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Motivation

Goal: run a Gaussian linear regression and a new prior

I Do math, try to write a new Gibbs sampler.

I Maybe hard to find easy conditional distributions.

I Probably require data augmentation, add lots of latent variables.

Why not take advantage of the Gaussian likelihood?

Elliptical slice sampler can be extended to arbitrary priors, as long as we
can evaluate the prior density.
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Brief review of (Bayesian) regularization
Consider the Gaussian linear model

(y |X , β, σ2) ∼ N(Xβ, σ2In),

where β is p-dimensional.

Ridge Regression: `2 penalty on β:

β̂R = argmin
β
{||y − Xβ||2 + λ||β||22}, λ ≥ 0,

leading to β̂ridge = (X ′X + λI )−1X ′y .

LASSO Regression: `1 penalty on β:

β̂L = arg
β
min{||y − Xβ||2 + λ||β||1}, λ ≥ 0,

which can be solved by using quadratic programming techniques such as
a coordinate gradient descent algorithm. 4



Elastic net

The Elastic net combines the Ridge and the LASSO approaches:

β̂EN = arg
β
min{||y − Xβ||2 + λ1||β||1 + λ2||β||22}, λ1 ≥ 0, λ2 ≥ 0,

The `1 part of the penalty generates a sparse model.

The `2 part of the penalty

I Removes the limitation on the number of selected variables;

I Encourages grouping effect;

I Stabilizes the `1 regularization path.

R package elasticnet
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Two dimension contour plots of the three penalty functions

Ridge (dot-dashed), LASSO (dashed) and Elastic net (solid) 6



Bayesian regularization
I Regularization and variable selection are done by assuming

independent prior distributions from a scale mixture of normals
(SMN) class:

β|ψ ∼ N (0, ψ) and ψ ∼ p(ψ),

I The posterior mode or the maximum a posteriori (MAP) is

arg max
β
{log p(y |β) + log p(β|ψ)}

which is equivalent to penalizing the log-likelihood

log p(y |β)

with penalty equal to the log prior

log p(β|ψ)

when ψ is held fixed. 7



Bayesian regularization in linear regression problems
The marginal prior distribution of β

p(β) =

∫ ∞
0

pN(β, 0, ψ)p(ψ)dψ

can assume many forms depending on the mixing distribution p(ψ):

p(ψ) p(β)

Ridge IG(α, δ) Student’s t
Lasso E(λ2/2) Laplace
NG prior G(λ, 1/(2γ2)) Normal-Gamma
Horseshoe

√
ψ ∼ C+(0, 1) No closed form

where,

pNG (β|λ, γ) =
1√

π2λ−1/2γλ+1/2Γ(λ)
|β|λ−1/2Kλ−1/2(|β|/γ)

log pH(β) ≈ log

(
1 +

4

β2

)
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Comparing shrinkage priors
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Comparing shrinkage priors
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Algorithm 1: Elliptical Slice Sampler

I The original elliptical slice sampler (Murray et. al. [2010]) was
designed to sampling from a posterior arising from a normal prior
and a general likelihood.

I It can also be used with a normal likelihood and general prior such
as shrinkage priors.

I Advantages:
I Flexible : It only requires evaluating the prior density or an

approximation (no special samplers are required).

I Fast : Sample all coefficients simultaneously. Not necessary to loop
over variables.
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Advantages of our sampling scheme

Flexibility: π(β) evaluated up to a normalizing constant.

MC efficiency: In each MC iteration, single multivariate Gaussian draw
and several univariate uniform draws.

Acceptance rate: The size of the sampling region for θ shrinks rapidly
with each rejected value and is guaranteed to eventually accept.

Single/block move: The basic strategy of the elliptical slice sampler can
be applied to smaller blocks.
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Algorithm 1: Elliptical slice sampler
Goal: Sample ∆ from

p(∆) ∝ pN(∆; 0,V )L(∆)

Key idea: For v0 and vi iid N(0,V ) and any θ ∈ [0, 2π], it follows that

∆ = v0 sin θ + v1 cos θ ∼ N(0,V ).

Parameter-expansion: Sampling from

p(v0, v1,∆, θ) ∝ pN(0,Σθ)L(v0 sin θ + v1 cos θ)

can be done via two-block Gibbs sampler:

I Sample from p(v0, v1|∆, θ)
I Sample v from N(0,V )
I Set v0 = ∆ sin θ + v cos θ and v1 = ∆ cos θ − v sin θ

I Sample from p(∆, θ|v1, v2)
I Slice sampling from p(θ|v0, v1) ∝ L(v0 sin θ + v1 cos θ)
I Set ∆ = v0 sin θ + v1 cos θ
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Slice sampling from p(θ|v0, v1) ∝ L(v0 sin θ + v1 cos θ)
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Second draw
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Third draw
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Elliptical slice sampler for Gaussian linear regression
I Regression model:

y |X , β, σ2 ∼ N(Xβ, σ2In),

I Posterior
p(β|X , y , σ2) ∝ f (y | X , β, σ2)︸ ︷︷ ︸

normal

π(β)︸︷︷︸
arbitrary prior

I f (y | X , β, σ2) can be rewritten as (based on OLS estimates)

π0(β|X , y , σ2) ∝ exp

{
− 1

2σ2
(β − β̂)′X ′X (β − β̂)

}
.

I The slice sampler of Murray et al (2010) can be applied directly,
using π0(β) as the Gaussian “prior” and π(β) as the arbritary
“likelihood”

I We actually sample ∆ = β − β̂, which is centered around zero. 17



Elliptical slice sampler for Gaussian linear regression

For initial value β, ∆ = β − β̂, σ2 fixed, and θ ∈ [0, 2π]:

1. Draw v ∼ N(0, σ2(X ′X )−1).
Set v0 = ∆ sin θ + v cos θ
Set v1 = ∆ cos θ − v sin θ.

2. Draw ` from U[0, π(β̂ + v0 sin θ + v1 cos θ)].
Initialize a = 0 and b = 2π.

2.1 Sample θ′ from U[a, b].
2.2 If π(β̂ + v0 sin θ′ + v1 cos θ′) > `

Then: Set θ ← θ′. Go to step 3.
Else: If θ′ < θ, set a← θ′, else set b ← θ′. Go to step 2.1.

3. Return ∆ = v0 sin θ + v1 cos θ and β = β̂ + ∆.
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Algorithm 2: Elliptical Slice-within-Gibbs Sampler

One problem of naive slice sampler: If the number of regresson
coefficients p is large, the green slice region is so tiny thus too many
rejections before one acceptable sample.

Solution:

I β has a jointly Gaussian likelihood and independent priors, it’s
natural to write a Gibbs sampler, update a subset βk given other
coefficients β−k in each MCMC iteration.

I Apply elliptical slice sampler to conditional likelihood βk | β−k
instead of full likelihood.

I Thus it is a “slice-within-Gibbs sampler”
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Update a subset βk | β−k

Let us assume that β can be split into βk and β−k .[
βk

β−k

]
∼ N

([
β̂k

β̂−k

]
, σ2

[
Σk,k Σk,−k

Σ−k,k Σ−k,−k

])
(1)

where [
β̂k

β̂−k

]
= β̂ and

[
Σk,k Σk,−k

Σ−k,k Σ−k,−k

]
= (X ′X )−1.

Therefore, the conditional distribution of βk given β−k is N(β̃k , Σ̃k):

β̃k = β̂k + Σk,−kΣ−1−k,−k(β−k − β̂−k) (2)

Σ̃k = σ2
(

Σk,k − Σk,−kΣ−1−k,−kΣ−k,k
)
. (3)

Simulation shows that let k = 1, sampling one element of β at a
time has highest effective sample size per second!
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Algorithm 2: Slice-within-Gibbs for linear regression

For each k from 1 to K.

1. Construct β̃k and Σ̃k as in expressions (2) and (3).
Set ∆k = βk − β̃k .
Draw v ∼ N(0, Σ̃k).
Set v0 = ∆k sin θk + v cos θk

Set v1 = ∆k cos θk − v sin θk .
2. Draw ` uniformly on [0, π(∆k + β̃k)].

Initialize a = 0 and b = 2π.

2.1 Sample θ′ uniformly on [a, b].
2.2 If π(β̃k + v0 sin θ′ + v1 cos θ′) > `, set θk ← θ′. Go to step

3.
Otherwise, shrink the support of θ′ (if θ′ < θk , set a← θ′;
if θ′ > θk , set b ← θ′), and go to step 2.1.

3. Return ∆k = v0 sin θk + v1 cos θk and βk = β̃k + ∆k .
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Computational considerations

Question: Is slice-within-Gibbs sampler (updating one element of β at a
time) better than regular standard Gibbs sampler?

Answer: Yes!, All the conditional covariance are fixed in MCMC
iterations. We can precompute all the conditional likelihoods.

We can precompute Σk,−kΣ−1−k,−k , Σk,k − Σk,−kΣ−1−k,−kΣ−k,k , and

Cholesky factors Lk , with LkL
T
k = Σk,k − Σk,−kΣ−1−k,−kΣ−k,k , for each

k = 1, . . . ,K

By contrast, regular Gibbs samplers have full conditional updates of the
form

(β | X , y , σ2) ∼ N((X ′X + D)−1X ′y , σ2(X ′X + D)−1), (4)

which require costly Cholesky or eigenvalue decompositions of the matrix
(X ′X + D)−1 at each iteration as D is updated
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Rank deficient case

Question: What if X ′X is not invertible?

Answer: Recall that the slice sampler draws from

p(β | y ,X , σ) ∝ NY (Xβ, σ2)π(β) ∝ Nβ(β̂, σ2(X ′X )−1)π(β), (5)

It can be written as

p(β | y ,X , σ) ∝ NY (Xβ, σ2)Nβ(0, cσ2I )
π(β)

Nβ(0, cσ2I )

∝ Nβ(β̄, σ2(X ′X + c−1I )−1)
π(β)

Nβ(0, cσ2I )
.

(6)

c > 0 and makes (X ′X + c−1I ) invertible, then we evaluate π(β)

Nβ(0,cσ2I )

rather than π(β). Pick small c around 1 works fine in practice.
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Comparison metrics

Effective sample size (ESS) per second: Letting N denote the Monte
Carlo sample size, then ESS for parameter βj is

ESS(βj) =
N

1 + 2
∑∞

k=1 ρk
, (7)

where ρk = corr
(
β
(0)
j , β

(k)
j

)
is the autocovariance of lag k. We divide

ESS by running time in seconds to compute ESS per second as a measure
of efficiency of each sampler.

Root mean square error: Suppose {β̄j} are posterior means of each
variable and {βj} are true values. The estimation error is measured by

error =

√√√√∑p
j=1(β̄j − βj)2∑p

j=1 β
2
j

. (8)
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Simulation exercise

1. Draw elements of β from a “sparse Gaussian” where dpe entries of β
are non-zero, drawn from a standard Gaussian distribution, and all
other entries are zero.

2. Generate the regressors matrix X in one of two ways.
I Independent regressor: Xij are iid from standard Gaussian.
I Factor structure: Suppose there are k = p/5 factors. Factors are iid

F ∼ N(0, 1). The factor loading matrix, B, has exactly five ones in
each column and a single 1 in each row, all others 0, so that BB ′ is
block diagonal, with blocks of all ones and all other elements being
zero. The regressors are then set as X = F ′B ′ + ε where εij are iid
N(0, 0.01).

3. Set σ = κ
√∑p

j=1 β
2
j , where κ controls noise level.

4. Draw yi = x ′i β + εi , εi ∼ N(0, σ2) for i = 1, . . . , n.

Additionally, we vary the noise level, letting κ = 1 or κ = 2,
corresponding to signal-to-noise ratios of 1 and 1/2, respectively.
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n > p, regressors are independent

κ = 1, signal-to-noise ratio is 1:1. The regressors are independent. We
show effective sample size per second and RMSE of estimation.

Prior p
RMSE ESS per second

OLS slice mono Gibbs slice mono Gibbs

Horseshoe 100 3.38% 1.52% 1.51% 1.51% 1399 613 567
1000 1.05% 0.27% 0.27% 0.27% 91 5 5

Laplace
100 3.38% 2.39% 2.38% – 2362 809 –

1000 1.04% 0.63% 0.63% – 168 8 –

Ridge 100 3.38% 3.20% 3.20% – 3350 959 –
1000 1.06% 0.99% 0.99% – 178 5 –

We compare elliptical slice sampler, Gibbs sampler in R package monomvn

(column mono) and our own implementation of Gibbs sampler for
horseshoe regression (column Gibbs).

The elliptical slice sampler has similar error to the Gibbs sampler, but
much higher effective sample size per second.
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n > p, regresssors have factor structure

κ = 1, signal-to-noise ratio is 1:1. The regressors have underlying factor
structure where every 5 regressors are highly correlated.

Prior p
Error ESS per second

OLS 1block mono Gibbs 1block mono Gibbs

Horseshoe 100 16.47% 6.06% 6.04% 6.03% 387 747 792
1000 6.85% 1.64% 1.64% 1.64% 36 4 4

Laplace
100 17.06% 7.21% 7.15% – 573 1257 –

1000 6.77% 1.95% 1.94% – 38 5 –

Ridge 100 16.90% 8.50% 8.75% – 669 1668 –
1000 6.85% 2.93% 3.09% – 38 6 –

We compare elliptical slice sampler, Gibbs sampler in R package monomvn

(column mono) and our own implementation of Gibbs sampler for
horseshoe regression (column Gibbs).

The elliptical slice sampler has similar error to the Gibbs sampler, but
much higher effective sample size per second when p = 1, 000.
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p > n

Compare with Johndrow and Orenstein [2017] (denoted J&O) for the
p > n case. 12, 000 posterior draws with the first 2, 000 as burn-in.

Running Time RMSE ESS per second
p n κ J&O Slice J&O Slice J&O Slice

1000 300 0.25 119.11 91.50 0.0041 0.0038 46.71 43.19
1000 600 0.25 394.02 88.61 0.0028 0.0026 14.68 47.26
1000 900 0.25 905.36 88.91 0.0021 0.0020 6.60 48.85
1000 300 1 127.33 90.19 0.0189 0.0189 43.92 39.25
1000 600 1 399.50 91.17 0.0129 0.0129 14.39 44.12
1000 900 1 927.96 91.58 0.0098 0.0099 6.35 46.09
1500 450 0.25 346.37 187.91 0.0029 0.0027 16.37 21.26
1500 900 0.25 1073.28 185.57 0.0022 0.0021 5.50 23.08
1500 1350 0.25 2629.52 183.68 0.0018 0.0017 2.27 24.04
1500 450 1 326.63 183.66 0.0164 0.0164 17.39 20.28
1500 900 1 1021.47 174.52 0.0100 0.0101 5.73 23.72
1500 1350 1 2515.37 176.51 0.0071 0.0071 2.36 24.78
3000 100 0.25 85.95 985.68 0.0067 0.0075 69.72 3.89
3000 500 0.25 575.92 983.64 0.0024 0.0022 9.85 4.17

Similar RMSE. The elliptical slice sampler has higher ESS per second in
most cases considered here, especially when p ≈ n. The Johndrow et al.
sampler is much more efficient only when p � n, such as p = 3000 and
n = 100.
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Empirical illustration 1: beauty and course evaluations

Use data from Hamermesh and Parker [2005].

Course evaluations from the University of Texas at Austin between 2000
and 2002 and additional information of class and instructor.

We want to study how the beauty score of instructor affect his or her
course evaluation scores (on 1 to 5 scale, 5 is the best).

We fit regression model with horseshoe, ridge, Laplace (lasso) and two
exotic priors.

The purpose is not to argue advantage of exotic priors, but just to show
we are able to fit them easily.
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Exotic priors
Consider “sharkfin” prior

π(β) =

{
2qf (β) β ≤ 0

2f (β/s)(1− q)/s β > 0
, (9)

where f (x) = 1
π(1+x2) is the density
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Figure: Density of sharkfin prior. 30



Exotic priors
“non-local” prior is a mixture of Cauchy priors, which is anti-sparse

π(β) = 0.5t(β;−1.5, 1) + 0.5t(β; 1.5, 1) (10)
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Figure: Density of non-local prior.
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Results of beauty and course evaluations

Table: Posterior points estimates of regression coefficients under each prior;
those whose posterior 95% credible intervals exclude zero are shown in bold.

variable name horseshoe lasso ridge sharkfin non-local
class size 61 to 150 −0.13 −0.19 −0.20 −0.14 −0.22
class size 151 to 600 −0.36 −0.41 −0.43 −0.36 −0.46
tenure track 0.22 0.29 0.31 0.27 0.40
non-minority 0.65 0.65 0.53 0.63 0.71
highly beautiful 0.14 0.36 0.54 0.25 0.38
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Empirical illustration 2: Diabetes
The data consist of p = 10 baseline measurements on n = 442 diabetic
patients; the response variable is a numerical measurement of disease
progression (Efron et al., 2004). Below are the OLS estimates.
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Ridge and Lasso penalties
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Cross validation
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Out-of-sample Root MSE
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Out-of-sample Root MSE: replications
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OLS: Including squares and interactions (p = 64)
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Ridge and Lasso penalties
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Cross validation
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Out-of-sample Root MSE
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Out-of-sample Root MSE: replications
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Illustration 3: Motorcycle data

Description
This table gives the results of 133 simulations showing the effects of
motorcycle crashes on victims heads: time after a simulated impact with
motorcycles and head acceleration of a PTMO (post mortem human test
object) were recorded.

Usage
data(motorcycledata)

Format
A 133 by 2 data frame.

References
Hardle, W. (1990) Applied Nonparametric Regression. Cambridge
University Press.
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Data
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Spline regression: OLS and horseshoe
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Shrinkage
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OLS
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Horseshoe
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Comparison
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R code

install.packages("adlift")

install.packages("bayeslm")

require(splines)

library("adlift")

library("bayeslm")

data(motorcycledata)

y = motorcycledata[,2]

y = (y-mean(y))/sqrt(var(y))

x = motorcycledata[,1]

n = length(x)

cuts = quantile(x,seq(0.02,0.98,by=0.02))

X = bs(x,knots=cuts)

p = ncol(X)

fit.ols <- lm(y~X)

fit.hs = bayeslm(y~X)
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