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Abstract: State-space models are commonly used in the engineering, eco-
nomic, and statistical literatures. They are flexible and encompass many
well-known statistical models, including random coefficient autoregressive
models and dynamic factor models. Bayesian analysis of state-space models
has attracted much interest in recent years. However, for large scale mod-
els, prior specification becomes a challenging issue in Bayesian inference.
In this paper, we propose a flexible prior for state-space models. The pro-
posed prior is a mixture of four commonly entertained models, yet achieves
parsimony in high-dimensional systems. Here “parsimony” is represented
by the idea that in a large system, some states may not be time-varying.
Simulation and simple examples are used throughout to demonstrate the
performance of the proposed prior. As an application, we consider the time-
varying conditional covariance matrices of daily log returns of the compo-
nents of the S&P 100 index, leading to a state-space model with roughly
five thousand time-varying states. Our model for this large system enables
us to use parallel computing.

Keywords and phrases: Bayesian modeling, Conditional Heteroscedas-
ticity, Forward Filtering and Backward Sampling, Parallel Computing, Prior,
Random walk.

1. Introduction

State-space models, also known as dynamic models, are well established in many
scientific areas ranging from signal processing to spatio-temporal modeling to
marketing applications, to name only a few. See Migon et al. (2005) for a recent
review of dynamic models. In the recent business and economics literature, these
state-space structures have gained additional attention, particularly in macroe-
conomic and financial applications where they are used, respectively, when de-
scribing time-varying parameters (TVP) in vector autoregressive (VAR) models
Primiceri (2005) or in large-scale dynamic factor models (DFM); and time-
varying variances and covariances in stochastic volatility (SV) models Lopes
and Polson (2010).

More specifically, the basic dynamics governing the state-space component,
namely st, which can be a time-varying coefficient in the VAR model, a log-
volatility in a SV model or a time-varying loading in a DFM, resembles a first
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order autoregressive, AR(1), model,

st = α+ β st−1 + τεt,

where the errors ε1, . . . , εT are independent and identically distributed, usu-
ally standard normals. Primiceri (2005), for example, models the US economy
with a trivariate TVP-VAR model containing inflation rate, unemployment rate
and short-term interest rate. The paper assumes (α, β) = (0, 1) when modeling
the time-varying coefficients of the VAR model, giving random walk dynamics.
Similarly, the conditionally conjugate normal-inverse gamma prior, commonly
used in the Bayesian state-space literature to model (α, β, τ2), fails to properly
account for common parsimonious/shrinkage cases. When a state st is close to
time invariant, this AR(1) model is not easy to identify, because it can be rep-
resented in two ways. First, β = 0 and α is close to the constant state value.
Second, α = 0 and β = 1. In both cases, τ can be small and hard to deal with.
For example, in a large system, some regression coefficients are likely to be close
to zero for all time. Further discussion concerning identifiability is given below.

We argue, and show in our applications, that limiting the evolution of state-
space components to a random walk and/or using conditionally conjugate normal-
inverse gamma priors for (α, β, τ2) are both unrealistic practices (see, for in-
stance, Frühwirth-Schnatter (2004)). This is particularly troubling when dealing
with large-scale systems where several hundreds, or thousands, of coefficient are
essentially flat-line, rendering the random walk hypothesis meaningless. One of
our main goals, extensively discussed in Section 2, is to propose a general mix-
ture prior structure that allows us to entertain and investigate different kinds
of state evolution within the simple AR(1) framework. More specifically, we will
focus our attention on parsimonious/shrinkage cases, such as (α, β) = (0, 1)
(random walk component), β = 0 (flat-lined component), α = β = 0 (irrelevant
state-space component) and 0 < β < 1 (stationary component). Our mixture
prior probability implicitly addresses the identifiability mentioned earlier.

Another major contribution of the paper is the modeling of time-varying co-
variance matrices in large-scale financial time series of log-returns, where the
above-mentioned parsimonious prior structure will play a major regularizing
role by shrinking unnecessary (or flat-line) coefficients toward zero (or toward
constants). More specifically, we will rewrite the time-varying covariances Σt of
the multivariate normal log-returns via a Cholesky transformation Σt = AtHtA

′
t

and, in turn, model the recursive conditional regression coefficients in the lower-
triangular matrix At and the log conditional variances from the diagonal matrix
Ht, both with the above state-space AR(1) structure and mixture prior. Sec-
tion 3 provides extensive details regarding this Cholesky stochastic volatility
(CSV) structure along with a customized MCMC scheme for posterior Bayesian
inference that takes advantage of the parallel nature of the CSV model.

We illustrate our approach by a number of real and synthetic examples,
including a real application on the estimation of log-volatilities in a state-space
model based on realized volatilities and a CSV model with 94 financial time
series from components of the S&P100 index.
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2. Prior Specification for the State Equation

To facilitate discussion, we begin with the univariate state-space model

Observation equation: yt = f(xt, st, ηt)
State equation: st = α+ β st−1 + τεt,

(2.1)

where st is the latent (hidden) state-space variable. ηt and εt are independent
random shocks in the observation and state equations respectively, usually Gaus-
sian, and we observe the pairs (xt, yt), t = 1, 2, . . . , T . In our examples, we will
consider two specifications for the observation equation: i) yt = xt st + ηt, a dy-
namic regression with a time-varying coefficient st, and ii) yt = exp(st/2) ηt, a
standard stochastic volatility model.

The parameters (α, β, τ) strongly affect the posterior distribution of the state
sequence s = (s1, s2, . . . , sT ). A basic observation is that if τ is small then the
state sequence evolves smoothly. Consequently, the choice of prior for (α, β, τ)
is influential. A basic goal of this paper is to specify a prior on (α, β, τ) that
allows us to investigate different kinds of state evolutions within the simple
AR(1) framework for the state equation. In addition, we will specify a prior for
s0, the initial state.

2.1. A Mixture Prior for AR Parameters

In this section we present a mixture prior for (α, β, τ). The basic notions our
prior must be able to express are i) we may want τ small, and ii) the following
four cases are of particular interest:

Case (1): (α, β) = (0, 1) - (random walk component)
Case (2): β = 0 - (flat-lined component)
Case (3): (α, β) = (0, 0) - (irrelevant state-space component)
Case (4): 0 < β < 1 - (stationary component).

Our prior mixes over these four cases. We put zero prior weight on β < 0. In
our applications, we use stock returns and the correlations between them tend
to be positive. If we analyze returns of stocks and bond yields jointly, then we
might have negative correlations. However, if negative correlations are to be
expected, the sign of the data can be changed without affecting the analysis,
yet we keep the correlations to be positive. Ultimately, this restriction can be
relaxed without affecting the current structure of our mixture prior specification.

Case (1) corresponds to the classic “random-walk” prior. With τ small, this
prior succinctly expresses the notion that the state evolves smoothly and may
“wander”. Many applications assume Case (1). Case (2) says the state simply
varies about a fixed level α. With very small τ this is practically equivalent to a
fixed value for the state. Case (3) says that the state is fixed near zero, which is
often a possibility of particular interest. For example, if the state is a regression
coefficient then the corresponding variable has no effect. Case (4) allows the
state to vary in a stationary fashion.
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A near constant state can be achieved with (α, β) = (0, 1) (Case (1)) or
(α, β) = (α, 0) (Case (2)), given τ small. Depending on the application, the user
may choose to weight different mixture components. For example, if we are only
extrapolating a few periods ahead, β ≈ 1 may be fine. If, however, we wish
to predict farther ahead, we may be more comfortable with β < 1, if the data
allows it.

As usual, the prior allows us to push the inference in desired directions,
without imposing it. In Section 3 we consider the problem of modeling high di-
mensional multivariate stochastic volatility. This large, complex model consists
of thousands of univariate state-space models. In this application we found it
essential to be able to flexibly consider the possibility that many of the states
are constant over time. This leads to more parsimonious representations with
time-invariant states greatly simplifying the model. Appropriately mixing over
our four cases allows us to push our inference towards these parsimonious rep-
resentations.

To specify our mixture we need prior probabilities for each of the cases and
then a prior for (α, β, τ) given the case. As our four cases delineate, β is the
key parameter for determining the state dynamics. Consequently, we specify the
joint prior for (α, β, τ) by first choosing a marginal for β and then a conditional
for (α, τ) given β. Using the Smith-Gelfand bracket notation we have

[α, β, τ ] = [β] [α, τ |β].

All the specifications we consider in this paper make the additional simplifying
assumption that τ and α are independent given β: [α, τ |β] = [α |β] [τ |β].

Let δx denote the Dirac measure which assigns probability one to the value
x. We use the Dirac measure to identify the special role that the values β = 0
and β = 1 play in our four cases. Our full mixture prior has the form

p(α, β, τ) = p01 δ{β=1} δ{α=0} p(τ | β = 1)

+ p00 δ{β=0} δ{α=0} p(τ | β = 0)

+ pu0 δ{β=0} p(α | β = 0) p(τ | β = 0)

+ puu p(β) p(α | β) p(τ | β)

where p01, p00, pu0, and puu are the mixture weights of our four components. p01
is the probability that (α, β) = (0, 1), p00 is the probability that (α, β) = (0, 0),
pu0 is the probability that β = 0 and α is unrestricted, and puu is the probability
that β ∈ (0, 1) and α is unrestricted.

To specify the prior p(β) for β ∈ (0, 1) (used in our fourth “uu” component
above) we use a normal distribution restricted to the interval (0, 1):

p(β) ∝ n(β | β̄, σ2
β)χ(0,1)(β), (2.2)

where n(· | β̄, σ2
β) denotes a normal density with mean β̄ and standard deviation

σβ and χ(0,1)(β) is one for β in (0, 1) and zero otherwise.
For the prior p(α | β) we use,

α | β ∼ N(0, σ2
α (1− β2)). (2.3)
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When β = 0 we simply have α ∼ N(0, σ2
α). As β increases, we shrink our prior

down towards the case where α = 0 at β = 1.
Our mixture prior enables us to incorporate the special role of β in the AR(1)

state equation. The parameter τ also plays a crucial role. We have developed
a form of prior for τ that allows us to shrink towards small values but still
have a right tail that allows for larger values. This prior is discussed in detail in
Section 2.1.1.

Note that as soon as you think about what it might mean for τ to be small,
you realize that it depends on β. In particular, the effect of τ depends on whether
β = 1, β = 0, or β ∈ (0, 1). These considerations make our mixture prior
plausibly the minimally complex construction for serious prior thought.

2.1.1. The Prior for τ

We will specify our prior for τ by assuming a finite discrete set of possible
values. While the basic idea of the prior could be expressed using a continuous
(or mixture of discrete and continuous) distribution, we find it conceptually and
computationally convenient to use the discrete construction.

To specify a prior for τ on a grid of values, we first choose minimum and
maximum values τmin and τmax. Using ng grid points, we have evenly spaced
values (t1, t2, . . . , tng ) with t1 = τmin and tng = τmax. We let P (τ = τmin) ≡
pmin. For i > 1, P (τ = ti) ∝ exp(−cτ |ti − τmin|). Thus, our τ prior has the
four hyper-parameters (τmin, τmax, pmin, cτ ). Understanding and choosing the
hyper-parameters of this prior is quite simple. We pick an interval, and then
our choice of cτ determines the degree to which we push τ towards smaller
values.

We have chosen not to consider the case τ = 0. There is no practical ad-
vantage in considering τ to be zero as opposed to small. A useful variation on
the basic scheme above is to use a non-evenly spaced grid for τ . It might make
sense to have the grid tighter for smaller τ . However, we have employed an
evenly spaced grid in all our examples.

The commonly used prior for τ is the inverted chi-squared: τ2 ∼ ν λ/χ2
ν . We

found it very difficult to choose values for ν and λ that gave consistently good
results. For small values of ν, the prior is not informative so that we cannot
express a preference for smaller values. We can use an informative prior by
using big values of ν. But, with large ν, if we choose λ to favor smaller τ , we
find that we have too little prior probability attached to the possibility of larger
τ . Our prior is designed to favor small τ but allow for large ones in the simplest
possible way.

The situation is illustrated in Figure 1. The solid black line is our prior with
τmin = 0.005, τmax = 0.15, pmin = 0.3, cτ = 200. The other two lines are
densities for the inverted chi-squared. The red, short-dashed line has ν = 5 and
the blue, long-dashed line has ν = 50. Our discrete τ prior has been scaled to
be comparable to the continuous distributions and λ is equal to the square of
E(τ) under our prior. In the left panel we have the densities and in the right
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Fig 1. Prior for τ : Here τmin = 0.005, τmax = 0.15, pmin = 0.3, cτ = 200. In each panel the
black solid line is our τ prior and the other two correspond to inverted chi-squared densities
with λ equal to the square of E(τ) under our prior and ν equal to 5 (red, short dash) or 50
(blue, long dash). In the left panel we have the three densities where our discrete distribution
has been scaled to be comparable to the continuous distributions. In the right panel we have
the log densities for large τ .

panel we have the log densities for large τ . In the left panel we see that both
our prior and the ν = 50 density push hard towards small τ which is what is
needed. In the right panel we see that the tail of our prior is more like the tail
of the ν = 5 density, so that, if the data demands it, larger values of τ are easily
found.

To specify p(τ | β) in our general mixture prior we let the parameters τmin,
τmax, pmin and cτ depend on β. For example, in our applications we choose a
value of cτ to use for all β > 0 and then use twice that value when β = 0. The
larger cτ value allows us to express an even stronger desire for small τ when
β = 0.

2.2. Markov Chain Monte Carlo Implementation

In this section we describe our implementation of a Markov chain Monte Carlo
(MCMC) algorithm for drawing the state s and (α, β, τ) in the state-space
model given by Equation 2.1. Let y = (y1, y2, . . . , yT ), x = (x1, x2, . . . , xT ), and
s = (s1, s2, . . . , sT ). Let s0 be the initial state. We start by employing the Gibbs
sampler:

[(s0, s) | (α, β, τ), y, x] and [(α, β, τ) | (s0, s)]. (2.4)

That is, we draw the states given the AR(1) parameters and the AR(1) param-
eters given the states. For draws of the states we use well known algorithms
from the literature (see for example Frühwirth-Schnatter (2004) and Chib et al.
(2006)).
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Because the likelihood for (α, β, τ) given the states is that of a linear regres-
sion, the Gibbs sampler 2.4 allows us to develop a simple approach for the draw
[(α, β, τ) | (s0, s)] using our non-conjugate mixture prior. However, this Gibbs
sampler has the draw back that it may mix very slowly given the strong de-
pendence between s and (α, β, τ). Our approach in this paper has been to use
the Gibbs sampler 2.4 and then thin the draws to reduce dependence. In sim-
ple applications, thinning the draws is adequate. In our more complex examples
(Section 3), we may simplify our use of the mixture prior by letting some compo-
nents have zero prior probability. This strong prior information is appropriate in
a high dimensional problem and simplifies the inferential complexity. We note
however, that in some problems it may be worthwile to consider alternatives
to 2.4. For example, in some cases it is possible to analytically or numerically
integrate out the states making a direct draw of [(α, β, τ) | y, x] possible.

We draw [(α, β, τ) | (s0, s)] jointly by drawing from [(β, τ) | (s0, s)] and then
[α | (β, τ), (s0, s)]. Given (β, τ), α is either known to be zero or has the normal
prior given by 2.3 depending on the mixture component. In the normal prior
case, the prior is conditionally conjugate so it is a standard calculation to both
integrate out α to obtain a marginal likelihood for the draw of [(β, τ) | (s0, s)]
and to draw [α | (β, τ), (s0, s)].

In order to make a joint draw of [(β, τ) | (s0, s)] we must consider our four
mixture components which we label 01, 00, u0 and uu as in the labeling of our
mixture prior probabilities p01, p00, pu0, and puu.

In the 01 component we know α = 0 and β = 1 and we have a grid of ng
possible τ values with prior probabilities p(τ | β = 1). The prior probabilities
p(τ | β = 1) will come from a choice of (τmin, τmax, pmin, cτ ) associated with
β = 1. Each of the ng grid points will have prior probability p01 p(τ | β = 1).
Similarly, in the 00 component we have a set of ng values of (α, β, τ) each having
α = 0 and β = 1 and prior probability p00 p(τ | β = 0). These two components
gives us 2ng values of (α, β, τ). At each of the values we can compute the simple
linear regression likelihood resulting from the (s0, s) state values.

In the u0 component, we know β = 0 and we again have a grid of τ values
with prior probabilities p(τ | β = 0). In this case we have a N(0, σ2

α) prior for
α. Our likelihood for a (β = 0, τ) value is obtained by integrating out α in the
regression likelihood.

Finally, we have the uu component in which β ∈ (0, 1) rather than being zero
or one. Again, given β and τ we can integrate out α to obtain an integrated
likelihood. The integrated likelihood will depend on β in a non-conjugate manner
because of the N(0, σ2

α(1−β2)) prior in 2.3. We again look for a simple approach
and discretize the prior 2.2 by picking nb equally spaced grid points in (0, 1).
At each grid point βi, p(βi) ∝ n(βi | β̄, σ2

β), i = 1, 2, . . . , nb. Thus in the uu
compontent we have ngnb possible (β, τ) pairs each having prior puu p(β) p(τ |β).

Combining the four components we have 3ng +ngnb possible values of (β, τ).
We draw from this discrete distribution. In the 01 and 00 components, α is
known. In the other two components α is a draw from the normal given the
states, the values of (β, τ), and a normal prior on α (2.3). In many problems
this brute force grid approach is unappealing because of the time it takes to
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evaluate the likelihood and prior at each grid point. However in our case the
computation of likelihood and prior is so simple (given the states) that in our
applications we do not incur a computational bottleneck relative to the other
computations that are being made.

Note that given a (α, β, τ) value the mixture component can be identified by
inspection. For example, if β = 1 you know you are in the 01 component. In some
applications inferring the component is a major goal as it reveals the essential
characteristics of the state evolution. Given draws of (α, β, τ), we can compute
posterior probabilities of mixture components simply by counting the number
of draws in each component. This solves an important and complex problem in
a simple way. The drawback again is that the slow mixing of the basic Gibbs
sampler 2.4 may necessitate a large number of runs. See Section 2.4.2 for an
example of this kind of analysis.

We emphasize that the most crucial aspect of our prior is the prior on τ
having the properites illustrated in Figure 1. This prior and the mixture elab-
oration, were developed in order to deal with the larger problem discussed in
Section 3. Initially we tried using the standard inverted chi-squared prior for τ
with parameters ν and λ: τ2 ∼ νλ

χ2
ν

. If you run the MCMC with small ν and many

states, the lack of prior information will give you signals that cannot be distin-
guished from noise. With big ν, the MCMC can be deceptive in that in short
runs it appears to have converged but in longer runs the right tail of the prior is
overcome, and large τ ’s are drawn. For additional discussion on the inverted chi-
squared and its problematic use in state space models, see Frühwirth-Schnatter
(2004) and Frühwirth-Schnatter and Wagner (2010).

A less important but still worth noting feature of our approach is the treat-
ment of the initial state s0. In many applications, zero is a value of particular
importance for the state because it represents a model simplification. An im-
portant example is that of a time varying regression coefficient. To shrink the
initial state s0 towards zero we use a mixture prior along the lines of that used
by George and McCulloch (1993) for variable selection:

s0 ∼ γ N(0, (cw)2) + (1− γ)N(0, w2)

γ ∼ Bernoulli(p∗),

where c is a large positive real number, w is small, and p∗ is a hyper-parameter
denoting the prior knowledge about the initial state. A small p∗ favors zero initial
state and p∗ = 0.5 shows no preference. The variable γ is a latent variable. When
γ = 0, the state is shrunk heavily towards zero and when γ = 1, the state may
be large.

The basic Gibbs sampler 2.4 is modified by adding the draw of the latent
[γ | (s0, s), (α, β, τ), y, x] = [γ | s0] and drawing [(s0, s) | γ, (α, β, τ), y, x] with the
pair of draws [s | γ, (α, β, τ), y, x] and [s0 | s, γ, (α, β, τ)] = [s0 | s1, γ, (α, β, τ)].

Conditional on a draw of γ, we have a normal prior for the initial state with
mean zero and standard deviation w in the case γ = 0 and standard deviation
(cw) in the case γ = 1.
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2.3. Issues in Prior Choice

In this section we review the hyperparameter choices associated with our mix-
ture prior. We discuss some of the issues involved and simplifying choices we
have used in application.

Perhaps the most basic issue in choosing the prior is that of scale. We have
discussed the need to allow for small values of τ but the meaning of “small”
depends of the scale (units) of the observed y and the relationship between y and
the state s is the defined by the observation equation. While in any particular
application there is no real substitute for careful thought about the prior, we
have found it useful to simplify things in two ways.

First, we typically standardize y to have sample mean zero and sample star-
dard deviation one. This is a common practice in statistics (e.g the very popular
glmnet R package defaults to standardize = TRUE). If y has outliers or extreme
skewness, this can be inappropriate, but it typically put things in a reasonable
“ballpark”.

Second, to specify p(τ |β) we consider only the two case β = 0 and β ∈ (0, 1].
We choose values of (τmin, τmax, pmin, cτ ) to use for all β ∈ (0, 1] and a different
set to be used when β = 0. We keep τmax and pmin the same in both cases,
but use cτ and τmin when β ∈ (0, 1] (the 01 and uu mixture components) and
use c0τ and τ0min when β = 0 (the 00 and u0 components). The choice of this
simplication was driven by our application in Section 3 where we wanted to
push things towards a near constant state when β = 0. In some applications it
might also make sense to pay particular attention to the β = 1 case and our
general prior construction would facilitate this.

In summary, the hyperparameters we consider in our applications are i) p01,
p00, pu0 and puu (for p), ii) τmin, τ0min, τmax pmin, cτ and c0τ (for τ), iii) σα
(for α), iv) β̄ and σβ (for β), and v) p∗, w and c (for s0). Additionally, one just
chooses the grid sizes for both τ and β. We have use ng = nb = 100 throughout
and these choices seem to give us a fine enough inference without taking too
much time.

Specific hyper-parameter values we will use in some examples are given by
i) p01 = 0.5, p00 = 0.15, pu0 = 0.15 and puu = 0.2 (for p), ii) τmin = 0.005,
τ0min = 0.001, τmax = 0.15, pmin = 0.5, cτ = 100, and c0τ = 200 (for τ), iii)
σα = 2.0 (for α), iv) β̄ = 1 and σβ = 1 (for β), and v) p∗ = 0.5, w = 0.1 and
c = 10 (for s0). This prior suggests smaller τ when β = 0 which effectively leads
to a constant state around α. We have a 50% prior probability of the random
walk prior and 30% chance of a constant state. There is a 20% that we have a
time-varying stationary state.

Appendix A contains a summary of our R routine csv and two default prior
specifications. The above specification corresponds to a default rougher prior
and is denoted by defpri=0. The name rougher refers to the fact that in our
applications this prior allows for substantial state variation. We shall also use a
default smoother prior which will result in inferring a smoother state by using
larger cτ (cτ = 200, c0τ = 400) and a smaller τmax = 0.05. In addition the
smoother prior uses p01 = 0.85, p00 = 0.05, pu0 = 0.05, puu = 0.05, putting
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much more weight on the random walk.
Of course, the hyperparameter choices are heavily influenced by our actual

application. In other applications, other choices might be considered. Neverthe-
less, given that we have standardized the data, we hope that they might at least
serve as useful starting points.

2.4. Examples

2.4.1. Study 1: DLM with Mixture Prior

In this section we illustrate our prior on (α, β, τ) in the simple normal dynamic
linear model (NDLM),

yt = xt st + σ ηt,

st = α+ β st−1 + τ εt,

where ηt and εt are independent and identically distributed N(0, 1). We simulate
series of length T = 200 with σ = 0.1, s0 = 0, and xt ∼ N(0, 9). The state is a
time-varying regression coefficient.

We employ the rougher prior of Section 2.3. Figure 2 displays the prior. The
top two panels are kernel density approximations of the marginal priors of β
and τ based on prior draws from our full mixture prior. The density smooths
naturally “jitter” the draws (add a bit of normal noise) so that the marginals
from our mixture prior of discrete and continuous distributions can be displayed
as a single continuous distribution. The marginal for β displays our preference
for expressing a smooth state with either β ≈ 0 or β ≈ 1 with more weight
being given to the vicinity of 1. The prior for τ expresses our desire for small
values. Again, this is driven by our desire for a smooth state. The two τ modes
reflect the choice of a smaller τmin when β = 0. In this case the two modes are
not very separated so this aspect of our prior has little practical effect. If we
separated these modes more dramatically, we could use this aspect for our prior
to help identify β ≈ 0 versus β ≈ 1 by saying you can only have a really small τ
if β ≈ 0. The long right tail of our τ prior allows the data to push the inference
towards larger values if needed.

The bottom two panels of Figure 2 display the joint prior of (α, β). The bot-
tom left panel displays contours from a bivariate smooth of draws of (α, β). The
bottom right panel is a scatterplot of jittered draws of (α, β). In the bivariate
distribution we can see our preference for (α, β) ≈ (0, 1) or (α, β) ≈ (0, 0) with
more weight given to the first pair of values. As β decreases, the conditional prior
for α becomes more spread out. The contours appear to tighten as β approaches
0 because the choice (β̄, σβ) = (1.0, 1.0) puts weight on larger β.

Figure 3 displays the results from three different data simulations. Each row
corresponds to a different simulation scenario. In the first row results are for
data simulated with (α, β, τ) = (0, 1, 0.04), in the second row we used (α, β, τ) =
(0, 0.8, 0.1), and in the third row we used (α, β, τ) = (0.5, 0, 0.01). Thus, in the
first row our state follows a random walk, in the second row the state is time
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Fig 2. Mixture prior for AR parameters – This is the rougher prior specification of Section 2.3.
The top two panels are density smooths of prior draws of β and τ . The bottom left panel
displays contours from a bivariate smooth of draws of (α, β). The bottom right panel are
jittered draws of (α, β).

varying but stationary, while in the third row the state is essentially constant
at 0.5.

The first column of plots in Figure 3 shows the simulated states (small circles)
and the posterior mean of the state draws (with a solid line). In each row we see
that the posterior mean nicely smooths the true states and that the essential
nature of the state is quite different reflecting our three scenarios. The second,
third, and fourth columns of Figure 3 display time series plots of MCMC draws
of α, β, and τ respectively. In each plot a dashed horizontal line indicates the
true value of the parameter.

In each case the posterior nicely captures the true value. In some cases, our
mixture prior has some interesting shrinkage effects. In the case of the first
scenario (row 1), virtually all of our posterior draws have α = 0 and β = 1.
Thus, while our prior probability of the random walk case was 0.5, our posterior
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Fig 3. Simulation study of Section 2.4.1 – Each row shows the results for a different simu-
lation. The plot in the first column shows the simulated states (the plotted points) and the
posterior mean (the solid curve). The second, third, and fourth columns of plots show time-
series of MCMC draws from the posteriors of α, β, and τ respectively. Dashed horizontal
lines represent the true values of (α, β, τ).

probability is very close to one. For the second data set our posterior for β mixes
between the two components β = 1 and β ∈ (0, 1). The posterior probabilities
of the components are 0.55 and 0.45 compared to prior probabilities 0.5 and
0.2. Given the data we are not sure whether β is one or not, but we know it is
not zero. In the third scenario our posterior mixes between β = 0, α ≈ 0.5 and
β ∈ (0, 1). The posterior probability that β = 0 and α 6= 0 is 0.52 compared
with the prior probability of 0.15. The posterior for τ also reflects our prior.
In both the second and third scenarios our prior pushes the posterior towards
small τ but still covers the true values.

Note that the inference for τ in the third simulation (the (3,4) frame of
Figure 3) shows the difficulties our MCMC algorithm may have with mixing.
Our inference strongly suggests that τ is small and in practice that is typically
all that is needed. However, a more accurate inference would call for a longer
thinned run.

2.4.2. Study 2: Realized Volatility with Mixture Prior

In this section we apply our mixture prior to an analysis of the log series of daily
realized volatility of Alcoa stock from January 2, 2003 to March 7, 2004 for 340
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Fig 4. Realized volatility – Log realized volatility for Alcoa stock (standardized), with the
posterior mean of the state.

observations. The realized volatility is calculated using the intraday 10-minute
log returns. It is well known that realized volatility is subject to the impact of
market micro-structure noises. See, for instance, Bandi and Russell (2008) and
Zhang et al. (2005). Consequently, we entertain the model

yt = st + σηt and st = α+ β st−1 + τεt,

for the log series of Alcoa realized volatility. Here the shock σηt denotes the
impact of market micro-structure noises and the state st is simply the level
of the log volatility. The AR(1) state equation with error term τεt allows for
volatility to be time-varying.

Our first step in the analysis is to standardize the data to have zero mean and
standard deviation one. Given this standardization, we can use the same prior
as in Section 2.4.1. Figure 4 is the time series plot of the standardized data and
the posterior mean of the state. In this particular case the posterior probability
of the mixture component with β = 1 is 0.99. The prior probability was 0.5.
Thus, we have strong support for the random walk state specification, which is
in good agreement with empirical characteristics of asset volatility. For example,
consider the VIX index of the Chicago Board Options Exchange (CBOE), which
is the most widely used daily volatility index in the U.S. The log VIX series fails
to reject the null hypothesis of a unit root in hypothesis testing. This analysis
of realized volatility demonstrates that the mixture prior of Section 2 can easily
produce reasonable results.
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3. Cholesky Stochastic Volatility

In this section we show the impact of our mixture prior in a much larger set up
where thousands of state variables might evolve over time according to an AR(1)
process. More specifically, we are interested in the case where yt = (y1t, . . . , yqt)

′

denotes a q-dimensional vector of financial time series observed at time t and
consider posterior inference regarding the (possibly large) covariance matrices
Σt driven by the observation equation:

yt|Ft−1 ∼ N(0,Σt), (3.1)

where Ft−1 denotes the information available at time t − 1. Without loss of
generality, we assume that any mean structure of yt has been subtracted out as
part of a larger MCMC algorithm.

The main focus is on modeling the dynamic behavior of the conditional co-
variance matrix Σt, which is known as the volatility matrix in finance. Two
challenges arise in the multivariate context. Firstly, the number of distinct ele-
ments of Σt equals q(q+1)/2. This quadratic growth has made the modeling Σt
computationally very expensive and, consequently has created, up to a few years
ago, a practical upper bound for q. The vast majority of the papers available in
the literature employed a small q or use highly parametrized models to simplify
the computation. For instance, Engle (2002) and Tse and Tsui (2002) proposed
dynamic conditional correlation (DCC) models where the time evolution of cor-
relations is essentially driven by a pair of parameters. We argue that that such
models unrealistically over-simplify the complexity of the covariance dynamics.
Secondly, the distinct elements of Σt cannot be modeled independently since
positive definiteness has to be satisfied. Section 3.1 briefly reviews the literature
on multivariate stochastic volatility models, while Section 3.2 introduces our
proposed Cholesky stochastic volatility (CSV) model.

3.1. Brief Literature Review

There are at least three ways to decompose the covariance matrix Σt.

Correlations and Standard Deviations. In the first case, the covariance
matrix is decomposed as

Σt = DtRtDt

whereDt is a diagonal matrix with standard deviations, i.e.Dt = diag(σ1t, . . . , σqt)
with σit being the volatility of yit, and Rt is the correlation matrix. The above
two challenges remain in this parametrization, i.e. the number of parameters
increases with q2 and Rt has to be positive definite.

Factor Analysis. In the second case, a standard factor model is used to
produce

Σt = βtHtβ
′
t + Ψt
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where βt is the q×k matrix of factor loadings and is block lower triangular with
diagonal elements equal to one. Ψt and Ht are the diagonal covariance matri-
ces of the specific factors and common factors, respectively. This is the factor
stochastic volatility (FSV) model of Harvey et al. (1994), Pitt and Shephard
(1999), Aguilar and West (2000), and, more recently, Lopes and Migon (2002),
Chib et al. (2006), Han (2006), Lopes and Carvalho (2007) and Philipov and
Glickman (2006a), to name just a few. Philipov and Glickman (2006a) extended
the FSV model by allowing Ht to follow a Wishart random process and fit a
2-factor FSV model to the covariance of the returns of q = 88 S&P500 com-
panies. Han (2006) fitted a similar FSV model to q = 36 CRSP stocks. Chib
et al. (2006) analyzed q = 10 international weekly stock index returns (see also
Nardari and Scruggs (2007)). Lopes and Carvalho (2007) extended the FSV
model to allow for Markovian regime shifts in the dynamic of the variance of
the common factors and apply their model to study q = 5 Latin America stock
indexes.

A Cholesky Approach. In this paper we take a third alternative that de-
composes Σt via a Cholesky decomposition as

Σt = AtHtA
′
t

where AtH
1/2
t is the lower triangular Cholesky decomposition of Σt. Ht is a

diagonal matrix, the diagonal elements of At are all equal to one and, more
importantly, the lower diagonal elements of At are unrestricted since positive
definiteness is guaranteed. In the next section we show that there will be q(q +
1)/2 dynamic linear models to be estimated and 3q(q + 1)/2 static parameters.
When q = 30, for example, there are 465 latent states at each time and 1395
static parameters.

Even though the factor stochastic volatility structure might, at first, seem
more parsimonious than our cholesky stochastic volatility model, it suffers from
well known, unresolved problems, such as the selection of the order of the vari-
ables and, perhaps more importantly, it relies on the selection of a suitable,
time invariant number of common factors. We argue that practice the number
of factors is likely to be time varying. For instance, the number of common fac-
tors is lower during financial crises. Our approach avoid the need to determine
time-varying number for factors, which can be endogenously accommodated by
the φ-states dynamics, where the φ-states are the non-zero components of the
inverse of the matrix At (see Section 3.2, particularly equations 3.2-3.5, for
details). Put differently, the factor model limitations became, under our CSV
structure, modeling tools that might suggest more parsimonious (zero columns
in the lower triangular Cholesky matrix) and/or more sparse (zeros in the lower
triangular Cholesky matrix).

The prior developed in above Section 2 coupled with the compuational ap-
proach developed below enables us to search for simplifying structure in a large
system without imposing it.
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3.2. Time-Varying Triangular Regressions

In this section we lay out our basic parametrization of the time-varying co-
variance structure in terms of linear regressions. Recall that yt ∼ N(0,Σt) and

Σt = AtHtA
′
t where AtH

1/2
t is the lower triangular Cholesky decomposition

of Σt. The matrix At is lower triangular with ones in the main diagonal and
Ht = diag(ω2

1t, . . . , ω
2
qt). Therefore,

A−1t yt ∼ N(0, Ht).

Let the (i, j)th element of the lower triangular matrix A−1t be −φij for i > j,
while the diagonal (i, i) element is one. It follows that the joint normal distribu-
tion for yt given Ft−1, that is N(0,Σt), can be rewritten as a set of q recursive
conditional regressions where

y1t ∼ N(0, ω2
1t) (3.2)

and, for i = 2, . . . , q,

yit ∼ N(φi1ty1t + φi2ty2t + · · ·+ φi(i−1)ty(i−1)t, ω
2
it). (3.3)

Once φijts and ω2
its are available, so are A−1t (and At), Ht and, consequently,

Σt = AtHtA
′
t. To make Σt fully time-varying without any restrictions, we sim-

ply make each parameter in the regression representation time-varying. More
precisely,

φijt ∼ N(αij + βij φij(t−1), τ
2
ij) (3.4)

for i = 2, . . . , q and j = 1, . . . , i− 1, and

dit ∼ N(αi + βi di(t−1), τ
2
i ) (3.5)

for dit = log(ω2
it) and i = 1, . . . , q, where τ2ij and τ2i are hyper-parameters. It

is understood that the aforementioned distributions are all conditional on the
available information Ft−1.

The actual parameters we work with are the φijts and dits. These parameters
are our state variables in the state equations (3.4) and (3.5), while the recursive
conditional regressions (or simply triangular regressions) are our observation
in the observation equations (3.2) and (3.3). Our Cholesky stochastic volatility
(CSV) model comprises equations (3.2) to (3.5).

Order of the time series. The Cholesky approach requires us to pick an
order for the time series, which can be mistakenly seen as a weakness of the
proposed modeling framework. We argue that the order can be important, but
it does not necessarily implies that different orders will lead to different co-
variance estimates. More specifically, in one of our smaller studies (Study 4:
S&P500, Small q), a model with q = 9 stocks was entertained with two different
orders for the time series. Figure 9 plots two different estimates of time-varying
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standard deviations (Microsoft and IBM) and one time-varying correlation (be-
tween Microsoft and IBM). In the second run we reversed the order of 9 time
series, so the last becomes the first, the second last becomes the second and so
on. The two CSV fits result from different priors on the d-states and φ-states
under both orderings, so there is no reason that they be identical. However, their
similarity is striking, regardless of the time of prior specification and regardless
of that fact we are comparing standard deviations or correlations. In some cases,
this may be a convenient way to express prior information. For example, if one
series represented returns on the market (or some “factor”) we may want to
put it early in the list. In some applications, a natural ordering may not be
apparent. Figure 9 suggests that when the data is reasonably informative, we
do not have to worry too much about getting the “right” order. It also shows
that, in this example, our MCMC is remarkably stable. In addition, one possi-
ble solution to overcome the ordering issue is randomly selecting a few orders
and then averaging them out in order to obtain a more precise estimate of the
covariance matrix.

Finally, since the set of recursive regressions are simply a standard decom-
position of the q-variate normal distribution into the product of one univariate
marginal normal distribution and q − 1 univariate conditional normal distribu-
tions, it follows that the order would only matter as a function of the prior
distribution for the parameters of such decomposition. Since the likelihoods are
exactly the same, their maximizations lead to exactly the same estimates re-
gardless of the order. The same can be said about the prior distribution if it
is invariant to the permutation of the series. This is the case in our parame-
terization, since we do not treat differently, a priori, parameters from different
equations. More precisely, if and when there is additional information regarding
the order of the variables in the system, then the prior distribution plays an im-
portant role in shrinking and/or zeroing out irrelevant coefficients. Otherwise,
our invariant prior seems to be working just as fine, at least in the empirical
exercise we have performed.

Cholesky decomposition. The Cholesky decomposition approach has been
studied elsewhere. Uhlig (1997) and Philipov and Glickman (2006b), for exam-
ple, proposed models for the covariance matrix based on the temporal update
of the parameters of a Wishart distribution (see also Asai and McAleer (2009)).

Uhlig (1997) models Σ−1t = B−1t−1Θt−1(B−1t−1)′ν/(ν + 1), where Bt = AtH
1/2
t

and Θt−1 ∼ Beta ((ν + pq)/2, 1/2) is a multivariate Beta distribution Uhlig
(1994). See also Triantafyllopoulos (2008) for a similar derivation in the con-
text of multivariate dynamic linear models. Philipov and Glickman (2006b)
model Σ−1t ∼ W (ν, S−1t−1), where S−1t−1 = 1

ν (C1/2)(Σ−1t−1)d(C1/2)′, such that

E(Σt|Σt−1, θ) = ν(C−1/2)(Σt−1)d(C−1/2)′/(ν − q − 1). The parameter d con-
trols the persistence in the conditional variance process. A constant covariance
model arises when d = 0, so E(Σt) = νC−1/(ν−q−1) and C plays the role of a
precision matrix. When d = 1 and C = Iq, it follows that E(Σt) = Σt−1 so gen-
erating random walk evolution for the conditional covariance. See Dellaportas
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and Pourahmadi (2012) for a similar model for time-invariant A and Ht follow-
ing GARCH-type dynamics. Uhlig (1997) models daily/current prices per ton
of aluminum, copper, lead and zinc, i.e. q = 4, exchanged in the London Metal
Exchange. Philipov and Glickman (2006b) fit their model to returns data on
p = 5 industry portfolios. Dellaportas and Pourahmadi (2012) model exchange
rates of the US dollar against q = 7 other country/regions. A thorough review of
the multivariate stochastic volatility literature up to a few years is provided in
Asai et al. (2006) and Lopes and Polson (2010). See also Bauwens et al. (2012).

Shrinkage prior for large scale state-space models. Our parsimony in-
ducing priors, when applied to the Cholesky SV problem, falls into the emerg-
ing literature on shrinkage priors for large scale state-space models. Frühwirth-
Schnatter and Wagner (2010), for instance, uses spike-and-slab priors for shrink-
ing states towards zero or nonzero constant in dynamic models, while Belmonte
et al. (2014) and Bitto and Frühwirth-Schnatter (2016) implement hierarchical
shrinkage to large dynamic systems. More recently, there has a several contribu-
tions to tackle sparsity dynamically, i.e. when a state variable (st in our generic
notation) goes on and off throughout time. A few prominent contributions are
Nakajima and West (2013), who proposes a thresholding scheme for dynamic
sparsity, and Kalli and Griffin (2014) who extends the Normal-Gamma prior
of Griffin and Brown (2010) with a stationary gamma autoregressive process.
Additional related contributions are Rocková and McAlinn (2018), Kowal et al.
(2018) and Uribe and Lopes (2018). Finance and economics applications ap-
peared in Dangl and Halling (2012), Zhao et al. (2016), Eisenstat et al. (2016)
and Carvalho et al. (2018).

3.3. Posterior Inference

We detail here the Markov chain Monte Carlo algorithm for posterior compu-
tation of our CSV model introduced above. Before we proceed and to make the
prior specification less sensitive to scale, we recommend the standardization of
the time series upfront, as it is commonly done in virtually all statistics and
econometrics applications of finance, economics and related datasets.

Let q denote the number of series and T denote the number of observations
on each time series. Let Yi = {yit}Tt=1 and di = {dit}Tt=1, i = 1, 2, . . . , q. Let
φij = {φijt}Tt=1, i = 2, 3, . . . , q, j = 1, 2, . . . , (i− 1). That is, Yi is the time series
of observations on the ith variable, di is the time-varying state corresponding
to the residual variance of the regression of yit on yjt, j < i, and φij is the
time-varying state corresponding to the regression coefficient of yit on yjt. See
Equation (3.3). Let di0 and φij0 denote initial states.

With p(·) denoting a generic probability density function, the full joint dis-
tribution of everything we need to think about is then given by the product of
the following four hierarchical terms:

i. Likelihood function:
∏q
i=2 p(Yi | Y1, . . . , Yi−1, di, φi1, . . . , φi(i−1))× p(Y1|d1),

ii. (d, φ) states:
∏q
i=1 p(di | αi, βi, τi, di0)

∏
j<i p(φij | αij , βij , τij , φij0),

imsart-generic ver. 2011/01/24 file: lopes-mcculloch-tsay-agosto2018.tex date: August 23, 2018



Lopes et al./Priors for large scale state-space 19

iii. AR parameters:
∏q
i=1 p(αi, βi, τi)

∏
j<i p(αij , βij , τij), and

iv. Initial states:
∏q
i=1 p(di0)

∏
j<i p(φij0),

where
∏
j<i = 1 when i = 1. The joint densities in iii. and in iv. denote our

prior on the parameters of the autoregressive specification of the state evolution
and our prior on the initial state, respectively. The choice of this prior is a key
component of our approach and was extensively discussed in Section 2.

Our Markov chain Monte Carlo is a (large-scale) Gibbs sampler where we (ef-
ficiently) draw from the following full conditional distributions (with ◦ denoting
“everything else”):

i. d states: (di0, di) | ◦,
ii. φ states: (φij0, φij) | ◦,
iii. d AR parameters: (αi, βi, τi) | ◦, and
iv. φ AR parameters: (αij , βij , τij) | ◦.

The key property in this potentially large system is that, in the conditionals
above, the states and parameters for a given equation are independent of the
states and parameters of the other equations. This is readily seen in the structure
of the full joint distributions given above. Thus, to draw di, we simply compute
ỹit = yit −

∑
j<i φijt yjt and use standard methods developed for univariate

stochastic volatility given the model:

ỹit ∼ N(0, exp{dit/2}),
dit ∼ N(αi + βi di(t−1), τ

2
i ).

Similarly, the draw of φij reduces to the analysis of a basic dynamic linear model
(DLM) for ỹijt = yit −

∑
k<i,k 6=j φikt ykt:

ỹijt ∼ N(φijt yjt, exp{dit/2}),
φijt ∼ N(αij + βij φij(t−1), τ

2
ij).

The draws of the AR parameter also reduce to consideration of a single state,

(αi, βi, τi) | ◦ ≡ (αi, βi, τi) | (di0, di),

(αij , βij , τij) | ◦ ≡ (αij , βij , τij) | (φij0, φij).

Thus, all the φij draws reduce to simple applications of FFBS and all of the di
draws reduce to those of the univariate stochastic volatility model. We use the
method of Kim et al. (1998), again based on FFBS, for the univariate stochastic
volatility model.

In order to keep the entire system manageable for large q, we use a univariate
DLM for each φ in each equation rather than running a multivariate FFBS to
jointly draw all the φ series for a given equation. This approach avoids a great
many high-dimensional matrix operations. Potentially, this could put depen-
dence into our chain depending upon the application. This does not seem to be
a severe problem in our examples.
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Thus, the whole thing boils down to repeated applications of the basic Gibbs
sampler that cycles through (s0, s) |(α, β, τ) and (α, β, τ) |(s0, s), where s denotes
a state series and s0 the initial state. Since we need to put a strong prior on
(α, β, τ) there is unavoidable dependence in the basic chain. Because of this
dependence, we have found it useful to draw (α, β, τ) jointly as discussed in
Section 2.1.

Before diving into a few illustrative examples, it is worth emphasizing that
one of the strengths of the proposed CSV framework is that the triangular
representation of the model naturally leads to parallelization in the MCMC
scheme. See Appendix A for a simple account of the processing times when
various processors are used in parallel to estimate a standard mid-size CSV
model. Nonetheless, when it comes to recomputing full correlations matrices
from ρijt, the entire system is need, i.e. we need to compute the full covariance
matrix Σt.

3.4. Small q Illustrations

In this section, we illustrate the performance of our CSV approach on simulated
data with q = 3, and real data with q = 3 and q = 9. In the simulated example
we can assess the performance by comparing the CSV fit to the known true Σt.
In the real examples we compare our fit to that obtained from the well-known
dynamic conditional correlation (DCC) model of Engle (2002) and Tse and Tsui
(2002).

The DCC approach uses a two-step modeling procedure. In the first step,
univariate GARCH models are built for individual return series. This step pro-
vides estimates of the volatility series σit. In the second step, a DCC model
is applied jointly to the standardized return series, yit/σit. Both the correla-
tions and volatility series σit are time-varying so that, like the proposed CSV
approach, a DCC model also delivers time-varying covariance matrices Σt.

In all three examples we also compare fits to those obtained from a simple
moving window. In the moving window approach we estimate Σt with the sample
covariance obtained from a subset of the data with times close to t.

We chose to compare to DCC/GARCH since we view it as the leading
methodology available in the literature for small to moderate q. We chose to
compare to the moving window since it is the only simple way to get fairly
direct “look” at the data without making modeling assumptions.

These examples are meant to illustrate CSV. Our more ambitious goal is the
analysis of large scale systems using an unrestricted model coupled with prior
information to “regularize” the fit and we know of no competing methodology
with these features. This is illustrated in Section 3.5

Note that we fit the DCC approach using the functions dccPre and dccFit

available in the R package MTS.
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3.4.1. Study 3: Simulated Example, Smooth Covariance Dynamics

To gain insight into the proposed analysis, in this section we present results
from a simple simulated example. We let q = 3, Σ0 be the identity and Σ1 be
the covariance matrix corresponding to standard deviations of σ1 = 4, σ2 = 1,
σ3 = 0.25, and correlations ρ12 = ρ23 = 0.9, ρ13 = 0.81. We then let Σt =
(1 − wt) Σ0 + wt Σ1 where wt increases from 0 to 1 as t goes from 1 to T . At
each t we draw yt ∼ N(0,Σt). We simulate T = 500 tri-variate observations.

We run our R package csv under two prior specifications. The first one is
the default rougher prior specification (defpri=0), which is the rougher prior of
Section 2.4.1:

p01 = 0.50, p00 = 0.15, pu0 = 0.15, τmax = 0.15, cτ = {100, 200},

where cτ = 100 when β > 0 and cτ = 200 when β = 0. We consider a second
prior specification that changes hyperparameters of the rougher prior in the
following way:

p01 = 0.85, p00 = 0.05, pu0 = 0.05, τmax = 0.05, cτ = {200, 400}.

This is the default smoother prior of our R package csv (defpri=1).
Results appear in Figure 5, corresponding to the smoother prior. The smoother

prior puts more weight on the random walk component and favors smaller τ (and
hence smoother states) by decreasing τmax and increasing cτ . The same (α, β, τ)
prior was used for each of the six state series (three d-state series and three φ-
state series). The moving window for estimation of Σt, includes all available
observations within 50 time periods of t. The posterior median seems to nicely
smooth the evidence from the data, with the tighter prior giving smoother re-
sults. Quite similar results (not shown) are obtained when using the rougher
prior.

3.4.2. Study 4: S&P100, Small q

Our real data consists of daily stock returns. In what follows, the first example
looks at returns for three (randomly chosen) companies (q = 3). The second
example considers nine companies (q = 9). In both cases, the companies were
randomly chosen out of the 94 companies we consider in the large q study of
Section 3.5.

Three time series. The three financial time series are returns on Coke, Dell
and DuPont. We have 2,516 daily returns from the beginning of 1997 to the end
of 2006. We ran our R routine csv with the rougher default prior of Section 2.4.1
(defpri=0) for 15,000 draws, discarding the first 5,000.

Fits from the CSV and DCC models are checked for adequacy using the four
tests implemented in the R package MTS. Appendix B provides a brief description
of the four model checking statistics used. The results summarized in Table 1
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Fig 5. Simulated example based on the smoother prior – Standard deviations are on the left
column and the correlations are on the right column. True values: very smooth black curves.
Posterior median and 95% credible intervals: lighter smooth blue (solide and dashed) curves.
Moving window estimates: red dashed curves.

show that none of the tests reject the null hypthesis that CSV model fits the
data while the two robust tests reject the DCC fit.

Time-varying standard deviations and correlations estimates from both CSV
and DCC models are compared to moving window (each window uses 5% of the
data). Broadly, all three approaches agree as similar time paths are obtained
DCC fits appear to be even more “jumbly” than those obtained from our rougher
prior (figure not shown).

Figure 6 provides more detail on the fit of the {ρ32t} sequence. The top frame
compares the CSV fit to the moving window fit and the bottom from compares
the DCC fit to the moving window fit. In both frames the solid black line
indicates the moving window fit and the dotted magenta lines give pointwise
90% posterior intervals for ρ32t at each t (obtained from the CSV MCMC).
In the top frame the CSV fit (posterior mean) is indicated by the dot-dash
blue line and in the bottom frame the DCC fit is indicated by the dashed red
line. Again, all three approches give similar fits. The CSV fit seems to track the
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CSV DCC
Test Statistic p-value Statistic p-value
Q(m) of et 14.62 0.147 10.50 0.398
Rank-based Q(m) 7.93 0.636 100.81 0.000
Q(m) of εt 82.17 0.709 61.49 0.991
Robust Q(m) 90.50 0.466 152.36 0.000

Table 1
Test validity of fitted model using MCHdiag from R package MTS. Small p-values is “evidence”

against the model. The residuals et and εt are, respectively, a′tΣ
−1
t at and Σ

−1/2
t at, where at

and Σt are residuals and fitted covariance matrix. See Appendix B for more details on the
four tests.

moving window fit better. The correlation between the CSV fits and the moving
window fits is 0.95 and the DCC - moving window correlation is 0.86. While
we cannot argue that the moving window is the gold standard, we do find this
reassuring. The uncertainty intervals appear to be quite reasonable and cover
all three fitting approaches.

Despite relatively vague prior specification for the τ parameters (error stan-
dard deviations in the state equations), we observed that the posterior distri-
butions of τ ’s corresponding to the stochastic volatilities, dit, are larger than
the ones corresponding to time-varying regression coefficients, φijt, as expected
(figure not shown). Sensitivity to prior hyperparameters, particularly related to
the standard deviations of the state variables, namely τi and τij , are presented
in Figure 7. Notice how the right tail of our tail prior allows τ to get big for the
d states and the tighter prior (defpri=1) shrinks τ ’s to slightly smaller values.
In large q problems, where the data is less powerful relative to the complexity
of the problem, this shrinkage plays a bigger role.

Nine time series. The 9 stocks used are Microsoft, IBM, Apple, Intel Corp,
Cisco Systems, Qualcomm, Wal-Mart Stores, Home Depot and Costco Whole-
sale Corp. The time span is from 2004 to 2014. Figures 8 to 9 illustrates several
aspects of implementing CSV. Here we present results based on the default
smoother prior (defpri=1) of Section 3.4.1.

Both CSV and DCC fitted models are rejected by all four tests previously
used for the case q = 3 (see Table 1). We argue that, even at a moderately size
problem with q = 9, the tests may not be useful as “all models are false”.

Similar to the smaller q = 3 case, DCC becomes more erratic when estimating
standard deviations. In addition, DCC seems unable to follow the more abrupt
changes in time-varying correlations captured by both CSV and the moving win-
dow. Figure 8 summarizes these findings for all 9 standard deviations and 36
correlations. It plots sample correlations of CSV point estimates of time-varying
standard deviations and time-varying correlations against moving window coun-
terparts; and it does similarly for DCC against moving window. In all cases CSV
is “closer” to the moving window estimates. Again, while we cannot argue that
the moving window results are the “correct” we find this reassuring.

Figure 9 plots two different estimates of time-varying standard deviations
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Fig 6. S&P100 data, q = 3, comparing CSV, DCC and moving window for ρ32t – CSV
posterior medians (blue, top frame) and 95% credibility intervals (magenta, both frames) for
correlation coefficients ρ32t. Comparing to DCC estimates (red, bottom frame) and moving
window (black, both frames).

(Microsoft and IBM) and one time-varying correlation (between Microsoft and
IBM). In the second run we reversed the order of 9 time series, so the last be-
comes the first, the second last becomes the second and so on. The two CSV
fits result from different priors on the d-states and φ-states under both order-
ings, so there is no reason that they be identical. However, their similarity is
striking, regardless of the time of prior specification (rougher, smoother or much
smoother) and regardless of that fact we are comparing standard deviations or
correlations. The rougher and smoother priors were specified in Section 3.4.1,
while the much smoother prior is specified later in Section 3.5. The Cholesky
approach requires us to pick an order for the time series. In some cases, this
may be a convenient way to express prior information. For example, if one series
represented returns on the market (or some “factor”) we may want to put it
early in the list. In some applications, a natural ordering may not be apparent.
Figure 9 suggests that when the data is reasonably informative, we do not have
to worry too much about getting the “right” order. It also shows that, in this
example, our MCMC is remarkably stable.
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Fig 7. S&P100 data, q = 3, prior sensitivity analysis – Prior distribution (gray) and posterior
(black) distribution of standard deviations τ1 (top row, d-state) and τ21 (bottom row, φ-state).
Rougher prior, defpri=0 (left column) and smoother prior, defpri=1 (right column).

3.5. Study 5: S&P100, Large q

In this section we use asset returns from firms making up the S&P100 index
in order to illustrate the procedure with large q. We first consider a selection
of returns on q = 20 of the firms and use the smoother prior discussed in
Section 3.4.1. We use this prior because with larger q, more smoothing may be
desirable.

Figure 10 plots the posterior means of the σit and ρijt series. The top
panel shows the 20 standard deviations series and the bottom panel shows the
20(19)/2 = 190 correlations series. There is no simple way to plot so much infor-
mation, but even with the many series, we can see that there is substantial time
variation in both the standard deviations and the correlations. From the {σit}
series we see that there is an overall pattern to their behavior over time. For
example, the volatility is generally lower at the end of the time period. However,
there is substantial variation across assets (across i) both in the overall level of
volatility and the amount of time variation. Similarly, there are time periods
where ρijt is relatively large for most (i, j) pairs but some pairs behave quite
differently from the rest.

Figure 11 plots the posterior means of the states with the d states in the
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Fig 8. US stocks, q = 9 – Sample correlations of CSV point estimates of 9 time-varying
standard deviations (and 36 time-varying correlations) against moving window counterparts
(blue lines). Similar for DCC against moving window (red line). CSV is based on our default
smoother prior (defpri=1). The vertical dashed line separates standard deviations (1 to 9)
from correlations (10 to 45).

top panel and the φ states in the bottom panel. The top panel shows the time
variation in the residual variances which vary markedly over time. The bottom
panel shows that most of the φ series have relatively little time variation and
are centered near zero. However, a few of the φijt series do vary substantially
over time. This figure shows how our Bayesian model, with our particular prior
choice, seeks a parsimonious representation of a very high-dimensional problem.

Of course, the amount of “parsimony”, “smoothness”, or “regularization”
inevitably is heavily influenced by our choice of prior. Figure 12 shows the
posterior means of the states obtained when we use yet another prior given by

p01 = 0.85, p00 = 0.05, pu0 = 0.05, τmax = 0.02, cτ = {300, 600} (3.6)

where again the two values for cτ correspond to β > 0 and β = 0. This figure
looks like a smoothed version of Figure 11. The “flat-line” appearance of many
of the φ states is striking. The corresponding standard-deviation-correlation plot
(not shown here) is, again, a smoothed version of Figure 10. One could argue that
different levels of smoothness of the prior should be applied to state variables,
perhaps with smoother specifications to the φ coefficients and less smooth ones
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Fig 9. US stocks, q = 9, ordering of the data – {1, . . . , 9} and {9, . . . , 1} indicate the orders of
the time series when estimating CSV. The specifications of the rougher prior (defpri=0) and
the smoother prior (defpri=1) appear in Section 3.4.1, while the specification of the much
smoother prior appears Section 3.5.

to the log-volatilities. In addition, the level of roughness or smoothness might
vary according to the relation between q, number of time series, and T , number
of time points.

Figure 13 plot through time the posterior means of the weights for the
global minimum variance portfolio based on the smoother prior discussed in
Section 3.4.1. The time t global minimum variance portfolio weights are com-
puted as ωt = Σ−1t 1q/1

′
qΣ
−1
t 1q, where 1q is a column vector of ones of length

q. We see that the time variation in the standard deviations and correlations
may be of real practical importance in that the corresponding portfolio weights
change over time substantially. At time T , most of the weights are negligible,
while being positive for about half a dozen assets (figure not shown).

Figure 14 reports results for q = 94 assets using the prior in Equation (3.6).
Six of the return series from the 100 companies have missing values, due to
inclusion and exclusion to the index, leaving us with 94. In this case there are
94 standard deviation series (σit) and 94(93)/2 = 4,371 correlation pairs (ρijt) so
it becomes quite difficult to present the results. The top panel displays results for
the σit while the bottom panel displays the ρijt. The two panels have the same
format. The solid gray band gives pointwise quartiles for the posterior means.
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Fig 10. S&P100 data, q = 20, smoother prior of Section 3.4.1 – Posterior means of time-
varying standard deviations (top frame) and correlations (bottom frame).

Thus, in the top panel, the gray band is the middle 50% of the 94 standard
deviation posterior means σ̂it for each fixed t and in the bottom panel it is the
middle 50% of the 4,371 correlation estimates for each fixed t. The thick solid
(black) lines give 95% intervals. We can see that with 94 series we observe the
same overall patterns we saw with q = 20.

We also randomly picked 20 of the {σ̂it} series to plot in the top panel and
20 of the {ρ̂ijt} series to plot in the bottom panel. These plots, along with the
size of the 95% intervals, indicate the while there is an overall pattern over
time, there are substantial differences amongst the {σ̂it} across i (assets) and
the {ρ̂ijt} across (i, j) (pairs of assets).

4. Final discussion and remarks

In this paper we develop a new prior specification for the parameters of the state
equation in a state-space model. We then develop an approach for modeling high
dimensional time varying covariance matrices in which the covariance at each
time is a high dimensional state. We are able to compute the posterior of the
states using parallel computation and shrinkage based on our new prior. In
high dimensions, some form of shrinkage is essential given the large number of
parameters and that we do not want to impose restrictions on the set of possible
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Fig 11. S&P100 data, q = 20, smoother prior of Section 3.4.1 – Posterior means of the d-states
(top frame) and the φ-states (bottom frame).

covariance matrices. For the important example of vectors of asset returns, our
prior allows us to uncover a novel form of shrinkage in which some state elements
remain essentially constant over time while others vary.

State space models have become increasingly important in economic and fi-
nancial applications as well as in problems in the physical sciences. Inevitably,
the specification of the prior on the parameters of the state equation plays an
important role in the overall model. Often, simple and possibly naive choices
(such as imposing a random walk) are made. Our prior allows for consideration
of the possibilities of interest to most researchers. Important cases such as the
random walk model and the iid model become simple special cases whose pres-
ence may be inferred. In the example in Section 2.4.2, we find that the posterior
probability of the random walk model is 0.99 given a prior probability of 0.5.

While our full prior specification provides the user with a lot of choice, the
essential feature of state smoothness in easily controlled by choosing the τmin,
τmax, and cτ parameters. We show in the examples that a few simple choices
give good results. As the dimension increases, we make the prior stronger (τmin
and τmax smaller and cτ bigger).

The problem of estimating time-varying covariance matrices Σt is important
and difficult when the dimension q is large. Our approach was guided by the de-
sire to enable parallel computation which is essential for large q and a desire to
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Fig 12. S&P100 data, q = 20, much smoother prior of Equation (3.6) – Posterior means of
the d-states (top frame) and the φ-states (bottom frame).

keep the model as simple as possible without restricting the Σt. See Appendix A
for an illustration of how parallel processing is a natural tool Bayesian inference
in our time-varying covariance models. Approaches such as factor stochastic
volatility achieve parsimony by making strong assumptions (the number of fac-
tors) which may not be time invariant.

However, without restrictions, some form of prior shrinkage (regularization)
becomes essential to stop the model from overfitting. We show that our prior
enables us to shrink towards smooth state evolution in a simple way and identify
states which are essentially constant (see Figure 12). This is a novel form of
shrinkage we feel is both an important empirical observation for the returns data
as well as a useful general insight for high-dimensional state-space modeling.

For moderate dimensions we show that our approach is competitive with
the popular GARCH-DCC methodology and gives stable intuitively plausible
MCMC results (Table 1 and Figures 6 and 8).

While the examples in this paper show that a few simple prior choices work
very well, it may also be of interest to go beyond these choices in practice. For
example, Figure 7 and the simple fact that there are many more φ states than
d states, suggest that a stronger prior might be used for the φ states rather
than using the same prior for each state equation. A more exploratory modeling
approach might reorder the components of the vector y from the most important
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Fig 13. S&P100 data, q = 20, smoother prior of in Section 3.4.1 – Posterior means of portfolio
weights for the global minimum variance portfolio.

to the least important relative to common latent factors. We argue that many
of the φ-states would wonder around zero as the row of the Cholesky equation
increases, mimicking the usual block, lower triangular factor loadings structure,
as in Lopes and West (2004).

Both shrinkage and time-evolution of factor loadings in moderate and large
scale factor stochastic volatility models has emerged over the last decade. See,
amongst others, Lopes and Carvalho (2007), Zhao et al. (2016), Kastner et al.
(2017). See also Frühwirth-Schnatter and Tüchler (2008) for a connection be-
tween rank reduction in the Cholesky decomposition and identification issues.

Of course, our approach has some key additional advantages stemming from
its Bayesian formulation. It can be embedded in a large MCMC as a conditional
model. A basic example is that any real example would have to have a model for
the mean. In addition, the posterior uncertainty naturally qualifies our inference,
something that is difficult to do in high dimensional models without the Bayesian
machinery. An R package csv is being made available. A version (testing on
Ubuntu and the Mac) will soon be available at www.rob-mcculloch.org/csv.

Final remark. A key contribution of our paper is the mixture prior on the
AR(1) parameters (α, β, τ) of the state equation. In many applications, this
state equation specification lies at the heart of the model. Our prior coherently
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Fig 14. S&P100 data, q = 94, much smoother prior of Equation (3.6) – Posterior means of
time-varying standard deviations (top frame) and correlations (bottom frame).

delineates the structural implications of prior choice. Our prior prior is the
first to do so, and should be helpful both in inputting prior information about
structure, and extracting posterior inferences about structure. A key element
of our prior is the simple specification for the τ prior. This priors allows us to
express prior beliefs appropriate for the larger context of the state space model
and is superior to the commonly use conditionally conjugate prior.

Our MCMC approach to the posterior computation is simple and allows us
to obtain posterior probabilities of key quantities like the probability β = 1
(Section 2.4.2) in a relatively straightforward manner. However, our MCMC
algorithm was tailored to the applications in this paper and modifications of
the algorithm could be of interest in other situations. In particular, the simple
Gibbs sampler (Equation 2.4) mixes slowly and in some applications it might
be worth computing a marginal likelihood by integrating out the state so the
the parameters may be drawn directly. In this paper, inferential details our full
mixture model prior were only of interest in low dimension problems (Section
2.4) so that the slow mixing was handled by using long runs.

Another contribution of our paper is inference for high-dimensional time vary-
ing covariance matrices (Section 3). Our approach builds upon our prior speci-
fication and much of the development of the prior was driven by this problem.
Our MCMC for the for this problem draws each {φijt} sequence for a given
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i and j conditionally. In some applications, a multivariate approach may be
preferable. In our high dimensional examples, the correlations were not extreme
so that the univariate approach worked well.
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Appendix A: Parallel processing

One of the strengths of the proposed CSV framework is that the triangular
representation of the model naturally leads to parallelization in the MCMC
scheme. More specifically, the T × i-dimensional state-space matrix

(di, φi1, . . . , φi,i−1),

and the 3× i-dimensional parameter matrix

(αi, βi, τi, αi1, βi1, τi1, . . . , αi,i−1, βi,i−1, τi,i−1),
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corresponding to the i-th recursive conditional regression can be drawn inde-
pendently from the other recursive conditional regressions.

However, it is well known that sampling di (log-volatilities) is more computa-
tionally expensive (more time consuming) than sampling φij . In fact, for a small
to moderate i, it is likely that the computational burden is due to di almost ex-
clusively. Let cd, cφ and cθ be the computational cost (in seconds, for instance)
to draw the T -dimensional vectors di and φij and the 3-dimensional vectors θi
= (αi, βi, τi), for any i and j (see full conditional distributions in Section 3.3).
Usually cθ is negligible when compared to cd and cφ. The cost to draw the states
from recursive conditional regression i is ci = cd + (i− 1)cφ + icθ, and the total
cost is

c = κ1(q)cd + κ2(q)cφ + κ3(q)cθ

where κ1(q) = q, κ2(q) = q(q− 1)/2 and κ3(q) = q(q+ 1)/2. Similarly, the total
cost of running regressions ia + 1 to ib (ib − ia regressions) is

cia:ib = ∆κab1 cd + ∆κab2 cφ + ∆κab3 cθ

where ∆κabj = κj(ib)− κj(ia), for j = 1, 2, 3. Assume that computation can be
split between two parallel processors. Due to the imbalance between (mainly)
cd and cφ (and cθ), it is not immediately obvious which recursive conditional
regression i1 will make c1:i1 = c(i1+1):q = c/2. Similarly, what are the optimal
i1 and i2 when three processors are available? In general, for m processors, the
goal is to find the cut-offs (i1, i2, . . . , im−1) such that the cost within each group
of recursive conditional regressions is the same:

c1:i1 = c(i1+1):i2 = · · · = c(im−2+1):im−1
= c(im−1+1):q = c/m.

The search for the cut-offs is performed recursively with i1 selected from {1, . . . , q}
such that c1:i1 < c/m and c1:(i1+1) > c/m, i2 selected from {i1 + 1, . . . , q} such
that c1:i2 < 2c/m and c1:(i2+1) > 2c/m, and so forth.

Figure 15 provides an illustration when there are q = 100 time series and up
to m = 20 processors. The costs (cd, cφ, cθ) = (310, 23, 0) are based on actual
run times (in seconds) for T = 2, 516 time points and 50,000 MCMC draws.
It takes 13.5 times longer to draw di than it does to draw φij . These costs
were based on our code running in a 2.93 GHz Intel Core 2 Duo processor.
For m = 1 processor, the total cost is about 26 hours. For m = 2 processors,
i1 = 67 and the cost per processor is about 21 hours. For m = 3 processors,
(i1, i2) = (52, 79) and the cost per processor is about 14 hours. For m = 4
processors, (i1, i2, i3) = (44, 67, 84) and cost per processor is about 10.5 hours.
For m = 20 processors, cost per processor is about 2 hours.

Appendix B: Prior setup in R package csv

Recalling the set up of Section 2.4.1, In the univariate state-space model with
observation equation yt = f(xt, st, ηt) and state equation st = α+ β st−1 + τεt,
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(b)

Fig 15. Multiple processors – In panel (a) we plot the number of processors vs. the total time
in hours to run 50,000 iterations for a 100 × 100 (q = 100) time varying covariance matrix
with T = 2, 516. It takes about 13.5 times longer to draw a d state than it does to draw a
φ state. Code was run on a 2.93 GHz Intel Core 2 Duo processor. With 1 processor, the
time is about 26 hours. With 20 processors, the time is about 2 hours. In panel (b) we have
the number of processors on the vertical axis and each set of points along the dotted lines
indicate how the 100 conditional regressions in the Cholesky decomposition are allocated to
the different processors. For example, when m = 2 the cut-off is regression i1 = 67, i.e. the
first processor runs regressions 1 to 67 while the second processor runs regressions 68 to 100.

the full mixture prior for the parameters (α, β, τ) of the state equation is

p(α, β, τ) = p01 p(τ |β = 1) δ{α=0,β=1} + p00 p(τ |β = 0) δ{α=0,β=0}

+ pu0 p(τ |β = 0) p(α|β = 0, τ) δ{β=0} + puu p(β) p(τ |β 6= 0) p(α|β),

where p01=p01, p00=p00 and pu0=pu0, and

• Prior on τ |β: Pr(τ = τi|β) ∝ exp{−cτ |τi − τmin|}, where Pr(τ =
τmin|β) = pmin, τi ∈ {τmin + hτ , . . . , τmax}, with hτ is defined on a grid
of length ngt, pmin=taming, τmax =taumax. Additionally, when β = 0,
τmin =taumin0 and cτ =tauc0, and when β 6= 0, τmin =taumin and
cτ =tauc.

• Prior on α|β: α|β ∼ N{0, σ2
α(1− β2)}, where σα =sa.

• Prior on β: Pr(β = βi) ∝ pN (βi, β̄, σ
2
β), where β̄=bbar, σβ=sb, and

βi ∈ (0, 1) on a grid of length ngb.

The prior on initial state, s0, is s0 ∼ γN(0, (cw)2) + (1 − γ)N(0, w2) and
γ ∼ Ber(p∗), where p∗ =gamp, w =wgam, and c =cgam.
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B.1. Default smoother prior - defpri=1

This is the default prior we set-up for csv. In other words, running csv(y) is
the same as running

csv(y,burn=500,nd=1000,thin=1,taumin=0.005,taumin0=0.001,taumax=0.05,

tauminp=0.5,tauc=200,tauc0=400,p00=0.05,pu0=0.05,p01=0.85,sa=2.0,

bbar=1.0,sb=1.0,gamp=0.5,wgam=0.1,cgam=10.0,ngb=100,ngt=100,defpri=1)

B.2. Default rougher prior - defpri=0

Running csv(y, defpri = 0) sets p01=0.5, p00=0.15, pu0=0.15, taumax=0.15,
tauc=100 and tauc0=200, while all other values are kept the same as in the
case of the smoother prior.

Appendix C: Model checking statistics

The test statistics that appear on Table 1 of Section 3.4 are listed below. The
quantities at and Σt are, at time t, the q-dimensional vector of residuals and
fitted covariance matrix of the fitted model.

Ljung-Box Qe(m) test statistic: Qe(m) is the well-known Ljung-Box statis-
tic, Q(m), of the transformed residual series et = a′tΣ

−1
t at. Under the assump-

tion that the fitted model is the true model, the et are independent and iden-
tically distributed χ2

q random variates so that Qe(m) follows asymptotically a
χ2
m distribution.

Rank-based Qre(m) test statistic: Qre(m) is Qe(m) for the rank series of et.
Dufour and Roy (1986) show that Qre(m) follows asymptotically a χ2

m distribu-
tion if et has no serial dependence.

Ljung-Box Qε(m) test statistic: Qε(m) is the multivariate Q(m) statistic

of the standardized residuals εt = Σ
−1/2
t at.

Robust QRε (m) test statistic: QRε (m) is a robust version of Qε(m) by 5%
trimming of the residual at based on the order statistics of et. As shown in
Tsay (2014), QεR(m) works well in detecting conditional heteroscedasticity of
multivariate return series.
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