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Abstract

One of the major concerns engendered by a warming climate are changing sea levels and

their lasting effects on coastal populations. Sea levels are now monitored by satellites, but long

term records are only available at discrete locations along the coasts. Sea levels and long-term

sea level trends must be better understood at the local level for local populations to adapt to

sea level changes. We develop a model to facilitate spatial-prediction of known sea level trends,

such as sea level rise and seasonal trends, and of remaining unknown trends in sea levels along

the coast. By combining a spatially-varying coefficient modeling approach with spatio-temporal

factor analysis methods in a Bayesian framework, we present a model that captures and predicts
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sea level trends and values at unmonitored locations along the coast. We show the value of the

proposed model using thirty years of sea level data from thirty-eight stations along the Atlantic

(east) coast of the United States. Specifically, one trend our approach provides a method for

estimating is the rate of sea level rise, which ranges from roughly 1 mm/year in the northern

and southern regions of the Atlantic coast to 5.4 mm/year in the middle region.

Keywords: spatio-temporal modeling, multivariate autoregressive model, spatial basis functions,

confirmatory factor analysis, MCMC

1 Introduction

Changing sea levels can have significant global scale impacts on physical, social, and economic

systems, but these impacts are largely felt at the local level. For example, Prime et al. (2015)

describes the devastating impacts of rising sea levels combined with storm surges on catastrophic

flooding events such as Hurricane Katrina and Hurricane Sandy in the United States which resulted

in thousands of fatalities, billions of dollars in losses, and years of rebuilding important infrastruc-

tures. While it is estimated that global sea levels have increased by an average of between 1.5 to 1.9

mm/year between 1901 and 2010 and between 2.8 and 3.6 mm/year between 1993 and 2010 (IPCC,

2014), local sea level changes vary from one location to another. In order to mitigate impacts of

such local sea level changes in the most cost-effective and locally-appropriate way (for examples

of common mitigation approaches, see IPCC, 1997), sea levels must be understood at the local

level. (For more examples on the impacts of changing local and global sea levels, see, for example:

Mimura, 2013; Williams, 2013; Cozannet et al., 2017; and Wahl et al., 2017.)

Understanding sea levels at the local level presents many challenges. As is typical with environmen-

tal variables, there exist many sources of variability that must be accounted for and/or understood.

For example, sea levels change constantly with the changing tides, sea levels exhibit seasonal trends

such as natural rising in the spring and fall and dips in the winter and summer, and sea levels are

strongly dependent and are impacted by regional or global trends due to weather events such as El

Niño or other naturally occurring warmer and cooler years. Additionally, there are many physical
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processes that contribute to local sea levels, including shifting surface winds, melting ice, tectonic

movement, ocean temperature, ocean salinity, and more (see, for example, Church et al., 2013).

Accounting for all these sources of variation becomes crucial when looking forward to projected

changes in local sea level, since alternative futures will have dramatically different impact on the

relative importance of these various sources (see for example Kopp et al., 2014). Here, as we focus

on modelling past and current sea levels trends at the local level, we adopt a modeling approach

that explains the ultimate outcome, without decomposing the sources explicitly.

Sea levels are not monitored at all locations along the coast. However, each location’s response

to changing sea levels must be based on local sea level changes and local economic and physical

needs. Thus, our goal is to understand the spatial nature of sea levels in order to predict trends

– including both known and unknown trends – at unmonitored locations. For example, predicting

a linear sea level change (rise or fall) at unmonitored locations while accounting for other known

(e.g., seasonal) and unknown trends can help local governments better prepare for their local sea

level changes. To accomplish this goal, we propose a model that combines two spatio-temporal

modeling tools: spatially-varying coefficient models and spatio-temporal factor analysis.

Bayesian spatially-varying coefficient models (Gelfand et al., 2003) have been used in many envi-

ronmental and public health analyses (for examples, see, Waller and Gotway, 2004; Banerjee et al.,

2014). These models were developed out of recognition that regression relationships are generally

not constant over a region. In our case, we know that linear sea level changes and other trends

in time are not constant along the coast and for our purposes it is desirable to model and learn

about such changes in relationships in space. Thus, we use a spatially-varying coefficient model to

directly model known sea level trends. This portion of the model is described in detail in Section

3.1.

To capture and model unknown sea level trends, we make use of Bayesian spatio-temporal factor

analyses (Lopes et al., 2008, 2011). Bayesian spatio-temporal factor analysis methods were built

on confirmatory factor analysis methods to capture the flexibility of factor analyses but to better

identify spatial and temporal trends among the latent factors. We make use of this type of analysis
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to capture remaining spatio-temporal trends after accounting for known trends. This portion of

the model is described in detail in Section 3.2.

Previous analyses of sea levels focus on examining global and local sea level rise, or a linear change

in time. Peltier (1996) examines historical carbon data to evaluate global sea level rise, while

Church et al. (2004) uses global satellite altimeter data combined with local tide gauge data to

identify regional sea level changes. Ezer (2013) examines global sea level estimates from different

data sources. Hong et al. (1999), Müller et al. (2008), Ezer et al. (2013), and Yin and Goddard

(2013) examine changing sea levels due to different ocean dynamics. In contrast, our analysis seeks

to not only identify local sea level rise (or fall), but also to identify other local trends and to predict

all trends at unmonitored locations.

Because of the impact that changing sea levels can have on storm surges and other extreme weather

events, many statistical analyses of sea levels focus on learning about such storm surges. Zhang

et al. (1999) uses hourly data from tide gauges to examine the frequency and intensity of storm

surges while Sweet and Zervas (2011) identify a relationship between cool season storm surges and

El Niño. Tebaldi et al. (2012) directly models the relationship between sea level rise and frequency

of storm surges, predicting the frequency of similar storm surges in the future. In our analysis, we

use monthly-averaged data and therefore do not examine short-term trends such as storm surges.

However, the proposed model could be adapted to spatially predict strength and intensity of storm

surges at unmonitored locations and thus be used by local officials to better prepare for such

extreme weather events.

These analyses use a variety of methods to analyze sea levels such as models based on physical

processes (Hong et al., 1999; Müller et al., 2008; Tebaldi et al., 2012; Yin and Goddard, 2013),

frequency decomposition (Zhang et al., 1999), empirical mode decomposition (EMD; Ezer, 2013;

Ezer et al., 2013), and empirical orthogonal functions (EOF’s; Church et al., 2004). Methods used

in our analysis are similar (for example, instead of EOF’s to model spatial dependence, we use

other basis functions), but are designed specifically to capture and predict sea level trends.
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In the following sections, we first describe the data in Section 2. In Section 3 we motivate and

develop the model. Section 4.1 examines the ability of our model to interpolate long-term trends

along the coast and we also compare the model to modified versions to examine how well they

capture trends that are not directly accounted for. We also examine the ability of the model to

predict the actual sea level values at unmonitored locations in Section 4.2. Finally, we conclude

with a discussion of the implications of our analysis in Section 5.

2 Data

The data were obtained from NOAA’s tides and currents website https://tidesandcurrents.noaa.gov/

and contain hourly data from January 1, 1979 to December 31, 2008 of 93 tide and flood gauges

along the United States coast. This work focuses on the Atlantic coast (east coast) of the United

States, which includes 38 gauges. We are interested in longer-range temporal trends rather than

very short-term temporal trends (i.e., hourly), therefore we averaged the data across lunar months

(new moon to new moon), resulting in 371 lunar months during the 30-year time period. We used

lunar months because of the relationship between the moon and sea levels/tides. The data were

reported in meters relative to each location’s mean high water (MHW); rather than working with

the MHW data, we zero-centered the data from each location so that the mean at each location is

0.

Most locations have some amount of missing observations. After averaging, the amount of missing

data at each location ranges from 0% to 73% missing, with most of the locations (approximately

3/4) having less than 10% missing. In the analysis, we do not eliminate sites with missing data

and estimate each missing value using the model; indeed, this is one of the features of the model.

Figure 1 shows the locations of the stations. To more easily explore and plot the spatial relationships

of trends, we make use of one-dimensional space by essentially stringing out the coast into one long

line. Where two-dimensional (Euclidean) spatial distance is often described as “as the crow flies,”

we use the analogy “as the coast-guard walks” to describe this one-dimensional (“coastal”) spatial

distance. The coastal locations were computed by calculating the distances between latitude-
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longitude points along a fine grid of the coast and matching the tide gauge locations to that grid.

Because of this, the units of the one-dimensional space are essentially meaningless, but range from

0.41 to 73.70. The connection between the two spaces is shown in Figure 1.

Figure 1 also shows five locations that we used as test data to determine how well the model can

predict trends and sea level values at unobserved locations. The test locations are location numbers

(going from north to south) 4, 7, 16, 28, and 31 (station names: Seavey Island, ME; Newport, RI;

Philadelphia, PA; Gloucester Point, VA; and Beaufort, Duke Marine Lab, NC) and are marked in

red.

3 Model

The model we propose was motivated to estimate and predict spatial and temporal trends, but is

also able to predict sea level values at unobserved locations. We examine model performance for

both in Section 4, but describe the model in this section using the motivating trends.

To capture known temporal trends (i.e., sea-level rise and seasonal trends), we use a spatially-

varying coefficient model. After accounting for the known trends, strong but unidentifiable trends

remained across the residuals of the locations. Therefore, to capture these unknown trends, we use

confirmatory spatio-temporal factor analysis. The spatially-varying coefficient portion of the model

is described in Section 3.1 and the factor analysis portion of the model is described in Section 3.2.

3.1 Spatially-Varying Coefficient Model

Let yi = (yi1, . . . , yiT )′ be a T ×1 vector of sea level observations for location i observed at latitude-

longitude location si, for i = 1, . . . , n. Because we use two types of spatial locations, we also note

here that each two-dimensional si corresponds to a coastal location, denoted s̃i. We model the sea

level at station i and time t by letting

yit = µi + (t− t̄)βi +
J+1∑
j=1

bj(t
∗)ξij + zit, (1)
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Figure 1: Map of the tide gauge locations. The left shows the latitude-longitude locations on the
east coast of the United States while the right shows the coastal locations; the gray lines connect
the two types of locations. Data from red locations are used as test data when applicable.
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where µi is a location-specific mean, (t − t̄) is the centered time index, βi is the location-specific

“sea-level change” or the coefficient of the linear change in time, bj(t
∗) is the jth circular B-spline

basis function, t∗ is the day of the year for the time index t, and ξij is the corresponding coefficient.

zit is the unexplained error. To capture additional spatio-temporal structure, we will model zit

using a spatio-temporal factor analysis, described in Section 3.2.

Each piece of the model in Equation (1) captures an interpretable long-range trend. µi captures

the overall mean of location i. (t− t̄)βi captures the linearly increasing or decreasing trend in time.

If the linear trend is increasing, this is what we think of as “sea-level rise.” Finally,
∑J+1

j=1 bj(t
∗)ξij

captures the seasonal annual trend. The splines are defined on the day of the year (we account for

leap years by including 366 as the maximum day of year for each year). We used circular B-splines

(Wood, 2017) so that the end of one year connects smoothly to the beginning of the following year.

Thus, this piece captures the natural rise in the spring and fall and drops in the summer and winter

exhibited by sea levels on the east coast (see Figure 4).

In exploratory analyses of the data (see, Coats, 2015), we saw strong evidence of spatial dependence

in the known trends. For this reason, we use a spatially-varying coefficient model (e.g., Gelfand

et al., 2003) to capture this dependence. By using a spatial model on the coefficients, we can predict

the known trends at unobserved locations while accounting for the different relationships at each

location. Specifically, for µ = (µ1, . . . , µn)′, let

µ ∼ N (Xµαµ,Σµ(θµ)), (2)

where Xµ is an n × p matrix of covariates, αµ is a p × 1 vector of coefficients, and Σµ(θµ) is a

spatial covariance matrix parameterized by θµ. We use similar models for β = (β1, . . . , βn)′ and

ξj = (ξ1j , . . . , ξnj)
′:

β ∼ N (Xβαβ,Σβ(θβ)), (3)

ξj ∼ N (Xξjαξj ,Σξj (θξj )), (4)
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where Xβ and Xξj are the covariate matrices, αβ and αξj are the corresponding coefficients, and

Σβ(θβ) and Σξj (θξj ) are the spatial covariance matrices parameterized by θβ and θξj , respectively.

Although not necessary, we let Xµ = Xβ = Xξj ≡ X so that all coefficients use the same covariates.

Additionally, the spatial covariances do not need to be of the same form for all coefficients. For

example, the spatial covariance of β could be from a Gaussian covariance function, while the spatial

covariance of ξ1 may be from an exponential covariance function. In our analysis, we account for

spatial dependence only in the X matrix by using bi-square spatial bases; then, for a given coefficient

vector δ (where δ is any of µ, β, or ξj), set Σδ(θδ) = τ2δ I, where τ2δ is a covariance parameter and

I is the identity matrix. We define the specific form of X used in our analysis in more detail in

Section 3.3.

3.2 Spatio-Temporal Factor Analysis

The parameters µ, β, and ξ capture the known long-range trends, but the residuals zit in Equation

(1) still exhibit strong spatio-temporal dependence. An exploratory factor analysis of these residuals

(Coats, 2015; Sandholtz, 2016) showed evidence of three factors and they each demonstrated spatial

dependence with what we term “northern,” “central,” and “southern” factors, where, for example,

the northern locations load most strongly on the northern factor. For this reason, we further model

zit with a spatio-temporal factor analysis model.

Let zt = (z1t, . . . , znt)
′ be the n× 1 vector of residuals for time t, and

Z =

[
z1 z2 · · · zT

]

is the corresponding n× T matrix. Then, as in standard factor analysis,

Z = ΛF + E, (5)

where Λ is an n×L matrix of factor loadings, F is an L×T matrix of L factors, and E is an n×T

matrix of residuals.
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When we combine the two portions of the model (Equations 1 and 5), we must make sure that

the factors do not capture the trends meant to be modeled by the spatially-varying coefficient

portion of the model. For example, nothing about this model prevents the factors from capturing

portions of the seasonal annual trend or the linear trend, which would make the interpretation of

those corresponding coefficients much less meaningful. To account for this, we apply ideas used

to prevent spatial confounding as introduced by Hodges and Reich (2010) and Hughes and Haran

(2013). Specifically, for all times at a given location we can write the covariate matrix from (1) as

Ui =



1 (1− (T + 1)/2) b1(1
∗) · · · bJ+1(1

∗)

1 (2− (T + 1)/2) b1(2
∗) · · · bJ+1(2

∗)

...
...

...
. . .

...

1 (T − (T + 1)/2) b1(T
∗) · · · bJ+1(T

∗)


. (6)

In our analysis, we set Ui = U for all i. Then for any location i, the orthogonal projection matrices

P = U(U′U)−1U′ and P⊥ = I−P can be used to divide the factors into a portion correlated with

U and a portion orthogonal to U. Specifically, for a given location i, we can write

Zi = (zi1, . . . , ziT )′ = F′Λi + Ei = PF′Λi + P⊥F′Λi + Ei,

where Λi is the L×1 vector of factor loadings corresponding to location i and Ei is the corresponding

T × 1 vector of residuals for the ith location. In this case, PF′ will be collinear with U; thus, we

remove this term from the model. P⊥F′ will be orthogonal to U; thus, we let F̃ = P⊥F be the

factors of interest in our model so that

Zi = (zi1, . . . , ziT )′ = P⊥F′Λi + Ei = F̃Λi + Ei.

Note that Hodges and Reich (2010) and Hughes and Haran (2013) use spectral decompositions

of P and P⊥ to reduce the dimension of the partially-confounded spatial random effect. Spectral

decompositions could also be used in this context.
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To include spatio-temporal dependence in the factor analysis, we follow the approach of Lopes et al.

(2008) by adding spatial dependence to the factor loadings, Λ, and temporal dependence to the

factors, F. Consider the `th factor loading, λ` = (λ1`, . . . , λn`)
′, where λi` is the loading for the ith

location on the `th factor. A priori,

λ` ∼ N (0,Σλ`(θλ`)), (7)

where 0 is the n × 1 vector of zeros and Σλ`(θλ`) is the spatial covariance matrix parameterized

by θλ` . As with the spatially-varying coefficients, this spatial covariance can be any form and does

not need to be the same for each λ`.

As in classical confirmatory factor analysis, for the model to be identifiable, we must constrain

some of the parameters. This is typically done by fixing the loadings for L locations using a rank-L

matrix of constants and we follow this approach. Let Λfix be the sub-matrix of Λ for the chosen

fixed loadings. We set

Λfix = IL, (8)

where IL is the L×L identity matrix. The distribution of the remaining n−L random values for each

λ` is easily derived by combining Equations (7) and (8) and the conditional normal distribution.

We model the factors, F, using a lag-1 multivariate autoregressive model. Note that because P⊥

is fixed, we model F rather than the factors of interest F̃ = P⊥F. Let Ft = (Ft1, . . . , FtL)′ be the

L× 1 vector of factors at time t. Then, for t = 2, . . . , T ,

Ft ∼ N(ΩFt−1,ΣF ), (9)

where Ω is an unknown autocorrelation matrix (not necessarily symmetric) and ΣF is the covariance

11



matrix. For t = 1, we let

F1 ∼ N(0,ΣF ),

where 0 is the L× 1 vector of zeros and ΣF is the same covariance matrix in (9).

3.3 Complete Model and Prior Distributions

Finally, we combine the spatially-varying coefficient model and the spatio-temporal factor model

to define the full model for location i. We also define additional modeling choices we made in this

analysis such as covariate matrices and prior distributions.

For location i, let yi = (yi1, . . . , yiT )′. Then,

yi = Uηi + F̃′Λi + Ei, (10)

where U is defined in Equation (6), ηi = (µi, βi, ξi1, . . . , ξi(J+1))
′, F̃ is the L× T matrix of factors

of interest, Λi is the L × 1 factor loadings for location i, and Ei is a T × 1 zero-mean normally-

distributed error term such that Eit ∼ N(0, σ2). Our data are centered at 0 for each location,

therefore, we let µi = 0 for all i so that ηi = (βi, ξi1, . . . , ξi(J+1))
′ and the column of 1’s in U is

removed. In fact, we can adjust U to add (or remove) other known trends of interest (or disinterest).

Indeed, we consider different structures of U in Section 4 to better understand how the different

portions of the model capture the sea-level trends across the space.

As stated in Section 3.1, we use X to capture the spatial dependence among the coefficients of the

known trends by using spatial bases functions. While any basis function could be used (Cressie

and Wikle, 2011), we use multiresolution bisquare bases (Cressie and Johannesson, 2008; Katzfuss

and Cressie, 2012) using coastal distance. By using the coastal distance we can examine the

spatial relationship of the coefficients across the locations along the coast with an easy-to-read

plot. Multiresolution bisquare bases use Rq knots across the spatial domain at q resolutions. As

defined in Cressie and Johannesson (2008) and adjusted here for the coastal locations, the rth basis
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for the ith location at the qth resolution is defined to be,

cir(q) =


(1− (|s̃i − ṽr(q)|/wq)2)2, |s̃i − ṽr(q)| ≤ wq

0, otherwise

where ṽr(q) is the rth knot of the qth resolution and wq is 1.5 times the shortest distance between

the knots of the qth resolution. In this analysis, we let q = 2, R1 = 3, and R2 = 2; thus,

X =



c11(1) c12(1) c13(1) c11(2) c12(2)

c21(1) c22(1) c23(1) c21(2) c22(2)
...

...
...

...
...

cn1(1) cn2(1) cn3(1) cn1(2) cn2(2)


.

Because we use spatial bases for covariates, we let the covariance of the coefficients be independent

with a common variance: for a given vector of coefficients δ, the covariance is defined to be τ2δ I.

We use the same prior distribution for all precision parameters, namely, 1/τ2δ ∼ Gamma(γτ2 , φτ2),

where γτ2 is the shape and φτ2 is the rate of the gamma distribution. We let γτ2 = 2 and

φτ2 = 10−10. We use relatively diffuse prior distributions for the coefficients of X (Equations

3 and 4), namely for a given vector of spatially-varying coefficients, δ, αδ ∼ N (0, 100000I).

For the remaining parameters of the factor analysis, as proposed by Sandholtz (2016), we let

Ωii ∼ N (1, 1), where Ωii is the ith diagonal of Ω, and Ωij ∼ N (0, 2), where Ωij is the (i, j)

element of Ω when i 6= j. This prior structure does not require Ω to be symmetric but does appear

to enforce Ω to be positive definite. For the covariance of the factors, ΣF ∼ InvWish(SF , νF ),

where SF is the scale matrix that we set equal to the identity matrix, and νF is the degrees of

freedom that we set equal to L, the number of factors.

We fix the values of the factor loadings for locations 1, 22, and 37 (station names: Eastport, ME;

Baltimore, Fort McHenry, Patapsco River, MD; and Fernandina Beach, FL) as defined in Equation

(8). The prior covariance on the factor loadings, λ`, is a spatial dependence matrix. Because other
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portions of the model capture the dependence across coastal distances, we use standard covariance

functions on the Euclidean distances in this portion of the model. For each factor, we use an

exponential covariance function to define the spatial dependence between locations. For the `th

factor, the (i, j) element of Σλ`(θλ`) in (7) is

Σλ`(θλ`)ij = τ2λ` exp(−||si − sj ||/ωλ`),

where τ2λ` ≡ τ2` is the common variance among the `th factor loadings and ωλ` ≡ ω` is the spatial

range parameter. We let τ2` and ω` have the same prior distributions for all `, namely, 1/τ2` ∼

Gamma(γτ2 , φτ2), where γτ2 = 2 and φτ2 = 10−10 for all `, and ω` ∼ Gamma(γω, φω) and set

γω = 3 and φω = 0.5 for all `.

Finally, we let the precision of the residuals, 1/σ2, follow a gamma distribution with prior param-

eters γ2σ and φ2σ which we set equal to 2 and 10−5, respectively.

4 Model Comparison

We compare a selection of models to examine how different versions of the model capture trends

and predict sea levels. Table 1 gives an overview of the models we compare. Specifically, we fit

the complete model: a linear trend in time, a seasonal annual trend, and a spatio-temporal factor

analysis with three factors. As mentioned in Section 3.3, we do not include the mean as the data

have all been centered to 0 at each location. We then fit the model by leaving out various parts of

the model, as defined in Table 1. Note that when the model only includes the spatio-temporal factor

analysis portion (Model 4), P⊥ is not defined and thus is not used in the model. We fit each model

twice: once using all of the observed data and once holding out five locations of observations as test

data. The five locations were selected because they had varying amounts of missing observations

and spanned the coast. Figure 1 shows the locations of the test data.

The goal for selecting these models is to examine the trends identified by each of the different

models. For example, does the model with only the spatio-temporal factor analysis capture the
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known trends in one (or more) of the factors? Additionally, we are interested in improvement (or

worsening) of sea level predictions for additional model parameters. For example, does separating

the known trends from the factor analysis improve model fit or is it simply useful for intuitive

interpretation of these trends? There are many other models we could consider; for example, a

model with a larger (or smaller) number of factors or a model with a different number of bases to

capture the seasonal annual trend. However, our goal is not to delve into a comprehensive model

comparison but rather to explore using a subset of models how the different portions of the model

capture different aspects of the spatial and temporal trends.

We fit the models using a Metropolis-within-Gibbs MCMC sampler in R (R Core Team, 2018).

Some full conditional distributions are known (β, τ2β , αβ, ξj , τ
2
ξj

, αξj , Ft, Λ, τ2` , ΣF , σ2, and

missing values of yit); for the remaining parameters with unknown full conditional distributions

(Ω, ω`), we use adaptive Metropolis random walk algorithms using SCAM (Haario et al., 2005).

We sampled 50000 values of each parameter and used the first 10000 as burn-in. Effective sample

sizes for the remaining posterior draws for all parameters across all models range from 627 to 40000

and Monte Carlo standard errors (Jones et al., 2006; Flegal et al., 2008) range from 2 × 10−11 to

0.0085.

4.1 Spatial Prediction of Sea Level Trends

We first examine the competency of the complete model (Model 1 in Table 1) to capture the trends

by examining the predicted trends fit with the test data held out compared to the predicted trends

fit with the full data. We then compare these results to the remaining three models.

Model 1

First we examine the linear trend in time, or the “sea level rise.” Figure 2 shows the posterior mean

estimates of β versus the coastal locations, where the left side of the plot is the south end of the

coast and the right side of the plot is the north end of the coast (Figure 1 shows how this relates

to the two-dimensional coast by rotating it 90 degrees clockwise). The solid black dots are the

estimates of β when the model is fit with the full data while the solid gray dots are the estimates

15



of β when the model is fit with the test data removed. For the most part, the posterior mean

estimates are the same (the gray dots cover the black dots). As expected, however, the five test

locations do not have the same posterior mean values. Additionally, as expected, the posterior 95%

posterior intervals for β are much wider for test locations when their data was not included in the

model fit. What we easily see from this plot is that there is a spatial trend in these estimates of the

sea level rise at each location. Specifically, the sea level rise (for the observed time period) is larger

for locations in the central part of the coast and lower for locations in the northern and southern

parts of the coast. The predicted trend across the entire coastal space is shown in the thick solid

black line (posterior mean of Xβαβ in Equation 3 estimated with the full data) and the gray dotted

line (posterior mean of Xβαβ estimated when the test data is removed). These coefficients have a

simple interpretation of the change in sea level over the thirty year period. The coefficients here

have units of meters per lunar month which can be translated to mm per year and the posterior

mean estimates indicate that the sea level is rising along the east coast depending on the location

by between 0.99 and 5.44 mm per year.

Spatial trends for the coefficients ξj (Equations 1 and 4) are presented in Figure 3. As in Figure 2,

the black represents the estimates and intervals from the model fit with the full data while the gray

represents the estimates and intervals from the model fit with the test locations held out. As with

the coefficients for the linear trend, the spatial trends of the coefficients are similar when the model

is fit with all of the data and when it is fit with the test data held out. Each coefficient follows a

different spatial trend. However, while some of the posterior mean estimates for the test locations

of the coefficients are the same or close, some can be quite different, although the posterior intervals

do overlap. For example, the posterior mean of the northernmost test location in ξ5 is higher when

fit using the full data than when that location is held out, but the posterior intervals do overlap.

Recall that ξj are the coefficients for the seasonal trends. While these coefficients themselves do not

have a simple interpretation, when combined we can examine how the differences in the coefficient

estimates impact the predictions of the seasonal annual trend. Figure 4 shows the seasonal trends

for the five test locations. Location numbers are ordered from north to south so that Location 4
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Figure 2: Posterior estimates and prediction intervals of the coefficients of the linear trend (“sea
level rise”) using Model 1. Black indicates that the entire/full data set was used to fit the model,
while gray indicates that five test locations were held out to fit the model. The “trend line” is the
posterior mean of Xβαβ in Equation (3). The coefficients represent the change in sea level over
the thirty year period in meters per lunar month. The right (red) axis shows the estimates in mm
per year.
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Figure 3: Posterior estimates and prediction intervals of the coefficients of the seasonal annual trend
using Model 1. Black indicates that the entire/full data set was used to fit the model, while gray
indicates that five test locations were held out to fit the model. The “trend line” is the posterior
mean of Xξαξ in Equation (4).
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is the northernmost test location in Figure 1 and Location 31 is the southernmost test location.

The solid black line is the “true” seasonal annual trend, or the posterior mean when Model 1 is fit

with the full data. The band around that line is the 95% credible interval; when there is a lot of

data at that location, the credible interval is very narrow (as expected) and difficult to see in the

figure. The dotted black line is the predicted seasonal annual trend, or the posterior mean when

Model 1 is fit without the data from the test locations. While the trends do not match perfectly

– and we would not expect them to – they do follow very closely with one another (and match

the trend of the data points, marked as open circles) and the credible bands tend to overlap with

one another. Thus, the model is able to predict seasonal annual trends at unmonitored locations

anywhere along the coast. This figure also shows the spatial relationship of the seasonal trend

along the coast; specifically, that northern locations have less pronounced seasons while southern

locations have periods of higher sea levels during early summer (June) and fall (October).

We are also interested in examining the unknown trends captured by the spatio-temporal factor

analysis portion. The posterior means and credible intervals of the factors when the model is fit

with and without the test data are very similar, making it difficult to see a difference in a plot.

Therefore, we provide a plot in the Supplementary Document and merely summarize quantitative

differences of the factors here. The posterior distribution of the factors when estimated with or

without the test data were virtually identical (MSE of the difference in posterior means across the

factors was less than 0.00001, with posterior mean values of the factors ranging from -0.21 to 0.34).

95% credible intervals for the factors are similar, with the widths tending to be slightly larger

(by an average of 0.0022 and maximum of 0.0061) when the model is fit without the test data.

For the loadings, Figure 5 shows the posterior mean estimates with 95% credible intervals. Black

indicates the estimates when Model 1 is fit with the full data while gray indicates the estimates

when Model 1 is fit with the data from the test locations held out. The posterior mean estimates

of the loadings exhibit slight differences in the non-test locations (average absolute difference at

non-test locations was less than 0.01, with a maximum absolute difference of 0.06), and varied more

among the test locations (average absolute difference at test locations was 0.05, with a maximum

absolute difference of 0.23). Figure 5 clearly shows that the spatial pattern of the loadings indicate
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Figure 4: Seasonal annual trends for the five test locations when fit with Model 1. The solid black
line is the posterior mean of the smoothed annual trend when the model is fit with all the data;
the dotted black line is the posterior mean when the test locations are held out. The bands around
each line are the respective 95% credible intervals for the annual trend. The points represent the
observed data at each location.
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Figure 5: The points represent the posterior means of the loadings for Model 1 when fit with the
full data (black) and fit with the test locations held out (gray). The vertical lines represent the
95% credible intervals for the corresponding points.

that Factor 1 loads most heavily on northern locations, Factor 2 loads most heavily on central

locations, and Factor 3 loads most heavily on southern locations. Because of this, we call the

factors “northern,” “central,” and “southern” factors, respectively.

In general, Model 1 – or the complete model – is able to capture and estimate trends at unobserved

locations quite well. As expected, estimates are not exactly the same as the “true” trend and

posterior intervals are larger, but they do follow very similar trends. In Section 4.2 we examine

how well the models capture the actual sea level values, but first we continue our examination of

the trends by looking at the trends present in other models.

Model 1 vs. Model 4

We developed the complete model as a way to capture, predict, and interpret known trends at

unobserved locations. As observed above, Model 1 is able to do this well. However, if we don’t

directly model the known trends, the factors should be able to capture these trends either in a single
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factor or a combination of factors. We proposed the other three models in Table 1 to examine this.

To simplify and shorten the comparison, we only compare Models 1 and 4 here, but similar plots

are provided in the Supplementary Document comparing the other models.

Figure 6 shows the posterior mean estimates of the loadings for Models 1 and 4. They follow

similar patterns, but can differ a fair amount (by values of up to 0.25) from one another. This

indicates that the factors from the two models capture slightly different trends. While there are

still northern, central, and southern factors in Model 4, the loadings are slightly different and so,

for example, the northern factor from Model 4 may capture additional or different trends than

the northern factor from Model 1. This is expected since the factors in Model 4 should also be

capturing the linear and seasonal annual trends.

While there are many ways to compare the ability of Model 4 (the factors-only model) to capture

the known linear and seasonal trends, we choose to do so by comparing similar factors. As with

Model 1, the loadings indicate that Model 4 identifies northern, central, and southern factors. We

expect that if we subtract the northern factor estimated from Model 1 from the northern factor

of Model 4, that the difference will exhibit the linear and/or seasonal annual trends that were not

directly modeled in Model 4. Similarly for the central and southern factors. Figure 7 shows these

differences using the posterior means when the models are fit with the full data. Immediately we

see that each of these differences is estimating a positive linear trend and a cyclical seasonal annual

trend, although different from one another. Recall that Factor 1 is the northern factor and that

the northern locations have flatter seasonal annual trends (see Figure 4) and smaller linear trends

(see Figure 2). The differences in Factor 1 show these properties. Factor 2 is the central factor and

has a seasonal annual trend with approximately equal peaks (see Figure 4) and the largest linear

trends (see Figure 2). Again, the differences in Factor 2 show these properties. Finally, Factor

3 is the southern factor and the trends seen in the differences of Factor 3 match the larger fall

peaks of the seasonal annual trend of southern locations (see Figure 4) and the smaller linear trend

(see Figure 2). Trends not directly accounted for in Model 4 are still captured. Likewise, Model 1

may be capturing other trends in the factors, although they are not as easily identified. Without
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Figure 6: Posterior mean estimates of the loadings for Model 1 (y-axis) and Model 4 (x-axis) when
fit with the full data (black) and when fit with the test data held out (gray). Each factor is denoted
by a different symbol (circle for Factor 1, square for Factor 2, and triangle for Factor 3). The line
indicating equality – where the mean loading values from Models 1 and 4 are equal – is the light
gray dashed line.
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Figure 7: The solid black lines show the differences in the posterior mean estimates between
Models 1 and 4 of each factor when the models are estimated with the full data. The dashed line
is a horizontal line at 0 so that the linear trend is more easily visible.

subtracting the factors from Model 1, the factors from Model 4 show a visible linear trend, but not

a visible seasonal annual trend (see Figure 9 in the Supplementary Document).

4.2 Spatial Prediction of Sea Levels

Here we compare the sea level predictions of the four models using root mean squared error (RMSE)

and continuous rank probability scores (CRPS; Gneiting and Raftery, 2007) to compare how well

each model predicts the test data. RMSE provides a summary of how well the posterior means

match the observations while CRPS accounts for the uncertainty in the posterior distributions of

the predictions. In the last section we compared trends using the model fit twice: once using the full

data and once with the test data held out. We did this because we wanted to compare true trends
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to predicted trends at unobserved locations. However, here we are only interested in predicting the

actual sea level values; thus, we only use the models fit with the test data held out. To compute

CRPS, we use the approximation method that makes use of MCMC posterior draws proposed by

Krüger et al. (2016) and report the absolute values so that smaller CRPS values indicate improved

performance.

Table 2 provides the RMSE and CRPS values of each of the models across each test location

individually and across all test locations together. This table also provides the percent of missing

observations from the data (noted in parentheses next to the location). The values are similar across

all models, indicating that when it comes to predicting actual sea level values, directly modeling

the trends does not provide a benefit. The bolded values are the smallest, or best, values across the

rows; thus, when considering all held out observations (row labeled “All”), Models 1 and 3 perform

the best according to both RMSE and CRPS.

Finally, we examine the observed values and the predicted values for the test locations. For brevity,

we consider only two of the test locations – the location with the most accurate predictions (Location

7) and the location with the least accurate predictions (Location 16). Figure 8 shows the predictions

from Model 1 (gray) and true sea level values (dotted black line) for these two locations. Because

the RMSE was so small for Location 7, we are not surprised to see that the posterior mean predicted

values fall right in line with the true sea level values. The RMSE was the largest for Location 16

and it’s easy to see that the predicted values do not match the true values as well as they do for

Location 7. However, we do see that the predicted values follow the pattern of the true sea level

values and that in many places the predicted values just appear to be shifted slightly higher than

the true values. This difference in predicted values may actually be due to imperfect data rather

than imperfect predictions. Recall that we centered each location’s sea level values to be 0. Because

this location has about ten years of missing data at the beginning of the series and sea levels are

rising, it makes sense that by zero-centering we may have shifted the data too far below 0. Had we

had a more accurate centering value for these data, we may have seen that the prediction values

were actually more accurate than they appear to be here.
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Figure 8: Posterior mean predictions (dark gray solid line) of two test locations, Locations 7 and
16, from Model 1. 95% prediction intervals are represented by the light gray bands. The true sea
level values are marked by the dashed black line (times without the black line indicate there was
no observed value at that time).
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5 Discussion

We proposed a flexible model that is able to capture a variety of known and unknown trends in

sea levels on the east coast of the United States and predict trends and sea levels at unmonitored

locations. The model allows for nonseparable and nonstationariy space-time processes (Lopes et al.,

2008), but with the simplicity and ease of separability and stationarity. Previous analyses have

not focused on prediction of trends at local levels, although there is a need for understanding these

patterns in order to prepare for future sea level changes and extreme weather events. Comparing

different versions of the model, we saw that all versions predicted actual sea levels similarly, but

that by directly modeling known trends, interpretable trends could be more easily predicted and

understood at unmonitored locations. For example our model predicts the sea level rise ranges

between 1 and 5.4 mm/year, depending on the location along the coast.

The spatial dependence of the loadings in the proposed model gives the factors meaning, but it was

difficult to identify interpretable temporal trends from the factors. Lopes et al. (2008, 2011) provide

a mechanism for enforcing more interpretability in the factors, for example, when defining factors,

enforcing one factor to have a cyclical trend. Additionally, this model assumes homogeneous and

independent errors. Christensen (2011) shows that for spatial prediction, it is beneficial to allow

and account for correlation in the residuals. Allowing for spatial and temporal dependence in the

residuals of our model may also be beneficial for more accurately predicting factors and loadings.

While forecasting future sea levels is possible with this model, we do not expect forecasts to be very

accurate as the focus of this model was on infilling spatially and temporally unobserved or missing

data. A different formulation of the model that makes use of more aspects of dynamic modeling

(West and Harrison, 1999) may better be able to forecast future sea levels and offer insight into

future sea level and extreme weather scenarios at the local level.
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Table 1: Description of the four models used for comparison. “Y” indicates the piece is included
in the model, while “N” indicates it is not. The final column indicates the number of factors used
in the model.

Model Linear Trend Annual Trend Factors

1 Y Y 3
2 Y N 3
3 N Y 3
4 N N 3
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Table 2: Root mean squared errors (RMSE) and continuous rank probability scores (CRPS) for
each model’s prediction of the test location sea levels. The percents in parentheses to the right of
the location indicate the amount of missing data in the observations at that location; the larger
the amount of missing data, the smaller the number of observations used to compute the RMSE
and CRPS values. Bolded values are the smallest (“best”) values across the rows.

Model 1 2 3 4

RMSE Location 4 (71.2%) 0.0357 0.0364 0.0356 0.0379
Location 7 (1.6%) 0.0114 0.0139 0.0114 0.0156

Location 16 (41.8%) 0.0540 0.0522 0.0530 0.0514
Location 28 (17.8%) 0.0279 0.0271 0.0283 0.0273
Location 31 (0.0%) 0.0240 0.0263 0.0247 0.0271

All 0.0304 0.0306 0.0304 0.0310

CRPS Location 4 0.0200 0.0207 0.0199 0.0217
Location 7 0.0084 0.0091 0.0083 0.0097
Location 16 0.0342 0.0333 0.0332 0.0328
Location 28 0.0153 0.0148 0.0155 0.0149
Location 31 0.0136 0.0148 0.0140 0.0153

All 0.0163 0.0167 0.0163 0.0170
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