Statistics or Data Science? What about Machine Learning? Predictability or Modeling? Big Data?

HEDIBERT FREITAS LOPES¹ hedibert.org

II Biostatistics Workshop Universidade Estadual de Maringá December 2018

¹Professor of Statistics and Econometrics at Insper, São Paulo.

Outline

The Statistician

The 21st century job Statistics and Biostatistics degrees (USA) Careercast and Glassdoor rankings

Statistics, Data Science, Machine Learning, Big Data ASA Statement on the Role of Statistics in Data Science The Role of Statistics in the Era of Big Data Greater (Data Science) and Lesser Statistics (Methodology) Michael Jordan on ML vs Statistics

The Data Science Revolution

Master in Data Science DS Initiatives and Stats/DS departments Data Science in Brazil

Estatística: A profissão do futuro²

- A melhor carreira de 2017 (CareerCast, USA)
- Segunda mais rentável no Brasil (IPEA)

²jornal.usp.br/?p=108300

Adilson Simonis IME-USP

"A demanda pela carreira é causada pela enorme quantidade de dados produzidos diariamente, contrastando com a falta de profissionais formados para lidar com eles."

Jorge Luiz Bazán Guzmán ICMC-USP/São Carlos

"Vivemos num mundo de dados ... previsões e análises podem ser aplicadas às mais diversas áreas, como o direito, o esporte ou a medicina.

Por isso, nossos alunos não encontram dificuldades em se encaixar no mercado, ajudando a consolidar novos campos e aplicações da estatística."

Statistics and Biostatistics degrees (USA)³

³http://magazine.amstat.org/blog/2018/08/01/2017-degree-report⁵

Master's and Bachelor's degrees (USA)

PhD degrees (USA)

7

Careercast's 10 best jobs of 2018⁴

Rank	Profession	Median	Projected
		Salary	7-year growth
1	Genetic Counselor	\$74,120	29%
2	Mathematician	\$81,950	33%
3	University Professor	\$75,430	15%
4	Occupational Therapist	\$81,910	24%
5	Statistician	\$84,060	33%
6	Medical Services Manager	\$96,540	20%
7	Data Scientist	\$111,840	19%
8	Information Security Analyst	\$92,600	28%
9	Operations Research Analyst	\$79,200	27%
10	Actuary	\$100,610	22%

⁴https://www.careercast.com/jobs-rated/2018-best-jobs

Glassdoor's 10 best jobs of 2018⁵

Rank	Profession	Job	Job	Median	Job
		Score	Satisfaction	Base Salary	Openings
1	Data Scientist	4.8	4.2	\$110,000	4,524
2	DevOps Engineer	4.6	4.0	\$105,000	3,369
3	Marketing Manager	4.6	4.0	\$85,000	6,439
4	Occupational Therapist	4.5	4.0	\$74,000	11,903
5	HR Manager	4.5	3.9	\$85,000	4,458
6	Electrical Engineer	4.5	3.9	\$76,000	5,839
7	Strategy Manager	4.5	4.2	\$135,000	1,195
8	Mobile Developer	4.5	4.1	\$90,000	1,809
9	Product Manager	4.4	3.7	\$113,000	7,531
10	Manufacturing Engineer	4.4	4.0	\$72,000	4,241
26	Database Administrator	4.3	3.8	\$94,000	2,370
33	Data Engineer	4.2	3.7	\$100,000	2,816
38	Data Analyst	4.2	3.9	\$60,000	4,729

⁵https://www.glassdoor.com/List/Best-Jobs-in-America-LST_KQ0,20.htm

Jobs for Statisticians

Statistician Senior Statistician Principal Statistician Data Analyst Statistical modeler Project Statistician Statistical Programmer Associate Principal Statistician Director. Statistics Senior Principal Statistician Senior Statistical Programmer Senior Scientist, Statistical Programming Senior Statistics Manager Statistics and Digital Innovations Lead Predictive Analytics Lead Senior Manager, Statistical Modeling Associate Principal Scientist Statistical Programming Senior Scientists, Statistical Programming

Jobs for Data Scientists

Data Scientist Analytics Assets, Data Scientist Cognitive Data Scientist Senior Data Scientist Research Data Scientist. Senior Data Scientist, Lead Senior Scientist Manager - Cognitive Data Scientist Natural Language Processing Staff Data Scientist Manager, Data Scientist, NLP, Financial Services Sr. Associate, NLP, Data Scientist Associate, Data Scientist, Financial Services Principal Data & Applied Scientist Lead Data Scientist Data Scientist - Machine Learning Corporate Data Scientist Program Assessor

ASA Statement on the Role of Statistics in Data Science⁶

"While there is not yet a consensus on what precisely constitutes data science, three professional communities, all within computer science and/or statistics, are emerging as foundational to data science:

(i) Database Management enables transformation, conglomeration, and organization of data resources,

(ii) Statistics and Machine Learning convert data into knowledge, and

(iii) Distributed and Parallel Systems provide the computational infrastructure to carry out data analysis."

⁶ http:

^{//}magazine.amstat.org/blog/2015/10/01/asa-statement-on-the-role-of-statistics-in-data-science¹²

ASA Statement Contributors

David van Dyk, Imperial College (chair)

Montse Fuentes, North Carolina State University

Michael I. Jordan, University of California at Berkeley

Michael Newton, University of Wisconsin

Bonnie K. Ray, Pegged Software

Duncan Temple Lang, University of California at Davis

Hadley Wickham, RStudio

Comment by Ronald Wasserstein⁷

As ASA President David Morganstein stated in the accompanying press release,

"Through this statement, the ASA and its membership acknowledge that data science encompasses more than statistics, but at the same time also recognize that statistical science plays a critical role in the fast-growing field.

It is our hope the statement will reinforce the relationship of statistics to data science and further foster mutually collaborative relationships among all key contributors in data science."

[/] https://community.amstat.org/blogs/ronald-wasserstein/2015/10/01/

the-role-of-statistics-in-data-science-an-asa-statement

Machine learning toolbox

- Linear regression
- Logistic regression
- Decision tree
- Support vector machines
- Naive Bayes
- K nearest neighbours
- K-means
- Random forest
- Dimensionality reduction algorithms
- Gradient boost & adaboost

Source: Analytics Vidhya

Machine learning toolbox

Source: Scikit-learn Algorithm Cheat-Sheet

Machine learning toolbox

Funny Glossary

Glossary			
Machine learning	Statistics		
network, graphs	model		
weights	parameters		
learning	fitting		
generalization	test set performance		
supervised learning	regression/classification		
unsupervised learning	density estimation, clustering		
large grant = $$1,000,000$	large grant= $$50,000$		
nice place to have a meeting: Snowbird, Utah, French Alps	nice place to have a meeting Las Vegas in August		

The Role of Statistics in the Era of Big Data

The role of Statistics in the era of big data

Edited by Laura Sangalli Volume 136, Pages 1-170 (May 2018)

Statistics in the big data era: Failures of the machine

This special issue has been stimulated by a plenary lecture by David Dunson (Duke University), at the 2016 Meeting of the Italian Statistical Society.

Dunson's abstract:

There is vast interest in automated methods for complex data analysis.

However, there is a lack of consideration of

- (1) interpretability,(2) uncertainty quantification,
- (3) applications with limited training data, and
- (4) selection bias.

Statistical methods can achieve (1)-(4) with a change in focus.

Greater (DS) and Lesser Statistics (Methodology)⁸

Greater statistics can be defined ... as everything related to learning from data, from the first planning or collection to the last presentation or report.

Lesser statistics is the body of specifically statistical methodology that has evolved within the profession – roughly, statistics as defined by texts, journals, and doctoral dissertations.

Greater statistics tend to be inclusive, eclectic with respect to methodology, closely associated with other disciplines, and practiced by many outside of academia and often outside professional statistics.

Lesser statistics tends to be exclusive, oriented to mathematical techniques, less frequently collaborative with other disciplines, and primarily practiced by members of university departments of statistics.

⁸Chambers (1993) Greater or lesser statistics: A choice for future research. Statistics and Computing, 3(4), 182-184.

Data science vs. statistics: two cultures?⁹

[W]e define data science as the union of six areas of greater data science, based on Donoho (2017) 50 years of data science. Journal of Computational and Graphical Statistics, 26(4), 745-766:

- 1. Data gathering, preparation, and exploration.
- 2. Data representation and transformation.
- 3. Computing with data.
- 4. Data modeling.
- 5. Data visualization and presentation.

We take the position that data science is a reaction to the narrow understanding of lesser statistics; simply put, data science has come to mean a broader view of statistics.

⁹Carmichael and Marron (2018) Japanese Journal of Statistics and Data Science, 1, 117-138. https://doi.org/10.1007/s42081-018-0009-3

Statistics 101

One can be forgiven ... for mistaking statistics as a set of recipes.

Too many people interact with statistics exclusively via a standard Statistics 101 type class which may in fact treat statistics as a handful of formulas to memorize and steps to follow.

While we believe the material taught in these courses is vital to doing science, it is perhaps time to rethink such introductory classes and teach data before (or concurrently with) teaching statistics.

Some principal components of data science

Prediction vs. inference - do vs. understand - engineering vs. science

- Engineering is the business of creating a thing that does something. Science is the business of understanding how something works.
- Predictive modeling is one of the main drivers of artificial intelligence (AI). Modern AI systems are typically based on deep learning and are extremely data hungry

Empirically vs. theoretically driven

- ▶ Data science is exploratory data analysis gone mad. Neil Lawrence
- "The End of Theory: The Data Deluge Makes the Scientific Method Obsolete" it was argued that EDA will replace the scientific method. We disagree.

This article is an extreme example of the broader attitude that correlation, and fancy models applied to large data sets, can replace causal inference and the careful, time intensive scientific method.

Some principal components of data science

Problem first vs. hammer looking for a nail

- Both research approaches are valid and productive, however the balance in academic statistics may have shifted too far to the former (hammer) approach.
- Data science is focused on problem solving and it is this problem solving which makes data analysis useful to other disciplines.

The 80/20 rule (maybe could even by the 90/10 rule)

The basic idea is that the first reasonable thing you can do to a set of data often is 80% of the way to the optimal solution. Everything after that is working on getting the last 20%.

Data science and ML growth

Worldwide. 2/9/13 - 11/11/18. Web Search.

Data science and ML growth - Brazil

Popular statistical methods

Michael Jordan on ML vs Statistics

Throughout the eighties and nineties, it was striking how many times people working within the "ML community" realized that their ideas had had a lengthy pre-history in statistics.

Decision trees, nearest neighboor, logistic regression, kernels, PCA, canonical correlation, graphical models, *K*-means and discriminant analysis come to mind, and also many general methodological principles (e.g., method of moments, Bayesian inference methods of all kinds, M estimation, bootstrap, cross-validation, EM, ROC, and stochastic gradient descent), and many many theoretical tools (large deviations, concentrations, empirical processes, Bernstein-von Mises, U statistics, etc).

Source: reddit machine learning blog

Michael Jordan (more)

When Leo Breiman developed random forests, was he being a statistician or a machine learner?

When my colleagues and I developed latent Dirichlet allocation, were we being statisticians or machine learners?

Are the SVM and boosting machine learning while logistic regression is statistics, even though they're solving essentially the same optimization problems?

I think the ML community has been exceedingly creative at taking existing ideas across many fields, and mixing and matching them to solve problems in emerging problem domains, and I think that the community has excelled at making creative use of new computing architectures.

I would view all of this as the proto emergence of an engineering counterpart to the more purely theoretical investigations that have classically taken place within statistics and optimization.

Michael Jordan (a bit more)

But one shouldn't definitely not equate statistics or optimization with theory and machine learning with applications.

The "statistics community" has also been very applied, it's just that for historical reasons their collaborations have tended to focus on science, medicine and policy rather than engineering.

The emergence of the "ML community" has helped to enlargen the scope of "applied statistical inference". It has begun to break down some barriers between engineering thinking (e.g., computer systems thinking) and inferential thinking. And of course it has engendered new theoretical questions.

Statistics, data sciences, machine learning, big data

John Tukey (1962) The future of data analysis David Hand (2013) Data mining: statistics and more? Marie Davidian (2013) Aren't we data science? Hal Varian (2014) Big data: new tricks for econometrics Einav and Levin (2014) Economics in the age of big data Athey and Imbens (2015) Lectures on machine learning David Donoho (2015) 50 years of data science Peter Diggle (2015) Statistics: a data science for the 21st century van Dyk et al. (2015) Role of statistics in data science Francis Diebold (2016) Machine learning versus econometrics Uchicago (2016) Machine learning: what's in it for economics? Coveney, Dougherty, Highfield (2016) Big data need big theory too Franke et al. (2016) Statistical Inference, Learning and Models in Big Data

AMSTAT NEWS

Davidian (1 jul 2013) Aren't we data science?

Bartlett (1 oct 2013) We are data science

Matloff (1 nov 2014) Statistics losing ground to computer science

van Dyk et al. (1 oct 2015) Role of statistics in data science

Jones (1 nov 2015) The identity of statistics in data science

Priestley (1 jan 2016) Data science: the evolution or the extinction of statistics?

See also Press (28 may 2013) A very short history of data science

An Example of How to Plot Data Skills on a 2x2 Learning Matrix

How one company mapped its own internal learning needs.

Idk who made @HarvardBiz's "data skills" matrix but it's mostly terrible so I made some updates (hbr.org/2018/10/which- ...) (cc: @KansasCityEric)

S Traducir Tweet

35

Master in Data Science: 2007-2012 (12)

University	Degree	Credit	Established
North Carolina State University	Analytics	30	2007
University of Tennessee at Knoxville	Business Analytics	39	2010
Saint Joseph's University	Business Intelligence and Analytics	30	2010
Louisiana State University at Baton Rouge	Analytics	39	2011
University of Cincinnati	Business Analytics	35	2011
Northwestern University	Predictive Analytics	11	2011
Northwestern University	Analytics	11	2012
University of San Francisco	Analytics	35	2012
Drexel University	Business Analytics	45	2012
Fordham University	Business Analytics	30	2012
University of Michigan at Dearborn	Business Analytics	30	2012
Stevens Institute of Technology	Business Intelligence and Analytics	36	2012

Master in Data Science: 2013 (18)

University	Degree	Credit	Established
Harrisburg University of Science and Technology	Analytics	36	2013
Texas A&M University	Analytics	36	2013
Southern Methodist University	Applied Statistics and Data Analytics	36	2013
Arizona State University	Business Analytics	30	2013
Benedictine University	Business Analytics	64	2013
George Washington University	Business Analytics	33	2013
Michigan State University	Business Analytics	30	2013
New York University	Business Analytics	14	2013
Rensselaer Polytechnic Institute	Business Analytics	30	2013
University of Texas at Austin	Business Analytics	36	2013
Carnegie Mellon University	Computational Data Science	9	2013
Washington University in St. Louis	Customer Analytics	30	2013
Pace University	Customer Intelligence and Analytics	36	2013
City University of New York	Data Analytics	36	2013
Southern New Hampshire University	Data Analytics	12	2013
University of Maryland	Data Analytics	39	2013
Illinois Institute of Technology	Data Science	34	2013
New York University	Data Science	36	2013

Master in Data Science: 2014 (33)

University	Degree	Credit	Established
Bowling Green State University	Analytics	33	2014
Dakota State University	Analytics	30	2014
Georgia Institute of Technology	Analytics	36	2014
Georgia State University	Analytics	32	2014
University of Chicago	Analytics	11	2014
Villanova University	Analytics	33	2014
Saint Louis University	Applied Analytics	36	2014
Maryville University	Applied Statistics and Data Analytics	36	2014
Bentley University	Business Analytics	30	2014
Indiana University	Business Analytics	30	2014
Quinnipiac University	Business Analytics	33	2014
Southern Methodist University	Business Analytics	33	2014
University of Colorado Denver	Business Analytics	30	2014
University of Denver	Business Analytics	58	2014
University of Miami	Business Analytics	16	2014
University of Minnesota	Business Analytics	45	2014
University of Rochester	Business Analytics	41	2014
University of Southern California	Business Analytics	27	2014
University of Texas at Dallas	Business Analytics	36	2014
Creighton University	Business Intelligence and Analytics	33	2014
St. John's University	Data Mining and Predictive Analytics	30	2014
Elmhurst College	Data Science	30	2014
South Dakota State University	Data Science	30	2014
University of St. Thomas	Data Science	36	2014
University of Virginia	Data Science	11	2014
West Virginia University	Data Science	30	2014
Worcester Polytechnic Institute	Data Science	33	2014
Johns Hopkins University	Government Analytics	12	2014
University of California at Berkeley	Information and Data Science	27	2014
Philadelphia University	Modeling, Simulation and Data Analytics	30	2014
University of Arkansas	Statistics and Analytics	30	2014
Brandeis University	Strategic Analytics	30	2014
University of California, San Diego	Data Science and Engineering	38	2014 3

Master in Data Science: 2015 (25)

University	Degree	Credit	Established
Capella University	Analytics	48	2015
Georgetown University	Analytics	30	2015
University of New Hampshire	Analytics	36	2015
University of the Pacific	Analytics	30	2015
American University	Analytics Online	33	2015
Valparaiso University	Analytics and Modeling	36	2015
College of William&Mary	Business Analytics	30	2015
Fairfield University	Business Analytics	30	2015
Iowa State University	Business Analytics	30	2015
Mercer University	Business Analytics	30	2015
Northeastern University	Business Analytics	30	2015
University of Dallas	Business Analytics	30	2015
University of Iowa	Business Analytics	30	2015
University of Notre Dame	Business Analytics	30	2015
University of Texas at Arlington	Business Analytics	36	2015
Xavier University	Customer Analytics	30	2015
Clarkson University	Data Analytics	33	2015
Slippery Rock University	Data Analytics	33	2015
Columbia University	Data Science	30	2015
Indiana University Bloomington	Data Science	30	2015
Southern Methodist University	Data Science	31	2015
University of Rochester	Data Science	30	2015
University of Wisconsin's Extension	Data Science	36	2015
University of North Carolina at Charlotte	Data Science	33	2015
Penn State Great Valley	Data Analytics	30	2015

Bachelor Degree in Data Science

https://www.discoverdatascience.org/programs/bachelors-in-data-science

Bowling Green State University	Data Science Specialization
Brigham Young University	Data Science Major/Minor
Case Western Reserve University	Data Science and Analytics Major
Colorado State University	Data Science Major
Columbia University	BA in Data Science
DePaul University	Bachelor of Science Data Science
Drexel University	B.S. in Data Science
George Mason University	Bachelor of Science in Computational and Data Sciences
Indiana University	Bachelor of Science in Health Data Science
Marquette University	Data Science Major
Pennsylvania State University	Data Sciences - Intercollege Undergraduate Major
Purdue University	Data Science Major
Temple University	Data Science with Concentration in Computation and Modeling, B.S.
University of California Irvine	B.S. in Data Science
University of California San Diego	Data Science Major
University of Houston	Bachelor of Science in Data Science
University of Massachusetts Dartmouth	Major in Data Science
University of Michigan	Undergraduate Program in Data Science
University of New Hampshire at Manchester	Analytics and Data Science, B.S.
University of Rochester	BA and B.S. Data Science Degree
Valparaiso University	B.S. in Data Science
Yale University	Undergraduate Degree in Statistics and Data Science

Stanford Data Science Initiative Harvard Data Science Initiative Rice Data Science Initiative

UT Austin - Department of Statistics and Data Sciences Yale - Department of Statistics and Data Science MIT - Statistics and Data Science Center Carnegie Mellon - Department of Statistics & Data Science

Ciência de dados no Brasil: Formação executiva

- 1. FGV: Formação executiva de machine learning Carga Horária: 64h
- 2. FIAP: Big Data Science: Machine Learning e Data Mining
- 3. FIA: MBA Analytics em Big Data Carga Horária: 600 horas
- IGTI: MBA em Ciência dos Dados & Big Data Carga Horária: 370 horas
- 5. Unisul: MBA em Engenharia e Ciência dos Dados Carga Horária: 375 horas
- 6. PUC-Minas: Ciência dos Dados e Big Data Carga Horária: 432 horas

Ciência de dados no Brasil: Pós-Graduação

- 1. Einstein (Especialização): Data science e informática para área da saúde Carga Horária: 420 horas
- IESB (Especialização): Ciência dos Dados Carga Horária: 400 horas
- UNIFACCAMP (Lato Sensu): Mineração e Ciência dos Dados Carga Horária: 392 horas
- Faculdades Integradas de Bauru: Data science com ênfase machine learning Carga Horária: 360 horas
- 5. São Carlos: Mestrado Profissional em Matemática, Estatística e Computação Aplicadas à Indústria
- 6. UFPR (Especialização): Data Science e Big Data Carga Horária: 390 horas
- Newton Paiva (Especialização): Ciência dos Dados e Big Analytics Carga Horária: 360 horas
- 8. Centro Universitário Faria de Brito (Especialização): Especialização em Ciência dos Dados Carga Horária: 427 horas
- Uni7 (Especialização): Especialização em Ciência de Dados com Big Data, BI e Data Analytics Carga Horária: 406 horas
- UniChristus (Especialização): Ciência dos Dados e Inteligência de Negócios (Big Data e BI) Carga Horária: 405 horas
- UFBA (Especialização): Especialização em Ciência de Dados e Big Data Carga Horária: 476 horas
- UFRGS (Especialização): Big Data & Data Science Carga Horária: 360 horas
- 13. UNISINOS (Especialização/EAD): Big Data, Data Science & Data Analytics Carga Horária: 360 horas
- 14. Poli-PE (Especialização): Ciência dos Dados e Analystics Carga Horária: 360 horas

A missão do núcleo de pesquisa Ciência de Dados e Decisão é se tornar um centro de referência na análise, modelagem e tomada de decisão em problemas altamente complexos e cujas bases de dados são igualmente complexas, gigantes, não estruturadas e dinâmicas.

Conta com professores e pesquisadores com forte conhecimento em estatística, ciência da computação, finanças, marketing, microeconomia e macroeconomia.

Membros

Coordenador: Hedibert F. Lopes - Ph.D. em Estatística - Duke University

Demais membros:

- Rinaldo Artes Doutor em Estatística USP
- Adriana Bruscato Bortoluzzo Doutora em Estatística USP
- Paulo Marques Doutor em Estatística IME-USP
- Sergio Martins Mestre em Estatística IME-USP
- Fabio Ayres Doutor em Engenharia Elétrica University of Calgary
- Marcelo Hashimoto Doutor em Ciência da Computação IME-USP
- Fabio de Miranda Mestre em Sistemas Eletrônicos USP
- Sergio Firpo Ph.D. em Economia Universidade da Califórnia em Berkeley
- Naercio Menezes Filho Ph.D. em Economia University of London
- Ricardo Paes de Barros Ph.D. em Economia University of Chicago
- João Manoel P. de Mello Ph.D. em Economia Stanford University
- José Heleno Faro Doutor em Economia Matemática IMPA
- Danny Claro Ph.D. em Administração Wageningen University