Wishart prior the density p(Y) can be computed in closed form (Zellner,
1971; Bauwens et al., 1999) and is given by

p Yð Þ ¼ p
�TN
2 � j I þ XΩ0X

0
� ��1

N
2 � S0

v0
2 � ΓN v0þT

2ð Þ
ΓN v0

2ð Þ
����

����
����

� S0 þ Y � XΦ0Þ
0
I þ XΩ0X

0
� ��1

Y � XΦ0ð Þ �v0þT
2

�������� (22)

with ΓN(�) denoting the N-variate gamma function. A straightforward derivation based on theorem
A.19 in Bauwens et al. (1999) can be found in Carriero et al. (2012). The value of the marginal
likelihood in (22) is provided by default in some computer packages such as Eviews.
We now present the results obtained when in each time period we set l1 ¼ l�1t , i.e. we set the

tightness to the value maximizing the marginal likelihood. We optimize over a discrete grid l12 { 0.01,
0.025, 0.050, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.75, 1, 2, 5 }. For our baseline model,
it turns out that the value of the tightness does not change over time and remains at the value 0.15. As
in the baseline specification the shrinkage is fixed at 0.2, we do not expect great losses or gains from using
the optimal tightness.
Figure 1 shows the gains in RMSFE and predictive SCORE obtained by using l1 ¼ l�1t (with a fixed

lag length of 13) with respect to the baseline model (which fixes the lag order at 13 and the tightness
hyperparameter at l1 = 0.2). Note that, to facilitate presentation, the chart in the upper panel focuses on
horizons of 1, 3, 6 and 12 periods; the summary table in the lower panel covers all horizons between 1
and 12 periods. As is clear, optimizing the tightness rarely yields losses. However, as l�1t turns out to be
very close to the baseline value, the gains are rather small—on average 1.41% over all variables and
horizons—though often statistically significant at shorter horizons. The RMSFE gains are higher for
some variables such as the Purchasing Managers’ Index of supplier delivery times, the 10-year yield
and the federal funds rate (FFR). A similar picture emerges when looking at density forecasting: the
gains are overall positive but rather small, with an average/median gain of about 0.5%.
We have also considered choosing optimally the hyperparameters l3 and l4 (related respectively to

the ‘sum of coefficients’ and ‘initial dummy observation’ prior) by optimizing the marginal likelihood
with respect to them. For l1 we used a grid of values {0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}, while for l3
and l4 we used the grid {0.25, 0.5, 1, 1.5, 2, 2.5, 3}. Results for this strategy are not reported, for
brevity, but can be found in the supporting information, Figure 10. While the resulting forecasts are
slightly superior to the benchmark on average, such a strategy yields slightly smaller gains on average
with respect to the case where l1, l3 and l4 are kept fixed and only the lag length is optimized (see the
discussion in the next subsection, and Figure 2).

4.2. Selection of the Lag Length

Up to now we have assumed a fixed lag length, p=13. However, the researcher needs to determine the
lag length as well. Hence we consider selecting the lag length by maximizing the marginal likelihood,
as we did before for the hyperparameter l1. At each forecast origin, we set
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p�t ¼ argmax
p

lnp Yð Þ (23)

where we optimize over the grid p= 1, 2, . . ., 13.7

For the US data the optimal lag length chosen with this method is equal to 3 in the first quarter of the
estimation sample, 4 in the second quarter, and 13 in the second half of the sample. The results for the
USA are reported in Figure 2, which provides the gains in RMSFE and SCORE of the specification
with p ¼ p�t against the baseline specification with p = 13. It emerges that selecting the lag length
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1−step ahead 3−step ahead 6−step ahead 12−step ahead

Percentage gains in SCORE (selected horizons)

Percentage gains in RMSFE (selected horizons)

Percentage gains in SCORE descriptive statistics (all horizons)Percentage gains in RMSFE descriptive statistics (all horizons)

Figure 1. BVAR with optimally selected shrinkage parameter versus baseline BVAR. The top panel presents the
percentage gains in relative mean squared forecast error of model M versus model B, computed as follows:

1� RMSFEM
i;h=RMSFEB

i;h

� �
� 100. The bottom panel presents the percentage gains in the score of model M

versus model B, computed as follows: SCOREM
i;h � SCOREB

i;h

� �
� 100. Results in the bar charts are displayed

for selected forecast horizons: 1, 3, 6, and 12 steps ahead. The thinner lines above the bars denote rejection of
the null of equal forecast accuracy at the 5% level. The tables contain descriptive statistics on the percentage gains,
based on all forecast horizons. Descriptive statistics include average, median, maximum, minimum, percentage of
cases in which the percentage gains are above 0, percentage of cases in which the percentage gains are between
� 1% and + 1%, and the percentage of cases in which the forecasts from the competing models are statistically
different according to the Diebold–Mariano (1995) test with the Harvey et al. (1997) adjustment

7 We have also tried extending the maximum lag length up to 24 lags. Results for this case are virtually identical to those
obtained with 12 lags and are available upon request.
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can be significantly beneficial for some variables, such as unemployment, the 10-year Treasury bill
rate, the indices of supplier delivery times and new orders, and the claims for unemployment insurance.
Losses are limited to a handful of variables, notably the FFR and hours in the case of density forecasts.
Overall, optimizing over the lag length seems to help a little more than does optimizing over the
shrinkage parameter. For example, across all variables and horizons, the median improvement in RMSFE
associated with optimizing the lag is about 2.96 percentage points, while the median improvement in
RMSFE associated with optimizing the overall shrinkage is about 1.4 percentage points.
We have also considered optimizing the rate at which longer lags are shrunk more strongly towards

0. To do so, we modified the standard deviation in (13) to l1l2
kd si=sj. The parameter dmeasures the rate of

decay, and in the baseline specification is set to 1. The optimal rate of decay starts at 1.5 and then
gradually declines to 1.2 for the later part of the sample. In terms of forecasting accuracy, optimizing
over the lag decay d performs roughly the same as optimizing over the lag length p.

4.3. Simultaneous Choice of Hyperparameters and Lag Length

We now assess whether maximizing the marginal likelihood with respect to both the tightness
parameter l1 and the lag length p can produce some additional gains. In order to do so, we compute
the marginal likelihood using a limited range of values for l1 and p between 1 and 13. To streamline
the computations, we consider a smaller grid of values for l1 than we did in the case in which we just
optimized over l1, using a range of {0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}. Results in terms of lag selection
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Figure 2. BVAR with optimally selected lags versus baseline BVAR. See notes to Figure 1
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do not change: the optimal lag length chosen with this method is equal to 3 in the first quarter of the
sample, 4 in the second quarter, and 13 in the second half of the sample. However, once we allow
for the lag length to change, we see some movements in the optimal tightness as well. In particular,
the optimal tightness is equal to 0.2 in (roughly) the first half of the sample, and then becomes 0.15
in the second half. This likely happens because in the first part of the sample 3 or 4 lags are selected,
so there are fewer regressors in the model and therefore less shrinkage is required. However, clearly the
optimal parameter l1 still does not move much; therefore the forecasting results are very similar to
those obtained by optimizing over the lag length, as shown in Figure 3. For example, the average
RMSFE gains only increases to 3.3% from 2.96%.

To sum up, optimization in general is recommended. Maximizing the marginal likelihood using
(22) requires little computational effort and has the important advantage that it will yield the optimal
tightness for any dataset, regardless of its composition and size (in both the cross-sectional and time
series dimension). The results presented here cannot guarantee that the tried-and-true values will work
well in all cases, such as when the model includes 50 or 100 variables. That said, for models in
common macroeconomic datasets such as those examined in this paper, the payoffs to optimization
are often modest. We shall see in Section 10 that similar results are obtained for Canadian,
French and UK data. Therefore, when optimization is viewed as too costly in terms of coding or
computational time, the costs to using tried-and-true values in common data are fairly small.
One reason is probably that the tried-and-true values have been established largely on the basis of
forecasting performance.
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Figure 3. BVAR with optimally selected tightness and lags versus baseline BVAR. See notes to Figure 1
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5. LEVEL VERSUS GROWTH RATES AND THE ROLE OF COINTEGRATION/UNIT ROOTS
PRIORS

It is in principle unclear whether transforming variables into their growth rates can enhance the forecasting
performance of the BVAR. Some researchers and practitioners prefer to leave variables in log levels and
impose prior means of unit roots with additional priors on sums of coefficients (see, for example, Banbura
et al., 2010; Giannone et al. 2012). One reason is that such a specification can better take into consideration
the existence of long-run (cointegrating) relationships across the variables, which are omitted in a VAR in
differences. On the other hand, Clements and Hendry (1996) show that in a classical framework differencing
can improve the forecasting performance in the presence of instability. Diebold and Kilian (2000) show that,
for variables with unit roots, forecasting accuracy can be improved by differencing. Hence this is another
issue to be considered from an empirical perspective. As far as we know, there has been little published effort
in the BVAR forecasting literature to compare specifications in levels versus differences. Following the
Litterman (1986) tradition, some BVAR forecasting work uses models with variables in levels or log levels
(e.g. Banbura et al., 2010; Giannone et al., 2010, 2012), while other work uses models in differences or
growth rates (e.g. Del Negro and Schorfheide, 2004; Clark and McCracken, 2008; Koop, 2013).
Accordingly, we revisit the levels versus growth rates question. We estimate a version of the

baseline BVAR in which many variables enter the model in growth rates (see Table I). As the
transformed variables are likely to be stationary, we change the prior beliefs accordingly. In particular,
the prior mean Φ* in (13) is set to 0 for all variables, while we remove the unit root/cointegration
priors.8 We use 12 lags and set the overall shrinkage parameter l1 at 0.2.
Results for the growth rate specification are displayed in Figure 4. On average over all variables and

forecast horizons, the differences in the loss functions are small, with an average gain in RMSE of just
0.37% and an average loss in score of just 0.75%. When one looks at individual variables an interesting
pattern emerges. Most of the variables feature a small increase in RMSFE when the forecasts are
produced with the model in growth rates. Indeed, the model in growth rates outperforms the model in
levels in only 36.6% of the combinations of variables and horizons. However, for a few variables at longer
horizons (WEEKLYHRS, PMISUPDELIV, FFR and ITB10Y), the model in growth rates provides
sizable forecasting gains. On average, these effects cancel out and overall we have that mean and median
relative gains are very close to 0. Similarly, for average log scores, for most variables and horizons (67.6%
of the cases), the model in levels performs better than the model in growth rates, although the median
difference in scores is small. Again, though, for a few variables at longer horizons (e.g. WEEKLYHRS
and PMISUPDELIV), the growth rates specification yields sizable improvements in scores.
For this growth rates specification we have also considered optimizing over the tightness

hyperparameter and lag length. The optimal tightness changes only once, moving from a value of 0.25
in the first 40 estimation samples to 0.2 for all the remaining samples. The optimal lag length is instead
fixed at 12 over all the samples. For this reason, in the growth rate case the results obtained by optimizing
the hyperparameters are inevitably very close to those obtained with the baseline specification.
The role played by the inclusion of the sum of coefficients and initial dummy observation priors in the

baseline levels specification also deserves investigation. If one decides to estimate the model in levels, then

8 In our growth rates specification, all variables are assumed a priori to be stationary, and accordingly we follow studies such as
Wright (2011) in setting all prior means to 0. However, while stationary, some variables can still be very persistent, and some
studies (e.g. Clark, 2011) set the prior means of persistent variables to something like 0.8. Accordingly, we have run comparisons
for the 18 and 7 variable models for the USA and the models for the other countries to check forecast accuracy for models in
growth rates with different prior means for the AR(1) coefficients. Specifically, for the persistent variables in each growth rates
model, we set the prior mean of each AR(1) coefficient to 0.8 instead of the 0 we use in the paper’s results for the growth rates
specification. At least in these checks the modified prior means yielded results quite similar to those reported in the paper. On
average across variables and forecast horizons, the accuracy of the growth rates model with a mixture of AR(1) prior means
of 0 and prior means of 0.8 was essentially the same as the accuracy of the model with prior means of 0 for all coefficients. These
results apply to both recursive and rolling estimation schemes.
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these priors implement the belief that there is unit-root/cointegration in the system, which is a typical
feature of macroeconomic datasets such as the one considered here. Sims (1993) shows examples that
‘without such elements in the prior, fitted multivariate time series models tend to imply that an
unreasonably large share of the sample period variation in the data is accounted for by deterministic
components’. In order to check for this effect we have also re-estimated our BVAR in levels omitting
the sum of coefficients and initial dummy observation prior. We do not report the results here, for
brevity, but they are available in the supporting information, Figure 11. The main finding is that once
one does that, the model in growth rates systematically dominates the model in levels. This is evident
in RMSFEs (relative to the baseline model) that are much higher for the model in levels without these
priors (by an average of about 11%) than for the model in growth rates. This suggests that, while the
model in growth rates does not need by construction the cointegration/unit root prior (because it is
stationary), when the model is estimated in levels such priors do help and should be included,
consistent with evidence in Banbura et al. (2010).

Finally, it is worth mentioning that, even when working with larger VARs, forecasters might be
interested in forecasting only a few variables in the system, e.g. inflation and output growth. In this
paper, selections of lag length and prior hyperparameters were based on all of the variables. While
we do not pursue this here to save space, a promising direction for further research is to optimize only
the marginal likelihood of the variables of interest.9
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Figure 4. BVAR in growth rates versus baseline BVAR (in levels). See notes to Figure 1

9 However, Jarocinski and Mackowiak (2011) argue for focusing on model fit measures for full sets of variables.
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To sum up, we find that specifications in levels and growth rates produce on average comparable
forecasts. For most variables, the model in levels produces more often (i.e. for more variables) gains
in point and density forecasting, but the model in growth rates performs particularly well for selected
variables. The good performance of the model in levels deteriorates substantially if one removes the
unit roots/cointegration priors. Therefore, if one wants to use the traditional Minnesota prior specified
in (13), then we recommend working in differences. For a VAR in levels, the traditional Minnesota
prior should be combined with the dummy observation/sum of coefficients priors in (14) and (15).
Overall, the latter specification should be preferred.10

6. ALTERNATIVE MULTI-STEP FORECASTING APPROACHES

In this section we compare the simulation-based approach with multi-step forecasting used so far
versus some alternative methods that can considerably reduce the computational burden.

6.1. Full Simulation versus Approximation (Iterated vs. Pseudo-iterated Approach)

As discussed, for the standard N-IW prior, closed-form solutions are available for the marginal posterior of
the VAR coefficients. These would naturally provide closed-form solutions for the one-step-ahead
forecasts. However, for multi-step forecasting (and also for impulse response analysis) the fact that
coefficients enter nonlinearly implies that simulation methods are needed. The posterior distribution
of the h-step ahead forecast is a nonlinear function of Φ and therefore can only be obtained by
simulation. For example, using the companion form notation given in (9), the posterior mean of
the forecasts would be given by

ŷtþh ¼
1
m
Σm
l¼1 s� Φþ

l


 �h
xtþ1

h i
(24)

where Φþ
l


 �h
xtþ1; l= 1, . . .,m, is a collection of m simulated forecasts based on m draws from the mar-

ginal of Φ, which are obtained by using (12) and the computational efficiency of (19). We label this
approach, which is used in our baseline specification, the ‘iterated’ approach.
Therefore, the production of multi-step point forecasts using simulation and then equation (24) will

require m times more computations (each of order M3 +N3) than producing the one-step-ahead
forecasts via the closed-form solution in (17). This is not a problem if one considers a single estimation
of a BVAR, but of course if one is back-testing several different models by evaluating historical
forecasts it can increase CPU time requirements substantially. As an alternative, one can choose to
approximate the results by just integrating out the uncertainty in the coefficients and then using the
posterior mean of the coefficients to produce posterior means of the multi-step forecasts. In this case
the multi-step point forecast is computed as

ŷtþh ¼ s� �Φþ� �h
xtþ1: (25)

This method has been used, for example, by Banbura et al. (2010), and we label it the ‘pseudo-iterated’
approach. Of course this approach has a clear computational benefit but it is, strictly speaking, inaccurate
as it ignores the nonlinearity inherent in multi-step forecasting. In this section we assess the effects of

10 Studies such as Clark (2011), Osterholm (2008) and Wright (2011) have shown that the performance of models with variables
transformed for stationarity can be improved significantly with the use of the steady-state prior developed in Villani (2009). As
Villani’s estimation approach involves Gibbs sampling, it is significantly more computationally demanding than a model
specified to permit a Normal-inverted Wishart prior and posterior. Accordingly, in light of our focus on monthly data and 18 vari-
ables, we do not pursue the steady-state prior in this paper.
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ignoring these nonlinearities on the precision of point forecasts, and we find that the cost is very small (it is
not likely to be small for density forecasts).

In some cases there can be little choice but to use the ‘pseudo-iterated’ approach. If one
departs from the N-IW conjugate prior, which ensures both a closed-form solution for the joint
posterior density of the parameters and a particularly convenient Kronecker structure of the
posterior coefficient variance matrix, the computational costs involved in simulating the joint
posterior distribution of the parameters increase rapidly with the dimension of the system,
because to draw a sequence of Φ one must resort to manipulation of an MN�MN variance
matrix without the efficient Kronecker structure of (12) and (19). The computational costs rise
sharply with the number of lags and, in particular, number of variables. Other studies such as
Kadiyala and Karlsson (1997) and Karlsson (2012) have stressed the computational challenges
associated with specifications that depart from the Kronecker structure.

Moreover, the use of the ‘pseudo-iterated’ approach may be obliged for some practitioners relying
on common software packages such as RATS and Eviews that do not provide simple, direct commands
for simulating BVARs. In these packages, commands produce posterior moments, but do not permit
direct simulation of the posterior distributions. Instead, for simulation, users must be able to write their
own programs, as would also be the case for packages such as Matlab.

Our take on these considerations is that they certainly warrant looking at the accuracy of forecasts
obtained by methods that do not involve simulation. So we turn now to comparing the results obtained
by using the pseudo-iterated approach with those resulting from the proper simulation-based iterated
approach, using in both cases the benchmark specification with 13 lags and fixed tightness.

Results of this experiment are contained in Figure 5 and clearly indicate that the gains from the
simulation-based approach are negligible. Therefore, if one is only interested in point forecasts, the
loss from the quick and easy ‘pseudo iterated’ approach is small. On the other hand, if the focus is
on multi-step density forecasts, the pseudo-iterated approach would not help from a computational
point of view. Indeed, while one could compute a set of desired quantiles from an (approximate)
predictive density based on an iteration of equation (17), the proper production of a whole density
forecast would still require simulation methods.

−1

−0.5

0

0.5

1

U
R

P
C

E
P

I

P
C

E
X

F
E

P
I

P
A

Y
R

O
LL

S

W
E

E
K

LY
H

R
S

C
LA

IM
S

R
E

T
A

IL
S

A
LE

S

C
O

N
S

C
O

N
F

S
T

A
R

T
S IP C
U

P
M

IS
U

P
D

E
LI

V

P
M

IO
R

D
E

R
S

P
O

IL

S
P

50
0

IT
B

10
Y

F
F

R

R
E

A
LX

R

1−step ahead 3−step ahead 6−step ahead 12−step ahead

Percentage gains in RMSFE (selected horizons)

Percentage gains in RMSFE descriptive statistics (all horizons)

Figure 5. BVAR estimated with pseudo-iterated approach versus baseline BVAR. See notes to Figure 1
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6.2. Direct Forecasting Approach

Another way to overcome the problem of nonlinearity in the multi-step forecasts is to use the so-called
direct approach. Consider the following VAR:

yt ¼ Φc;h þΦ1;hyt� h�1ð Þ�1 þΦ2;hyt� h�1ð Þ�2 þ . . .þΦ1;hyt� h�1ð Þ�p þ et: (26)

Note that in the above model the vector yt is regressed directly onto yt� h and p-1 additional lags,
and that for each forecast horizon h a different model is employed. Such an approach is known as
‘direct’ forecasting, and it focuses on minimizing the relevant loss function for each forecast horizon,
i.e. the h-step-ahead forecast error. Such an approach has been implemented in a Bayesian framework
by Koop (2013), for example. The approach of our baseline specification, namely regress yt onto yt� 1,
. . ., yt� p and then compute recursively the h-step-ahead forecasts, is known as ‘iterated’ forecasting or
‘powering up’. For a discussion and a comparison of these alternative methods in a classical context
see, for example, Marcellino et al. (2006) and Pesaran et al. (2011).
In brief, generally, the powering-up approach is more efficient in a classical context, as the used

estimators are equivalent to maximum likelihood, under correct model specification. But it is dangerous
in the presence of misspecification, because in general the misspecification will inflate with the
forecast horizon when the forecasts are computed recursively. In addition, the direct approach implies that
the h-step-ahead forecast is still a linear function of the coefficients (because a different model is used for
each forecast horizon), while in the traditional powering-up approach the multi-step forecasts are highly
nonlinear functions of the estimated coefficients. As a result, there is an exact closed-form solution for
the distribution of the h-step-ahead forecasts computed using (26), while computing the forecasts resulting
from the powering-up strategy requires the use of simulation methods, as discussed above.11

Since the final forecasts are forecasts of the growth rates of the variables, getting density forecasts for
growth rates starting from forecasts based on the levels specification is not straightforward. Accordingly, in
evaluating forecasts based on a direct approach to estimation and forecasting, we use as a benchmark
forecasts from a model in what we have referred to as growth rate form, rather than levels form; we obtain
the benchmark forecasts by simulation and iteration.
In the direct case, the optimal lag length (based on the marginal likelihood) is 12 over the whole

sample. In this case, as a different model is estimated at each forecast horizon, a separate optimal
shrinkage parameter is estimated for each horizon. Also in this case the shrinkage parameter does
not vary a lot. At one step ahead, the optimal shrinkage parameter is 0.2 in 85% of the samples and
0.25 in the remaining ones. For the two-step-ahead horizon, it is 0.25 in 77% of the samples and
0.15 in the remaining ones. For horizons of three months or more, the optimal value is 0.2 almost in
each sample, while the value 0.25 is chosen in a few other cases (generally around 1% of the cases
and never more than 5% of the total samples).
With these results, the use of optimal tightness and lag length offer little benefits with respect to the

baseline model (in growth rates), and therefore we concentrate on the fixed shrinkage and lag case.
Results for the other cases are very similar and are available upon request. The outcome of the comparison
of the direct forecasting method against the baseline growth rates specification is reported in Figure 6.
In this case there is no difference by construction for one-step-ahead forecasts, except for very small

differences that arise due to the simulation of the baseline model in growth rates. For horizons shorter
than six steps ahead, there is little loss in using the direct approach, with an average loss below 1% both

11 Admittedly, however, the closed-form solution obtained with a direct forecasting approach assumes the error terms of the
model are serially uncorrelated, which will not actually be the case with forecast horizons of more than one period. We follow
other studies such as Jacobson and Karlsson (2004), Koop (2013) and Wright (2009) in applying direct methods to multi-step
forecast horizons.
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for the RMSFE and SCORE loss functions. As the forecast horizon increases, the direct method is
outperformed by the baseline approach, especially for the SCORE loss function, with an average loss
of 6.41%. For the RMSFE loss function, the average loss is only 2.31%. There are variables for which
the choice between the direct and iterated approaches makes a sizable difference at long horizons, such
as payrolls, claims, retail sales, consumer confidence and housing starts.

Overall, the pattern emerging from the findings documented in this section is that simulations are not
strictly required to get good multi-step point forecasts from Bayesian VARs. The pseudo-iterated
method works as well as the fully iterated approach, with virtually no losses in terms of point forecasts,
and it is much easier and faster, in particular in a recursive context. For models with variables transformed
for stationarity, in point forecast accuracy, the direct method performs comparably to the iterated
approach. For density forecasting, the direct method seems suboptimal with respect to the fully iterated
approach—more so (as one would expect) at longer forecast horizons than shorter horizons.

7. LITTERMAN PRIOR AND CROSS-VARIABLE SHRINKAGE

The baseline specification we have considered so far is a Normal-inverted Wishart conjugate prior
which features the same sample mean for the VAR coefficients of the prior proposed by Litterman
(1986) and which is known as Minnesota prior. However, the N-IW prior of our baseline specification
differs in three respects. First, in Litterman’s original implementation the unit root/cointegration priors
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Figure 6. BVAR estimated with direct approach versus baseline BVAR (models in growth rates). See notes to Figure 1
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were not considered (these were introduced by Doan et al., 1984, and Sims, 1993). We have analyzed
the role played by such priors in Section 5 and concluded that it is indeed relevant in models in levels.
Second, in the original Litterman implementation, the hyperparameter l2 in the prior variance is set

to a value smaller than 1, which puts additional shrinkage on the lags of all the variables other than the
dependent variable of the ith VAR equation. Litterman (1986) sets this parameter to a value smaller
than 1 in order to capture the idea that, at least in principle, these lags should be less relevant than
the lag of the dependent variable itself. This modification implies that the Kronecker form for the
coefficient variance matrix breaks down and as a consequence one can only derive the conditional
posteriors, while to draw from the joint posterior of the coefficients and error variance matrix one needs
to implement MCMC (Gibbs) sampling. Gibbs sampling has poorer mixing properties than the simple
MC integration required for the N-IW case as MCMC methods produce autocorrelated draws.
Moreover, a Gibbs sampling algorithm would require at each iteration the manipulation of MN�MN
matrices to derive the conditional posterior mean of the coefficients and to perform a random draw
from the conditional posterior.
The third difference in the Litterman (1986) approach arises precisely because of the difficulty of

estimating a large system when the cross-variable shrinkage is imposed. To overcome this, Litterman
(1986) treats the error covariance matrix as fixed and diagonal and estimates it in a preliminary step. This
assumptionmeans that the model can be estimated with ridge regression on an equation-by-equation basis.
In contrast, in our baseline N-IW prior, the covariance matrix is sampled from an inverted Wishart,
calibrated so that its expected value coincides with the fixed diagonal matrix of Litterman (1986).
While the pioneering work of Litterman (1986) suggested it was useful to have cross-variable

shrinkage, it has become more common to estimate larger models without cross-variable shrinkage, in
order to have a Kronecker structure that speeds up computations and facilitates simulation. Still,
pre-programmed Bayesian capabilities in programs like RATS include an option for cross-variable
shrinkage.
To assess these specification choices, Figure 7 provides results for our Litterman specification of a

model in levels, using cross-variable shrinkage of l2 = 0.2. To be able to compare density results,
we simulated forecasts for the Litterman specification using the posterior normal distribution for each
equation’s coefficients, treating each equation independently per Kadiyala and Karlsson (1997) and
holding the error variance matrix fixed (and diagonal). The Litterman approach that uses both
cross-variable shrinkage and a diagonal error variance matrix fares on average slightly worse than
the baseline model. The average losses are rather small: about 0.92% for the RMSFE and 1.41%
for the SCORE loss function. These apparently clear-cut results hide an interesting feature, which
becomes apparent when one looks at the role played by the cross-variable shrinkage versus the diagonal
error variance matrix. To shed light on this, we estimated the BVAR using the Litterman estimation ap-
proach but setting l2 = 1. This case is in between the Litterman approach and the baseline model: it can
be thought of as the Littermann approach with no cross-variable shrinkage, or as the baseline model with
a diagonal variance matrix. Results for this case (available in the supporting information, Figure 12) show
a clear deterioration with respect to the baseline model, with an average loss of 10.57% in RMSFE and
24.87% in SCORE. Moreover, the model is outperformed by the baseline specification in 100% of the
cases for the RMSFE and 97% of the cases for the SCORE. Therefore, it seems that, by itself, the use
of a diagonal variance matrix in the baseline specification reduces forecast accuracy, while the use of
cross-variable shrinkage in the Litterman approach improves accuracy. On balance, these two effects off-
set each other.12

12 We have also tried a modification of the Litterman approach that partially deals with the problem of the diagonal error vari-
ance matrix by allowing it to be non-diagonal when the error term is drawn (but still being diagonal when the coefficients are
drawn). This indeed improves the average log scores.
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To sum up, the imposition of a diagonal error variance matrix is detrimental to forecasting accuracy,
especially in density forecasting. Imposing cross-variable shrinkage provides a benefit, but on average
such benefit is offset by the cost of imposing the diagonality in the variance of the system. Finally,
while imposing cross-variable shrinkage and allowing a non-diagonal variance matrix is possible in
principle, estimation should be performed via Gibbs sampling and quickly becomes difficult from a
computational perspective (see, for example, Karlsson, 2012).

8. ROLLING VERSUS RECURSIVE ESTIMATION

There is a long debate in the forecasting literature on the relative merits of rolling versus recursive
estimation. The former can be more robust in the presence of structural breaks, while the latter can
be more efficient. Hence we now assess their performance in our context and evaluate whether the
other results we have obtained so far are robust to the choice of the estimation method.

To start, in Figure 8 we compare point and density forecasts from recursive and rolling estimates of
the benchmark specification, taking the recursive case as the benchmark. The rolling estimates use a
window of 11 years of data, corresponding to the size of the sample used to generate the first forecast
observation in the recursive scheme. On average, the two methods perform broadly similarly,
particularly in terms of RMSFEs. But looking at the percentage of cases in which a given method
outperforms the other, it appears that the rolling method performs relatively better in density forecasting,
while the recursive method performs relatively better in point forecasting. We interpret this finding as
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possibly related to time-varying volatility in the errors. Indeed, when one considers density forecasts, the
assumption of homoskedasticity and Gaussianity is restrictive and drifting volatilities likely matter.
Introducing stochastic volatility in a VAR of this dimension creates substantial computational problems
and goes beyond the scope of this paper, but it is considered in Carriero et al. (2011).13 It is also worth
mentioning that rolling estimation improves substantially the FFR forecasts under both loss functions, a
finding that might be explained by the ability of rolling forecasts to ‘forget’ about previous policy regimes.
We now assess the robustness of the previous findings related to the usefulness of optimal selection

of shrinkage and lag length and cross-variable shrinkage. To save space, we present a summary of the
results, with full details available upon request. When we optimize the overall shrinkage
hyperparameter l1, the optimal setting moves a bit more compared to the recursive case, when it
was steady at 0.15. In particular, the parameter still remains at 0.15 for the majority (86.4%) of the
samples, but in the other cases it moves up to 0.2. The resulting forecasts, are however, fairly close
to those based on a fixed tightness, confirming what we found before. When we optimize the lag order,
the selected lag is much more variable than in the recursive case. The optimal lag starts at 3, rises to 6
or 7 in the mid 1990s, bounces around to levels as high as 12, and then ends the sample at 9. Consistent
with the recursive results, for models estimated with a rolling sample, optimizing the lag improves
accuracy (compared to the case of a fixed lag). For example, RMSFE is lower with the optimal lag
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Figure 8. BVAR estimated with rolling window versus baseline (recursive window). See notes to Figure 1

13 Koop and Korobilis (2012) allow a computationally simpler form of time-varying volatility in large BVARs, through an ex-
ponentially weighted moving average filter.
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in about 82% of the horizon and variable combinations, by an average of 2%. Finally, the results on
cross-variable shrinkage are in line with what we documented in the case of recursive estimation.

In summary, rolling estimation can slightly improve the density forecasts, but not the point ones, with re-
spect to recursive estimation. However, the other main findings of the paper in terms of small but positive
gains coming from hyperparameter and lag length selection are overall confirmed also with rolling estimation.

9. VAR SIZE

While a number of studies have found forecast accuracy improves with larger datasets, it is not necessarily
the case that more is always better. For example, Boivin and Ng (2006) suggest that pre-selecting the
variables that are included in a factor model according to their relationship with the target variable of
interest can improve the forecasting precision. Similarly, Banbura et al. (2010) show that a medium-scale
BVAR of about 20 variables delivers often more accurate forecasts than large BVARs. Koop (2013)
shows that the forecasting performance increases with size, but only up to about 20 variables.

Therefore, we now assess the forecasting performance of a smaller-scale BVAR for a subset of the
variables of interest, comparing it to that of our benchmark medium-sized VAR. Then, we consider
whether the findings on the role of the BVAR specification choices remain valid for the smaller system.

We focus on the following seven variables: unemployment rate (UR), core PCE price index
(PCEXFEPI), nonfarm payroll employment (PAYROLLS), nominal retail sales (RETAILSALES),
single-family housing starts (STARTS), industrial production (IP) and the federal funds rate (FFR).

Results based on the baseline specification for both VARs are displayed in Figure 9. It is interesting
to note that while on average the small system seems to produce slightly better forecasts with respect to
the large system, for most variables and horizons (38.1% for the RMSFE and 29.8% for the SCORE),
the small system is actually less accurate. The similar average performance of the two models is indeed
driven by the particularly good performance of the small system in forecasting the FFR. If one does not
consider this variable, then the large system produces better forecasts in most cases.

Let us now assess the robustness of the results obtained using the baseline VAR with 18 variables
with respect to a set of specification choices, specifically, optimal tightness and lag length, levels
versus growth rates, and iterated, pseudo-iterated and direct approach. To save space, we do not report
the detailed results, but they are available upon request.

With the seven-variable VAR, the optimal lag length selected is 7 in the first quarter of the sample,
8 in the second quarter and 13 in the second half. It seems that, with some variables dropped out, the
smaller model needs longer lags to soak up the associated dynamics. As the selected lag length is
always quite high, the gains in choosing optimally the lag length are limited. The mean and median of
the loss functions are very similar to those computed using the 13-lag specification, and the percentage
of cases where the optimal selection pays off is close to 50%. When considering optimal tightness (l1)
selection, the optimal tightness comes out at 0.2 for all forecast origins, up (implying less shrinkage) a
bit from the 0.15 that proved optimal in the 18-variable model. The similarity of the shrinkage selections
for the seven-variable and 18-variable models is consistent with the conventional wisdom that a setting of
0.2 generally works well. As in the 18-variable case, with just seven variables in the model the mean and
median loss function values with optimal shrinkage are very similar to those obtained with fixed tightness.
Moreover, the percentages of instances where a variable is better forecast by the model with optimal
tightness is 43%, so in this case selecting optimally the tightness slightly reduces forecast accuracy on
average. These results do not change much when tightness and lag length are jointly optimized.

With regard to the effect of levels versus growth rates and the use of iterated, pseudo-iterated and direct
forecasting approaches, results are in line with those obtained with the baseline 18-variable specification.

With regard to the direct approach, the advantage of the 18-variable model over the seven-variable
model is smaller. On average, the larger model is more accurate, but the difference between the two
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models is smaller than under the pseudo-iterated and iterated approaches. In fact, at longer forecast
horizons, for many variables the smaller model becomes slightly more accurate than the larger model. This
might indicate that the seven-variable VAR is somewhat misspecified with respect to the 18-variable
VAR, and the direct approach is better suited to handle such misspecification.

10. RESULTS FOR OTHER COUNTRIES

To make sure our conclusions have broad applicability, we extend our analysis to three more countries:
Canada, France and the UK. For each country we have collected a dataset composed of nine variables since
the entire set of variables used for the US analysis is not available for each country, or at least not for a suf-
ficiently long time span. The variables, together with their transformations, are described in Table I (panel B).
The estimation and forecast samples are comparable to those for the USA. Specifically, for Canada

and France we use data ranging from January 1971 to May 2010. The first estimation sample is
February 1972 to December 1983, and then the estimation sample expands with the recursive scheme,
ending in May 2009. The forecast period for these countries ranges from January 1984 to May 2010.
For the UK the sample is slightly shorter, starting in January 1975 and ending in March 2010. The first
estimation window is February 1976 to December 1987, the last is January 1975 to March 2009, and
the forecast sample is January 1988 to March 2010.
The benchmark specification is as for the USA; therefore with a fixed lag length and tightness,

variables in levels (with unit root and sums of coefficients priors), full iteration to obtain h-step-ahead
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Figure 9. BVAR based on seven variables versus baseline BVAR (based on 18 variables). See notes to Figure 1
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forecasts and recursive estimation. We then assess the role of optimal selection of the lag length and
prior tightness; growth versus level specification; alternative methods for computing h-step-ahead
forecasts (pseudo-iterated and direct); cross-variable shrinkage; and rolling versus recursive estimation.
In most cases we consider both point and density forecasts.

In the interest of space, here we briefly summarize the results, focusing especially on the comparison
with the findings obtained for the USA. More detailed results can be found in the online Appendix
(supporting information).

The results on the choice of the tightness parameter and lag are broadly in line with those for the
USA, but with some small differences. For two of the three other countries (Canada and France),
optimizing the shrinkage yields slightly larger and more consistent gains than does optimizing the
lag, while lag shrinkage performs relatively better for the USA and UK. For example, in the case of
Canada, optimizing shrinkage improves RMSFEs relative to the baseline in 89.8% of the variable
and horizon combinations, with a median gain of 1.15%; optimizing the lag improves RMSFEs in
66.7% of cases, with a median improvement of 0.73%. For the UK, optimizing shrinkage also
improves RMSFEs in 89.8% of cases, with a median gain of 0.83%; optimizing the lag improves
RMSFEs in 87.0% of cases, with a median improvement of 1.74%. Optimizing both shrinkage and
lag together does not add any additional RMSFE gains. Therefore, the overall message remains that
optimizing over the tightness hyperparameter and lag length can be helpful for the majority of variables
and forecast horizons, though for most variables and horizons the gains are limited.

The comparison of levels versus growth rates mostly—although not entirely—resembles that for the
USA. For Canada and France, like the USA, forecast accuracy is similar for models in levels and
growth rates, when measured either by RMSFE or predictive score. However, for the UK the levels
specification has a clearer advantage over the growth specification, with average RMSFE and score
gains of about 2% and 5%, respectively, and a better performance in about 60% of cases. Overall, with
respect to the USA, there seems to be less support for specifications in growth rates.

Turning to the findings on the iterated versus pseudo-iterated approach, for the US we found clear
evidence that the two methods produce virtually the same results in terms of point forecasts, supporting
the use of the much quicker pseudo-iterated approach. These results are resoundingly confirmed. For
Canada, France and the UK, the RMSFEs never differ by 1% or more.

As for the comparison between the direct and iterated approach (for models in what we refer to
as growth rate form), the results for other countries are broadly similar to those for the USA:
there is little to be gained by the use of direct multi-step estimation and forecasting. For Canada,
France and the UK, RMSFEs are on average slightly higher with the direct approach than the
baseline specification (in levels, with iterated forecasts), with RMSFEs that are higher in most
variable-horizon combinations. The direct approach also yields slightly lower scores, although
the percentage of cases in which it is less accurate than the baseline is smaller in terms of scores
than in terms of RMSFEs.

With regard to the comparison between the Litterman specification prior and the baseline
specification we confirm that the cross-variable shrinkage, when coupled with a fixed and
diagonal error variance matrix, does not pay a lot, since the fraction of cases in which the simpler
baseline specification forecasts better is often above 50%, and it yields average gains in the range
of 1–4%.

Finally, about rolling rather than recursive estimation, the former performs slightly better than
for the USA, in particular for density forecasting. In terms of RMSFE the largest average gains
are about 3% for the UK, with a value of 2% for Canada and France. The gains in terms of pre-
dictive score are instead in the range 5–11%, with 71–91% of cases where the rolling score is
better than the recursive one. As mentioned in the case of the USA, rolling estimation could pro-
vide more robustness in the presence of parameter time variation, and this seems to matter more
for density forecasts.
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11. CONCLUSIONS

In this paper we discuss how a set of specification choices affects the forecasting performance of Bayesian
VARs.We adopt as a benchmark a common specification in the literature, a Bayesian VARwith variables
entering in levels and a prior modeled along the lines of Sims and Zha (1998). We then consider optimal
choice of tightness, of lag length and of both; consider the relative merits of modeling in levels or growth
rates; compare alternative approaches to multi-step forecasting (direct, iterated and pseudo-iterated); and
discuss the treatment of the error variance and of cross-variable shrinkage.
To ensure our results have broad applicability, we check their robustness to the choice of the sample size

(the time series dimension of the VAR) by comparing rolling with recursive estimation; to the VAR size
(the cross-sectional dimension of the VAR) by analyzing a subset of seven of the 18 US variables; and to
the VAR composition, by repeating the analysis for some other datasets—specifically, data for Canada,
France and the UK.
We obtain a large set of empirical results. We can summarize them by saying that we find very small

losses (and sometimes even gains) from the adoption of BVAR modeling choices that make forecast
computation quick and easy, in particular for point forecasts. An approach that works well is to specify
a Normal-inverted Wishart prior along the lines of Sims and Zha (1998) on the VAR in levels,
preferably optimizing its tightness and lag length. Optimizing over the lag length tends to be more
helpful (i.e. providing relatively larger gains) than optimizing the tightness. For the accuracy of point
forecasts, there proves to be essentially no payoff to using simulation methods to obtain multi-step
forecasts from the posterior distribution. For density forecasting, simulation methods work better than
a direct multi-step approach, especially at long horizons. Specifications in levels benefit a lot from the
imposition of the sum of coefficients and dummy initial observation priors of Doan et al. (1984) and
Sims (1993). Instead, there is no payoff to using a Litterman (1986) prior that is tighter for lags of other
variables than for lags of the dependent variable and treats the error variance matrix as fixed and
diagonal. Using rolling estimation can enhance the density forecasting performance, while in terms
of mean squared error it is difficult to do better than the benchmark. The finding that simple methods
work well could therefore further enhance the diffusion of the BVAR as an econometric tool for a vast
range of applications, particularly by researchers and practitioners relying on pre-programmed BVAR
tools in common software packages such as RATS and Eviews.
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