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Example 3: Sparse and time-varying covariance modeling
Consider the Gaussian linear model

y=X8+e, e ~ N(0,0°1),

where y is n-length vector and X is a n X g design matrix.
Ridge Regression ({2 penalty on 3)

Brsge = argmin {lly = X0 + M85}, A0
leading to Brigge = (X'X + AM)~1X'y.
LASSO (41 penalty on 3)

B/asso :arggmin{Hy_X:B‘F+>‘H5H1}7 A >0,

which can be solved by using quadratic programming techniques
such as coordinate gradient descent. 2



Bayesian regularization in linear regression problems

Hierarchical scale mixture of normals:

Bl ~N(0,¢)  and [0 ~ p(s),

Maximum a posteriori (MAP): arg max{p(y|3, o?)p(8|¥)}
B

A few cases:

Prior p(¥) p(B)
Bayesian Lasso | 1 ~ £(\2/2) Laplace
Ridge Y ~ZG(a,b) Scaled-t
Normal-Gamma | o ~ G(\,1/(2?)) | below

1
PINA) = —rmararg P K2 (181/7),

where Var(3|\,72) = 2A\y? and excess kurtosis 3/.



The Normal-Gamma prior

High mass close to zero and heavy tails

logf(f3)

Figure: A = 0.1 (dot), A = 0.33 (dot-dashed), A =1 (solid).



Spike-and-slab priors

Stochastic search variable selection (SSVS)
SSVS places independent mixture priors directly on the coefficients

Bl ~ (1= J)N(0,73) +JN(0, *7?),
N—— N —
spike slab

with ¢ > 1 large, 7 > 0 small and J ~ Ber(w).

SMN representation

Bl ~ N(0,7)

D ~ (1= 1)62() + S5 22(.)



Spike-and-slab priors on the scale parameter

Normal mixture of Inverse-Gammas (NMIG)

BIK ~ N(0,K7?),
Klw ~ (1 —w)dyy(.) + wdyy (1), wo/v1 < 1, (1)
72 ~ IG(a-, b,).

SMN representation
Bl ~ N(0,7)

and
Y~ (1 —w)ZG(ar,vob;) + wIG(ar,v1b;)

The resulting marginal distribution of 3 is a two component
mixture of scaled Student’s t distributions.



Spike-and-slab priors on the scale parameter
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Figure: Conditional density for hypervariance 1 for NMIG
mixture prior where vg = 0.005, v; =1, a, =5, b, =50
and (a) w = 0.5 (black line), (b) w = 0.95 (red line). Note
that as w has a Uniform prior, (a) also corresponds to the
marginal density of 1. Observe that only the height of the
density changes as w varied.



Spike-and-slab priors: summary

Prior Spike ¢|J =0 Slab ¢|J =1 Marginal f|w Constant ¢

SSVs U =0=10,0() ¥lJ=1=0q() N0, Q) + (1— wN(0,rQ) 1

NMIG T4(v. rQ) Z6(v. Q) wan (0, Q/v) + (1 - w)tau (0, 1Q/v) Yv-1)
Mixture of Laplaces £(1/2rQ) £(1/2Q) wlap(vQ) + (1 - w)Lap(v/rQ) 2

Mixture of Normal-Gammas G(a,1/2rQ) G(a,1/2Q) wNG(Bila, Q) + (1 — w)NG(Bjla,r, Q) 2a

Laplace-t £(1/2rQ) IG(v. Q) wiz, (0, Q/v) + (1 — w)Lap(VrQ) a=2 o=1/(v-1)




Gaussian dynamic regression problems

» Consider the univariate Gaussian dynamic linear model (DLM)
expressed by

ve = FiBe + 11, ve ~ N(0, Vi) (2)
Bt - Gt/Bt—l + Wt, W ~ N(07 Wt)a (3)

where 3 is of length g and By ~ N (my, Gp).

» Dynamic regression model: F; = X; and G; = Ig.

> Static regression model: W; = 0 for all t.



Shrinkage in dynamic regression problems

» Two main obstacles:

1. Time-varying parameters (states), and
2. A large number of predictors g.

» Two sources of sparsity:

1. horizontal sparsity: §;: = 0, Vt for some coefficients j.
2. vertical sparsity: ;; = 0 for several js at time t.
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Shrinkage in dynamic regression problems

» Two main obstacles:

1. Time-varying parameters (states), and
2. A large number of predictors g.

» Two sources of sparsity:

1. horizontal sparsity: §;: = 0, Vt for some coefficients j.
2. vertical sparsity: ;; = 0 for several js at time t.

Illustration: g =5and T =12

jan feb mar apr may jun jul aug sep oct nov
x| P11 B2 P13 Pia Bis Pie Bz Big Pire Brio P
x1| O 0 0 0 0 0 0 0 0 0 0
x2 | B31 P32 P33 B34 Bz O 0 0 B39 fB310 P31
x3 | 0 O Baz Bas Pas Bae Baz Bas Pag Paio Ban
x4 | Bs1 Bs2 P53 Psa Pss 0 0 0 PBso PBsi0 PBsi1
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Our contribution: a dynamic spike-and-slab model

Our contribution is defining a a spike-and-slab prior that not only
shrinks time-varying coefficients in dynamic regression problems
but allows for dynamic variable selection.

We use a non-centered parametrization:

vt = F{B¢ + v, VtNN(OaU?)
Igt = Gt,ét—l + wy, we ~ N(0, Wy),

where

,gt = </81’t Pa.t ),
G: = diag(e1,...,¢q)
We = diag(1—¢3),....(1—¢2)),

Ft{ == (Xl,t\/wTJa---an,tM)-
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Our contribution: a dynamic spike-and-slab model

For shrinking the states (31, ..., 87, for any j coefficient, we place
independent priors for each ¢ = 72K as

iid
72 < p(7°]),
(KelKeer = v7) % wyi61() + (1 — wi)6, (),
wii = p(Ke = 1K1 = vj),
where v; € {r,1}, p(Ki =r)=p(K1 =1)=1/2,

r = Vargpike(3]0)/ Varsiap(3|0) < 1 and p(72|@) is one of priors
from the previous Table.

Markov switching process for K;

That is, K; is a binary random latent variable that can assume
binary values (regimes) vg = r or v1 = 1, depending only on the
previous value of K;_1 and the prior transition probabilities
{wo,0; wo,1; w1,1; W10}
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Our contribution: direct acyclic graph




