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Abstract

Heavy tailed distributions present a tough setting for inference. They are also

common in industrial applications, particularly with internet transaction datasets, and

machine learners often analyze such data without considering the biases and risks

associated with the misuse of standard tools. This paper outlines a procedure for

inference about the mean of a (possibly conditional) heavy tailed distribution that

combines nonparametric analysis for the bulk of the support with Bayesian parametric

modeling – motivated from extreme value theory – for the heavy tail. The procedure

is fast and massively scalable. The work should find application in settings wherever

correct inference is important and reward tails are heavy; we illustrate the framework

in causal inference for A/B experiments involving hundreds of millions of users of

eBay.com.
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1 Introduction

A data generating process (DGP) is heavy tailed when the distribution on exceedances above

extreme thresholds cannot be bounded by an exponential distribution. Heavy tails are com-

mon in measures of user activity on the internet [Fithian and Wager, 2015, Taddy et al.,

2016]. For example, Figure 1 illustrates spending, in US dollars per week of bought merchan-

dise, across 174 sets of users on eBay.com. Each sample of 1 to 30 million users, corresponds

to a treatment group in an A/B experiment1 . In our modal treatment group, less than

0.05% of users spend more than 2,000 dollars; however, these users account for 20% of the

total spending.
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Figure 1: The proportion of observations (left) and of total spending (right) due to users

spending greater than 2,000 dollars in each treatment group.

Data sets with observations in extremely high or extremely low percentiles (heavy tails

behavior) may lead to higher (and unstable) variance estimates and will potentially have an

influential impact on the estimation of the mean. In two-thirds of the data sets we analysed,

the fitted parametric tail models implied that second moment did not exist.

Even when the variance is merely very large, these heavy tails have important consequences

1These are targeted user subsets from past traffic. They are not representative of eBay’s aggregated

revenue.
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Figure 2: Sample distribution for user spending values below $100 in the experiments of

Section 6.

for our inference. These issues have real practical implications, and the over-sized influence

of large observations on the sample mean is well recognized by practitioners who measure on-

line transactions (e.g., when evaluating the treatment effect from an A/B trial). A common

ad-hoc solution is to use Winsorization [Dixon, 1960] wherein values above a threshold are

replaced by that threshold. However, estimation is then very sensitive to the Winsorization

threshold and, due to the inconsistency of the nonparametric bootstrap, there are no tools

available for its optimal selection or for uncertainty quantification. At the same time, fully

parametric modeling is impractical because the transaction distributions defy summariza-

tion. Figure 2 above shows that, at the low end of the spending range, the distribution is

characterized by probability spikes at discrete price points (e.g., $1, $99.99) and could not

be represented by any standard low-dimensional parametric family.

We resolve these issues by combining nonparametric inference for the bulk of a distribution

with parametric inference for the tail above a fixed threshold. We give a theoretically mo-

tivated rule for choosing the threshold and demonstrate that inference is robust to choices

around this rule. The result is a simple framework for scalable inference with heavy tailed

data. We highlight our contributions in what follows.
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1. Scalability. Our algorithms provide scalable inference in a setting where this does not

exist. Related Bayesian approaches have been proposed before (see below), but these

do not scale to even moderately sized datasets and are completely infeasible on the

internet datasets that motivate our work. In contrast, we require no more computation

on the bulk of the data than estimation of sample means and variance, and our tail

inference is available via either analytical or efficient computational approximation.

2. Inference. Our posterior standard deviations on distribution means are an accurate

measure of the frequentist standard error. Indeed, they outperform any other avail-

able standard error estimators. There exist other good and scalable point estimators

for the means of heavy tailed distributions, but none come with reliable uncertainty

quantification (which is essential in the motivating A/B trial applications).

3. Consistency. It is well known [Athreya, 1987] that the usual nonparametric bootstrap

is inconsistent as an estimator for the sampling distribution of the mean of a heavy

tailed distribution. We introduce a novel semiparametric bootstrap and show that it is

consistent for a tail threshold that grows with the sample size. Our Bayesian inference

algorithm is closely related to this semiparametric bootstrap.

4. Bootstrap-based posterior sampling: For inference about the tail parameters,

we present a novel independence Metropolis Hastings (iMH) algorithm that samples

from the posterior through adjustment of the results from a parametric bootstrap. The

algorithm is trivial to code, fast and parallelizable, and its acceptance rate is a measure

of the distance between Bayesian and frequentist inferences.

5. Extreme value analysis: We contribute two general points on Bayesian analysis

of heavy tails. First, our consistency analysis provides a rule for choosing the tail

threshold and in both theory and practice we find that results are robust around this

rule. The threshold can thus be conditioned upon in the posterior, leading to much

simpler inference than is possible if it is treated as a random variable. Second, we find

significant gains from using an informative prior on the tail index and, consequently,
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propose a scheme for specification based upon a larger background dataset. Informative

priors on the tail scale make little difference in comparison.

Related Literature. A related Bayesian approach is proposed in Nascimento et al. [2012]:

they combine a discrete mixture of gamma distributions below a threshold with a generalized

Pareto distribution above the threshold. All parameters, including the value of the threshold

itself, are sampled from their joint posterior via a customized MCMC algorithm. Unfortu-

nately, the MCMC scheme is non-scalable; it takes around 1 second per posterior draw when

analyzing one of the small subsamples from Section 6. The mixture of gamma distributions

is also a poor fit for internet transaction datasets, which include density spikes at discrete

values (e.g., $0.99, $99), as discussed before. Besides, we have empirically learned that the

MCMC scheme fails to converge without tight priors on the tail threshold or scale, and yields

poorly performing estimators with errors larger than those from the naive sample mean.

Johansson [2003] describes estimation for the mean of a heavy tailed distribution that com-

bines the sample mean below a threshold with the mean of a maximum likelihood generalized

Pareto above that threshold. The point estimates from this approach are equivalent to those

from our procedure under the non-informative prior with Laplace posterior approximation.

Johansson’s asymptotic variance formulas depend upon unknown model parameters and thus

cannot be applied in practical inference. Romano and Wolf [1999] use without-replacement

sub-sampling to estimate the sampling distribution for the mean of a heavy tailed sample.

We discuss and compare to their estimators in our applications.

Fithian and Wager [2015] estimate tail distributions through exponential tilting of models

fit on larger samples. This shares with our informative-prior models a strategy of using

background datasets to inform individual tails. Their tilting estimator works well, since it

provides point estimation that is as good as our best methods. However, they provide no

uncertainty quantification. Finally, Durham and Geweke [2018], in this volume, discusses

adaptive sequential posterior simulation for massively parallel computing environments.

The remainder of the paper is organized as follows. Section 2 defines our general framework,
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while Section 3 details the parametric tail analysis and Section 4 studies consistency. Section

5 illustrates our techniques and the guidance for tuning the threshold parameter. Section

6 validates performance through subsampling of treatment groups and Section 7 studies

inference on treatment effects in A/B trials. Section 8 concludes.

2 A Semiparametric model for heavy tailed data

Our inference strategy is built around the use of Dirichlet-multinomial sampling as a flexible

representation for an arbitrary data generating process (DGP). In its standard application,

this model treats the observed sample as a draw from a multinomial distribution over a

large but finite set of support points. A Dirichlet prior is placed on the probabilities in this

multinomial, and the posterior distribution over possible DGPs is induced by the posterior

on these probabilities. The approach has a long history. It was introduced by Ferguson

[Ferguson, 1973], it serves as the foundation for the Bayesian bootstrap [Rubin, 1981], and

it has been studied by numerous authors [Chamberlain and Imbens, 2003, Lancaster, 2003,

Poirier, 2011, Taddy et al., 2015, 2016].

Our work presents an extension of the standard Dirichlet-multinomial scheme. Consider a

univariate random variable, say z. We assume the usual fully-nonparametric model below

a certain fixed threshold, say u. That is, the DGP for z < u is a multinomial draw, with

Dirichlet distributed probability, from a large-but-finite number of support points. At the

same time, our realized z is instead drawn as u+ v where v > 0 is a random exceedance from

some distribution.

We model our tail exceedances as realizations from a generalized Pareto distribution (GPD),

with Pr(V < v) = 1− (1 + ξv/σ)−1/ξ and density function on v > 0

GPD(v; ξ, σ) =
1

σ

(
1 + ξ

v

σ

)−( 1
ξ
+1)

(1)

for tail index ξ > 0 and scale σ > 0. The generalized Pareto is a commonly applied tail

model [Smith, 1989, Davison and Smith, 1990, Pickands, 1994, Johansson, 2003, Fithian
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and Wager, 2015] with justification as the limiting distribution for exceedance beyond large

threshold u for a wide family of processes [Pickands, 1975, Smith, 1987, Coles and Tawn,

1996]. For ξ near zero, the GPD converges to an exponential distribution, and for ξ > 0 the

tails are heavier-than-exponential. For ξ ≥ 1/2 the variance of v is infinite, and for ξ ≥ 1

the mean is infinite. Our analysis focuses on ξ ∈ (0, 1), so that the tail is heavy enough to

cause problems but not so heavy that the mean does not exist.

Combining the GPD and Dirichlet-multinomial sampling yields our semi-parametric model,

g(z) =
1

|θ|

L∑
l=1

θl1[z=ζl] +
θL+1

|θ|
GPD(z − u; ξ, σ)1[z≥u] (2)

where Z = {ζ1 . . . ζL}, all elements less than u, is the support for the bulk of the DGP g(z),

θ = [θ1 · · · θL+1]
′ is a vector of random weights with θl ≥ 0 ∀ l, and |θ| =

∑
i |θi|.

Observations are assumed drawn independently from (2) by first sampling li with probability

θli and then assigning zi = ζli for li ≤ L and otherwise drawing zi − u ∼ GPD. A posterior

over g is induced by the posterior over the model parameters: θ, ξ, and σ. Functionals of g,

such as Egf(z), are random variables, for arbitrary function f and Eg an expectation over

z ∼ g.

2.1 Inference on the sampling weights

A conjugate prior places independent exponential distributions on each weight: θl ∼ Exp(a)

for l = 1 . . . L + 1, where E[θl] = a and a > 0 is the prior ‘rate’. This is equivalent

to a Dirichlet distribution on normalized weights, θ/|θ|. After observing a sample z =

[z1 · · · zN ]′, each weight remains independent in the posterior with distribution θl|z ∼ Exp(a+∑N
i=1 1[li=l]). We focus on the limiting prior that arises as a→ 0 [Rubin, 1981, Chamberlain

and Imbens, 2003, Taddy et al., 2015, 2016]. This ‘non-informative’ limit yields a massive

computational convenience: as a → 0 the weights for unobserved support points converge

to a point mass at zero: Pr(θl = 0|z) = 1 if l 6= li ∀i. Our posterior is then a multinomial
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sampling model with random positive weights on only the observed data points and on the

tail (li = L+ 1).

To simplify notation, say zi < u for i ≤ m and zi ≥ u for i = m + 1, . . . ,m + n with

N = m+ n. We then overload and re-write θ = [θ1, . . . , θm, θm+1]
′ as the posterior vector of

weights on observations z1, . . . , zm (all less than u; repeated values are fine) and on the tail.

A posterior DGP realization is

g(z) | z, ξ, σ =
1

|θ|

m∑
i=1

θi1[z=zi] +
θm+1

|θ|
GPD(z − u; ξ, σ)1[z≥u], (3)

with θi
iid∼ Exp(1) ∀i ≤ m and θm+1 ∼ Exp(n). Details on the GPD tail posterior are in

Section 3.

2.2 Inference on the DGP Mean

The conditional mean of g(z), conditionally on θ, σ, ξ, is the random variable

µ = E(z|θ, σ, ξ) =
1

|θ|

m∑
i=1

θizi + θm+1(u+ σ(1− ξ)−1).

Uncertainty about µ is assessed via Eµ and varµ, which are induced by the posterior on θ

and on the mean exceedance λ = σ/(1 − ξ). Because u is fixed, we have that θ and λ are

conditionally independent, so it is easy to see that the unconditional mean is

Eµ =
1

m+ n

m∑
i=1

zi +
n

m+ n
(u+ Eλ).

The law of total variation yields posterior variance varµ = E[var(µ|λ)] + var(E[µ|λ]). Given

properties of the Dirichlet posterior on θ/|θ|, the first term is

E[var(µ|λ)] =

∑m
i=1(zi − Eµ)2 + n(u+ Eλ− Eµ)2

(m+ n)(m+ n+ 1)
+
n2(m+ n− 2)var(λ)

(m+ n)2(m+ n+ 1)
(4)

where µλ = [
∑m

i=1 zi + n(u+ λ)] /(m+ n), with

var(E[µ|λ]) =
n2

(m+ n)2
var(λ),
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so the full expression of varµ is given by

varµ =

∑m
i=1(zi − Eµ)2 + n(u+ Eλ− Eµ)2

(m+ n)(m+ n+ 1)
+

2n2(m+ n− 0.5)

(m+ n)2(m+ n+ 1)
var(λ). (5)

Noting that λ = σ/(1− ξ), the necessary tail moments Eλ and var(λ) are available through

either Laplace approximation or MCMC as described below.

3 Inference for tail parameters

In this section we describe Bayesian modeling and inference for the GPD parameters, ξ and σ,

conditional upon the sample of size n of exceedances v = (v1, . . . , vn), where vi = zm+i−u for

i = 1, . . . , n. We are focusing on heavy tails with finite mean exceedances that correspond to

ξ ∈ (0, 1). On this range, σ can take any positive value. A simple independent prior setup is

then π(σ, ξ) = Beta(ξ; a, b)Ga(σ; c, d) ∝ ξa−1(1− ξ)b−1σc−1e−dσ, where Beta(· ; a, b) denotes

a beta density with mean a/(a + b) and Ga(· ; c, d) a gamma density with mean c/d, with

a, b, c, d > 0. We work primarily with a version of this prior that takes the limits c, d→ 0 to

obtain

π(σ, ξ) =
1

σ
ξa−1(1− ξ)b−11ξ∈(0,1), (6)

the combination of a beta on ξ and an improper uniform prior on log σ. Following results

in Northrop and Attalides [2015] and Castellanos and Cabras [2007], the posterior for [σ, ξ]

will be proper under this prior given a minimum of three observations.

Our beta-gamma prior combines with the GPD likelihood to yield a log posterior proportional

to

l(σ, ξ) = −1 + ξ

ξ

∑
i

log
(

1 + ξ
vi
σ

)
+ (a−1) log ξ + (b−1) log(1−ξ) + (c−n−1) log σ − dσ.

Maximization of this objective leads to maximum a posteriori (MAP) estimates of the pa-

rameters, say (ξ̂, σ̂). The related problem of MLE estimation for GPDs is well studied by

Grimshaw [1993] and his algorithm is easily adapted for fast MAP estimation within our

domain (ξ, σ) ∈ (0, 1)×R+.
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3.1 Laplace posterior approximation

For fast approximate inference, this section proposes analytic posterior approximation via

Laplace’s method centered on the posterior mode. The main object of interest is the posterior

for the GPD mean, σ/(1− ξ). We make the transformation λ = σ/(1− ξ), so σ = λ(1− ξ)

and inverse Jacobian |J | = 1− ξ, to obtain the posterior

p(λ, ξ | v) ∝ ξa−1e−dλ(1−ξ)

λn−c+1(1− ξ)n−b−c+1

∏
i

(
1 +

ξ

1− ξ
vi
λ

)−( 1
ξ
+1)

. (7)

Note that the MAP estimate for λ is just λ̂ = σ̂/(1− ξ̂). The Laplace approximation [Tierney

and Kadane, 1986] to the marginal posterior distribution on λ is available as p̂ (λ | v) =

N
(
λ̂,− ∇−1λλ

∣∣
[λ̂,ξ̂]

)
,where ∇λλ is the curvature of the log posterior with respect to λ via

∂ log p(λ, ξ|v)

∂λ
= ∇λ =

1

λ

[
(1/ξ + 1)

∑
i

qi − n+ c− 1

]
− d(1− ξ),

where qi = ξvi/ [(1− ξ)λ+ ξvi]). The approximate variance for λ is

v̂ar(λ | v) = −̂λ2
[
n−c+1+

(
1

ξ̂
+1

)∑
i

(
q̂2i −2q̂i

)]−1
,

with q̂i = ξ̂vi/
[
(1− ξ̂)λ̂+ ξ̂vi

]
.

3.2 Posterior sampling and approximation

For full posterior inference, we propose a novel independence Metropolis Hastings (iMH)

algorithm [e.g., Gamerman and Lopes, 2006] that uses a parametric bootstrap of the MAP

estimates as an MCMC proposal distribution. This approach is similar to the bootstrap

reweighting of Efron [2012], but unlike that work it does not require an analytic expression

for the sampling distribution of the statistics of interest.

This is simple and fast. It also connects Bayesian and frequentist inference: high acceptance

rates imply a posterior close to the sampling distribution. We emphasize that this is a novel
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Bootstrap iMH posterior sampler

• Fit the MAP parameter estimates [ξ̂, σ̂] to maximize the log posterior objective l(ξ, σ).

• Draw {ξ̂b, σ̂b}Bb=1 from the parametric bootstrap:

– Generate a sample {zbi}ni=1 by simulating from the MAP estimated model

GPD(ξ̂, σ̂).

– Obtain new MAP estimates [ξ̂b, σ̂b] conditional upon {zbi}ni=1.

• Estimate the bootstrap distribution, say r(ξ, σ), via kernel smoothing on {ξ̂b, σ̂b}Bb=1.

• For b = 2 . . . B, replace [ξ̂b, σ̂b] with [ξ̂b−1, σ̂b−1] with probability

1−min

{
r(ξ̂b−1, σ̂b−1) exp[l(ξ̂b, σ̂b)]

r(ξ̂b, σ̂b) exp[l(ξ̂b−1, σ̂b−1)]
, 1

}
.

recipe for generating MCMC algorithms from bootstrap samples, and due to the often close

relationship between sampling distributions and posteriors we expect that this recipe will be

useful in a wide variety of additional settings.

3.3 Background tails and informative priors

It is common to expect similar tail properties across multiple distributions. For example,

we believe that small changes to the eBay website have negligible effect on whether a user

makes a big purchase. This information can be used in a prior that shrinks each tail towards

a larger background dataset.

We focus on adding information on the tail index, ξ, under the prior in (6). The tails of

related distributions tend to converge to a GPD with the same index [Pickands, 1975] and

there is abundant precedence for analysis of multiple distributions using a shared tail index

[Davison and Smith, 1990, Fithian and Wager, 2015]. If you believe that every group has
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the same tail index, use as your prior for ξ the posterior from analysis of a larger dataset.

Applying the methods of Section 3 to 100,000 users with spending over $2000, we obtain

a posterior, and hence prior, on ξ that is well approximated by a Beta(80, 80) distribution.

Alternatively, if you believe that each treatment group has a different-but-similar tail index,

specify the Beta(a, b) distribution that best fits a sample of estimated tail indexes from prior

analyses. In our eBay example, considering a set of 149 ξ̂ from samples not analyzed in

Sections 6–7, this yields a Beta(9, 9) prior.

In Section 6 we find that both priors – the hierarchical-model Beta(9, 9) and the single-

background-tail Beta(80, 80) – lead to significant improvements in estimation relative to

the non-informative prior set up. In contrast, we generally do not recommend using an

informative prior on σ.

4 Consistency of the semiparametric bootstrap

Consider inference about QN =
√
N(µ̂N − µ) for a sample of N observations drawn from

true distribution function F (z), with
∫∞
0
zdF (z) = µ < ∞ and where µ̂N denotes the

MLE of µ for a size-N sample from F . A bootstrap replaces F ≈ F̂N and uses this to

obtain b = 1, . . . , B draws of Qb
N =

√
N(µ̂bN − µ̂N) where µ̂bN is the MLE for a size-N

sample from F̂N . The targeted sampling distribution, GN(q) = p(QN < q), is estimated as

ĜN(q) = B−1
∑B

b=1 1[QbN<q]
.

Standard results [Bickel and Freedman, 1981, Beran, 2003] require that ĜN converges in

distribution to G∞ uniformly across all F̂N in a neighborhood, say F , containing F and also

F̂N for N big enough (in addition, the mapping F 7→ G∞ must be continuous). Convergence

in probability for F̂N(z) to F (z) ∀z then implies consistency of ĜN in that, as N → ∞,

p(|ĜN(q)−GN(q)| < ε)→ 0 for all q and ε > 0.

Athreya [1987] shows that the nonparametric bootstrap – using the empirical distribution

function (EDF) as F̂N – is inconsistent for the distribution of the sample mean for data that
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has infinite variance. As explained by Hall [1990], in this setting ĜN based upon samples from

F̂N does not converge uniformly to G∞ because sums of the largest re-sampled observations,∑N
i=N−r z

b
(i) for r ≥ 1, can be dominated by repeats of the largest sample observation, z(N).

Instead, define a semiparametric bootstrap that is the frequentist analogue of our Bayesian

procedure.

Semiparametric Frequentist Bootstrap

Given MLE parameters, [ξ̂n, σ̂n], for b = 1, . . . , B:

• draw mb ∼ Bin(m/N,N) and set nb = N −mb;

• sample with replacement mb observations from {zi : zi < u}, say {zb1, . . . , zbmb};

• draw vb1 . . . v
b
nb

from GPD(ξ̂n, σ̂n) and fit the corresponding MLE, λ̂bnb = σ̂bnb/(1− ξ̂
b
nb

);

• set µ̂bN =
(∑mb

i=1 zib + nb(u+ λ̂bnb)
)
/N .

The sampling distribution, e.g., for
√
N(µ̂N−µ) is then approximated by

{√
N(µ̂bN − µ̂N)

}B
b=1

.

This semiparametric bootstrap is the combination of three bootstrap estimators, for distribu-

tions on 1
m

∑N
i=1 zi1[zi<u], on m/N , and on λ̂n. Consistency of the nonparametric bootstrap

for the first two statistics is established through standard arguments [Mammen, 1992]. There-

fore, to show consistency for the semiparametric bootstrap we need only to confirm that the

bootstrap using F̂N(z−u|z ≥ u) = GPD(ξ̂n, σ̂n) converges to the correct distribution for λ̂n.

Johansson [2003] considers DGPs with distribution functions F (z) = 1−cz−1/ζ(1+z−δL(z)),

where c, δ > 0 and L(tz)/L(z)→ 1 with z →∞ for t > 0. This defines a wide class of heavy

tailed distributions, and for uN large enough the distribution F (z − uN |z ≥ uN) approaches

a GPD(ξ, σN) where σN = uNξ. Following the same steps as Johansson, which apply results

from Smith [1987] on the asymptotic distribution for MLEs [ξ̂n, σ̂n], you can show that for

F (z) with ξ ∈ (0, 1) and z−δL(z) non-increasing, if uN = O(N ξ/(1+2δξ)) then

√
n
(
λ̂n − EF [z − uN |z ≥ uN ]

)
→d N(0, qn) (8)
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where qn = σ̂N(1+ξ)(1−ξ+2ξ2)/(1−ξ)4. Thus our bootstrap sample generator, GPD(ξ̂n, σ̂n),

converges to F (z − uN |z ≥ uN) along a sequence of distributions with means λ̂n that are

asymptotically normal around the target, EF [z − uN |z ≥ uN ]. From Beran [1997], this

establishes consistency of the tail bootstrap, and hence of our full semiparametric bootstrap.

The bootstrap succeeds here because MLEs converge quickly to the ‘true’ GPD model;

inference is then based upon new samples from this distribution and, unlike resamples from

the EDF, these are not overly influenced by high order statistics in the original sample. From

(8), so long as uN is growing at the right rate our true tail is converging to a GPD with

σN = ξuN . We can use this fact and the estimated ratio σ̂/(ξ̂u), over a set of candidate u,

to guide threshold selection.

5 Choosing the threshold

To illustrate our techniques and the guidance for choosing u, we study simulated data from a

combination of exponential and GPD distributions. In each simulation, we draw 10, 000 ob-

servations from an Exp(10) distribution and to half of these we add a draw from a GPD(ξ, 10).

We consider three tail indices, ξ ∈ {0.2, 0.5, 0.8}, that span from a near-exponential tail –

where the naive sample mean is a fine estimator – to a heavy tail with infinite variance.

We apply our iMH semiparametric analysis under a range of threshold values. Results are

shown in Figure 3. In each case, the estimated ratio σ̂/(ξ̂u) drops below one – the value

which our theory in Section 4 indicates we should target – before rising above one and

becoming unstable. In the light tailed case, the error is mostly unaffected by u. For the two

heavy tails – ξ ≥ 0.5 – the error is lowest around the point when σ̂/(ξ̂u) is equal to one and

increasing in u. Thus, our rule for choosing u is to find the value where this ratio is near

one and increasing.
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Figure 3: Mean estimation error (solid) and estimated ratio σ̂/(ξ̂u) for tail thresholds u and

indices ξ.

6 Performance study

Even in the presence of infinite variance and other difficulties, one can reliably measure rela-

tive performance by comparing estimators trained on small subsamples to the corresponding

full sample statistic [Politis and Romano, 1994, Bickel et al., 1997]. We apply this approach

on two independent eBay treatment groups, each containing more than 107 observations

above $0. For 100 repetitions on each group, we draw a subsample of N =50,000 and obtain,

for each algorithm under study, a mean estimate based upon this subsample. This estimate

is compared to the full-sample average, z̄, and we report the discrepancy.

Resulting averages are shown in Figure 4 across a range of thresholds and we make several

remarks.

• The two semiparametric Bayesian analyses with informative priors on the tail index –
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threshold in units of $1000

– Bayes a,b=1 – Bayes a,b=9 – Bayes a,b=80 – Winsorization – tilting – sample mean – N/2 subsampling

Figure 4: Average performance, over 100 samples of N=50,000 from each of two eBay treat-

ment groups, as function of threshold u. Our semiparametric Bayesian procedure is shown

for different Beta(a, b) priors on ξ, with iMH solid and Laplace dashed, against results for

naive sample means, Winsorized means, the tilting of Fithian and Wager [2015], and N/2

subsampling standard error estimation. The left panel shows RMSE on the full sample mean

relative to performance of the naive sample mean; the right panel shows estimated standard

deviations relative to the corresponding ‘true’ RMSE from the left.

ξ ∼ Beta(9, 9) and Beta(80, 80) – provide superior estimation over a wide range of thresholds

u. Their posterior means (from either Laplace or iMH) have the lowest or near-lowest RMSE

– around 20-40% of the sample mean RMSE – in both datasets for u above $500.

• The non-informative prior – ξ ∼ Beta(1, 1) – also leads to much lower RMSE than the

sample mean for thresholds below $4000. However, at higher thresholds it gives larger errors

than the informative prior schemes. The iMH RMSE is still an improvement on the sample

mean, but the Laplace approximation under this non-informative prior fails dramatically:

RMSE explodes by an order of magnitude at high thresholds. Since Laplace approximation

under the non-informative prior is practically equivalent to the MLE estimator of Johansson

[2003], we see that such techniques give terrible results for poorly chosen u.
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• The semiparametric Bayesian analyses are the only procedures that give accurate quan-

tification of frequentist sampling variability. For u > $500, the two informative priors lead

to posterior standard deviations that are near the observed RMSE over our 200 subsamples.

For the Beta(80, 80) prior, both Laplace and iMH standard deviations are within 10% of

the true RMSE. The Beta(9, 9) prior does worse but is still better than any alternative.

The Beta(1, 1) prior with iMH sampling also provides accurate uncertainty quantification,

but over the more narrow range of u ∈ ($100, $1000). In each case, our rule-of-thumb ratio

σ̂/(ξ̂u) is around one in these regions.

• For the informative priors, Laplace and iMH procedures give nearly identical RMSE for

their mean estimates (the dashed and solid lines are on top of each other) but iMH standard

deviations do a slightly better job replicating the observed RMSE. As may be expected,

the discrepancy between Laplace and iMH results decreases with prior information. Also,

acceptance rates on the iMH sampler were above 90% except at extreme thresholds, indi-

cating that our Bayesian procedure is converging towards inference from a semiparametric

frequentist bootstrap.

• The tilting procedure of Fithian and Wager [2015], using the same background sample

behind our Beta(80, 80) prior, yields low RMSEs at a wide range of u. This takes longer to

run than 1000 iMH draws, but still finishes in seconds. Unfortunately, there is no uncertainty

quantification available.

• Winsorization does poorly. Its RMSE is larger than that of the sample mean until u >

$2000. The associated standard errors – Winsorized standard deviation over
√
N – are

always too small.

• Unplotted, we find that use of only the GPD model (i.e., setting u = 0.01) leads to RMSEs

5-20 times larger than that of the sample mean. This could be predicted from the histogram

in Figure 2, which shows the sample of spend values below $100 looking nothing like a sample

from a GPD (or any continuous density).

• Naive standard errors for the sample mean – sd(z)/
√
N – are around 1/3 the observed
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RMSE. The subsampling standard-error estimators from Romano and Wolf [1999], using

subsamples of size N/2 and estimated learning rate Nmin(0.5,1−ξ̂) for MLE ξ̂, lead to standard

errors that are still around 70% too small.

Our Bayesian semiparametric procedure, especially with some prior information for the tail

index, provides lowest-possible RMSE and accurate uncertainty quantification. Both iMH

and Laplace schemes are fully scalable, but Laplace is essentially free and under the infor-

mative prior it is practically indistinguishable from the slightly more expensive iMH.

7 A/B experiments

Finally, we turn to the motivating application for these ideas. In A/B experiments at eBay,

two independent heavy tailed samples are obtained: one from a group receiving a treatment

and another from a control group. The object of interest is γ = µ1−µ0 where µ1 is the mean

of the treatment group and µ0 the mean of the control group. The samples are independent,

so that variance on γ is the sum of group mean variances.

In A/B experiments potential treatments might be, amongst many others, i) changes to

choice of the advertisements a user sees, ii) flow of information to users, iii) algorithms

applied in product promotion, iv) pricing scheme and market design, or any aspect of website

look and function that might make it easier for buyers and sellers find each other.

Results are shown in Figure 5 for four example experiments. The Bayesian estimation

here uses our informative Beta(80, 80) prior and the uncertainty bounds are based upon

the Laplace approximation. In each case, point and uncertainty estimates for the average

treatment effects are remarkably stable across thresholds. In contrast, Winsorized estimators

can change rapidly with u and their standard errors are always low relative to the Bayesian

standard deviations. We also show the naive mean and standard error estimates. In all but

one case, this yields an uncertainty interval that is qualitatively different from the Bayesian

posterior; in two cases, our semiparametric procedure moves the treatment effect from looking
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possibly significant to insignificant, and visa versa.
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Figure 5: Treatment effect estimates in four A/B trials from eBay. The Bayesian posterior

is the region in blue, Winsorized estimation is in black, and the naive sample estimator is

in red. Points and lines are point estimates and intervals are ±1sd or ±1se, as appropriate.

8 Conclusion

Big Data is exciting because it allows us to estimate tiny and complicated signals. However,

even with massive amounts of data you need to be careful about inference in the presence

of heavy tails. Instead of turning to a full modeling framework, which would be impractical

on datasets of this size and complexity, we use simple nonparametrics for the easy bit (the

middle of the distribution) while applying careful parametric modeling on the hard bits (the

tail). Although the novel iMH sampler is fast and simple (and provides a nice connection to

frequentist inference), sampling can be avoid altogether if one has informative prior regarding

the tail index parameter. The procedure is massively scalable.

We have focused on single distributions (and comparisons between pairs), but the work here

is applicable in many more complex modeling scenarios. For example, any bandit learning

scheme [e.g., Scott, 2010] requires accurate uncertainty quantification for the posterior dis-

tribution of rewards; when these rewards come with a heavy tail, our approach should be

used. As another example, bagging procedures such as random forests will tend to over-fit
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in the presence of extreme values [Wyner et al., 2015]. Our methods can be used to define

a semiparametric loss function at leaf nodes.
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