Modern Bayesian Statistics Part III: high-dimensional modeling Example 3: Sparse and time-varying covariance modeling

HEDIBERT FREITAS LOPES¹ hedibert.org

13^a aMostra de Estatística IME-USP, October 2018

¹Professor of Statistics and Econometrics at Insper, São Paulo.

Example 3: Sparse and time-varying covariance modeling

Consider the Gaussian linear model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \qquad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}),$$

where y is n-length vector and X is a $n \times q$ design matrix.

Ridge Regression (ℓ_2 penalty on β)

$$\hat{\boldsymbol{\beta}}_{\textit{ridge}} = \mathop{\arg\min}_{\boldsymbol{\beta}} \left\{ \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda \, \|\boldsymbol{\beta}\|_2^2 \right\}, \qquad \lambda \geq 0,$$

leading to $\hat{m{\beta}}_{\textit{ridge}} = (m{X}'m{X} + \lambda m{I})^{-1}m{X}'m{y}$.

LASSO (ℓ_1 penalty on β)

$$\hat{eta}_{\mathit{lasso}} = \underset{eta}{\mathrm{arg\,min}} \{ \| {m y} - {m X} {m eta} \|^2 + \lambda \, \| {m eta} \|_1 \}, \qquad \lambda \geq 0,$$

which can be solved by using quadratic programming techniques such as *coordinate gradient descent*.

2

Bayesian regularization in linear regression problems

Hierarchical scale mixture of normals:

$$\beta | \psi \sim \mathcal{N}(0, \psi)$$
 and $\psi | \theta \sim p(\psi)$,

Maximum a posteriori (MAP): $\arg \max_{\beta} \{p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2)p(\boldsymbol{\beta}|\boldsymbol{\psi})\}$

A few cases:

Prior	$p(\psi)$	p (β)
Bayesian Lasso	$\psi \sim \mathcal{E}(\lambda^2/2)$	Laplace
Ridge	$\psi \sim \mathcal{IG}(a,b)$	Scaled-t
Normal-Gamma	$\psi \sim \mathcal{G}(\lambda, 1/(2\gamma^2))$	below

$$p(\beta|\lambda,\gamma^2) = \frac{1}{\sqrt{\pi}2^{\lambda-1/2}\gamma^{\lambda+1/2}\Gamma(\lambda)}|\beta|^{\lambda-1/2}K_{\lambda-1/2}(|\beta|/\gamma),$$

where $Var(\beta|\lambda, \gamma^2) = 2\lambda \gamma^2$ and excess kurtosis $3/\lambda$.

The Normal-Gamma prior

High mass close to zero and heavy tails

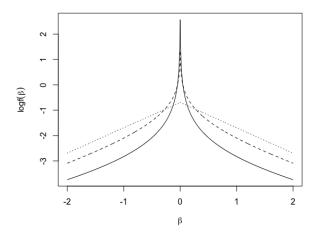


Figure: $\lambda = 0.1$ (dot), $\lambda = 0.33$ (dot-dashed), $\lambda = 1$ (solid).

Spike-and-slab priors

Stochastic search variable selection (SSVS)
SSVS places independent mixture priors directly on the coefficients

$$\beta|J\sim (1-J)\underbrace{\mathcal{N}(0, au^2)}_{spike} + J\underbrace{\mathcal{N}(0,c^2 au^2)}_{slab},$$

with c>1 large, $\tau>0$ small and $J\sim Ber(\omega)$.

SMN representation

$$\beta | \psi \sim \mathcal{N}(0, \psi)$$

$$\psi|J \sim (1-J)\delta_{\tau^2}(.) + J\delta_{c^2\tau^2}(.)$$

Spike-and-slab priors on the scale parameter ψ

Normal mixture of Inverse-Gammas (NMIG)

$$\beta | K \sim \mathcal{N}(0, K\tau^2),$$

$$K | \omega \sim (1 - \omega) \delta_{\upsilon_0}(.) + \omega \delta_{\upsilon_1}(.), \quad \upsilon_0/\upsilon_1 \ll 1,$$

$$\tau^2 \sim \mathcal{IG}(a_\tau, b_\tau).$$
(1)

SMN representation

$$\beta | \psi \sim \mathcal{N}(\mathbf{0}, \psi)$$

and

$$\psi \sim (1 - \omega) \mathcal{IG}(a_{\tau}, v_0 b_{\tau}) + \omega \mathcal{IG}(a_{\tau}, v_1 b_{\tau})$$

The resulting marginal distribution of β is a two component mixture of scaled Student's t distributions.

Spike-and-slab priors on the scale parameter ψ

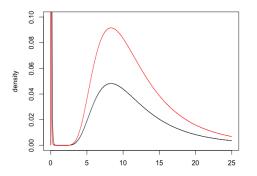


Figure: Conditional density for hypervariance ψ for NMIG mixture prior where $v_0=0.005, \ v_1=1, \ a_{\tau}=5, \ b_{\tau}=50$ and (a) $\omega=0.5$ (black line), (b) $\omega=0.95$ (red line). Note that as ω has a Uniform prior, (a) also corresponds to the marginal density of ψ . Observe that only the height of the density changes as ω varied.

Spike-and-slab priors: summary

Prior	Spike $\psi J=0$	$Slab\ \psi J=1$	Marginal $\beta \omega$	Constant c		
SSVS	$\psi J=0=\delta_{rQ}(.)$	$\psi J = 1 = \delta_{Q}(.)$	$\omega \mathcal{N}(0, Q) + (1 - \omega)\mathcal{N}(0, rQ)$	1		
NMIG	$\mathcal{IG}(\nu, rQ)$	$\mathcal{IG}(\nu, Q)$	$\omega t_{2\nu}(0, Q/\nu) + (1 - \omega)t_{2\nu}(0, rQ/\nu)$	$1/(\nu - 1)$		
Mixture of Laplaces	$\mathcal{E}(1/2rQ)$	$\mathcal{E}(1/2Q)$	$\omega Lap(\sqrt{Q}) + (1 - \omega)Lap(\sqrt{rQ})$	2		
Mixture of Normal-Gammas	G(a, 1/2rQ)	G(a, 1/2Q)	$\omega NG(\beta_i a,Q) + (1-\omega)NG(\beta_i a,r,Q)$	2a		
Laplace-t	$\mathcal{E}(1/2rQ)$	$\mathcal{IG}(\nu,Q)$	$\omega t_{2\nu}(0, Q/\nu) + (1 - \omega)Lap(\sqrt{rQ})$	$c_1 = 2$, $c_2 = 1/(\nu - 1)$		

Gaussian dynamic regression problems

 Consider the univariate Gaussian dynamic linear model (DLM) expressed by

$$y_t = \mathbf{F}_t' \boldsymbol{\beta}_t + \nu_t, \qquad \quad \nu_t \sim \mathcal{N}(0, V_t)$$
 (2)

$$\beta_t = \mathbf{G}_t \beta_{t-1} + \omega_t, \qquad \omega_t \sim \mathcal{N}(0, \mathbf{W}_t),$$
 (3)

where $\boldsymbol{\beta}$ is of length q and $\boldsymbol{\beta}_0 \sim \mathcal{N}(\boldsymbol{m}_0, \boldsymbol{C}_0)$.

Dynamic regression model: $F_t = X_t$ and $G_t = I_q$.

▶ Static regression model: $W_t = 0$ for all t.

Shrinkage in dynamic regression problems

- ► Two main obstacles:
 - 1. Time-varying parameters (states), and
 - 2. A large number of predictors q.
- ► Two sources of sparsity:
 - 1. horizontal sparsity: $\beta_{i,t} = 0, \forall t$ for some coefficients j.
 - 2. vertical sparsity: $\beta_{j,t} = 0$ for several js at time t.

Shrinkage in dynamic regression problems

- Two main obstacles:
 - 1. Time-varying parameters (states), and
 - 2. A large number of predictors q.
- ► Two sources of sparsity:
 - 1. horizontal sparsity: $\beta_{j,t} = 0, \forall t$ for some coefficients j.
 - 2. vertical sparsity: $\beta_{i,t} = 0$ for several js at time t.

Illustration: q = 5 and T = 12

	Jan	ieb	IIIaI	apr	IIIay	jun	jui	aug	sep	σει	HOV
<i>x</i> ₀	$\beta_{1,1}$	$\beta_{1,2}$	$\beta_{1,3}$	$\beta_{1,4}$	$\beta_{1,5}$	$\beta_{1,6}$	$\beta_{1,7}$	$\beta_{1,8}$	$\beta_{1,9}$	$\beta_{1,10}$	$\beta_{1,11}$
<i>x</i> ₁	0	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₂	$\beta_{3,1}$	$\beta_{3,2}$	$\beta_{3,3}$	$eta_{3,4}$	$eta_{3,5}$	0	0	0	$eta_{3,9}$	$eta_{3,10}$	$eta_{3,11}$
<i>X</i> 3	0	0	$\beta_{4,3}$	$\beta_{ exttt{4,4}}$	$eta_{ extsf{4,5}}$	$eta_{ extsf{4,6}}$	$eta_{ extsf{4,7}}$	$eta_{ extsf{4,8}}$	$eta_{4,9}$	$eta_{4,10}$	$eta_{4,11}$
	<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃	$ \begin{array}{c cc} x_0 & \beta_{1,1} \\ x_1 & 0 \\ x_2 & \beta_{3,1} \\ x_3 & 0 \end{array} $	$\begin{array}{c cccc} x_0 & \beta_{1,1} & \beta_{1,2} \\ x_1 & 0 & 0 \\ x_2 & \beta_{3,1} & \beta_{3,2} \\ x_3 & 0 & 0 \end{array}$	$\begin{array}{c ccccc} x_0 & \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ x_1 & 0 & 0 & 0 \\ x_2 & \beta_{3,1} & \beta_{3,2} & \beta_{3,3} \\ x_3 & 0 & 0 & \beta_{4,3} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Our contribution: a dynamic spike-and-slab model

Our contribution is defining a a spike-and-slab prior that not only shrinks time-varying coefficients in dynamic regression problems but allows for dynamic variable selection.

We use a non-centered parametrization:

$$egin{aligned} y_t &= m{F}_t'm{eta}_t +
u_t, &
u_t &\sim \mathcal{N}(0, \sigma_t^2) \ & & & & & & & \omega_t \sim \mathcal{N}(0, m{W}_t), \end{aligned}$$

where

$$\begin{split} \tilde{\boldsymbol{\beta}}_t &= \left(\frac{\beta_{1,t}}{\sqrt{\psi_{1,t}}}, \dots, \frac{\beta_{q,t}}{\sqrt{\psi_{q,t}}}\right)' \\ \boldsymbol{G}_t &= \operatorname{diag}(\varphi_1, \dots, \varphi_q) \\ \boldsymbol{W}_t &= \operatorname{diag}((1 - \varphi_1^2), \dots, (1 - \varphi_q^2)), \\ \boldsymbol{F}_t' &= (X_{1,t}\sqrt{\psi_{1,t}}, \dots, X_{q,t}\sqrt{\psi_{q,t}}). \end{split}$$

Our contribution: a dynamic spike-and-slab model

For shrinking the states β_1,\ldots,β_T , for any j coefficient, we place independent priors for each $\psi_t=\tau^2K_t$ as

$$\tau^{2} \stackrel{\text{iid}}{\sim} p(\tau^{2}|\boldsymbol{\theta}),$$

$$(K_{t}|K_{t-1} = v_{i}) \stackrel{\text{ind}}{\sim} \omega_{1,i}\delta_{1}(.) + (1 - \omega_{1,i})\delta_{r}(.),$$

$$\omega_{1,i} = p(K_{t} = 1|K_{t-1} = v_{i}),$$

where $v_i \in \{r, 1\}$, $p(K_1 = r) = p(K_1 = 1) = 1/2$, $r = \text{Var}_{spike}(\beta|\theta)/\text{Var}_{slab}(\beta|\theta) \ll 1$ and $p(\tau^2|\theta)$ is one of priors from the previous Table.

Markov switching process for K_t

That is, K_t is a binary random latent variable that can assume binary values (regimes) $v_0 = r$ or $v_1 = 1$, depending only on the previous value of K_{t-1} and the prior transition probabilities $\{\omega_{0,0}; \omega_{0,1}; \omega_{1,1}; \omega_{1,0}\}.$

Our contribution: direct acyclic graph

