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In this work, we investigate sequential Bayesian estimation for inference of stochastic

volatility with variance-gamma (SVVG) jumps in returns. We develop an estimation

algorithm that combines the sequential learning auxiliary particle filter with the par-

ticle learning filter. Simulation evidence and empirical estimation results indicate

that this approach is able to filter latent variances, identify latent jumps in returns, and

provide sequential learning about the static parameters of SVVG. We demonstrate

comparative performance of the sequential algorithm and off-line Markov Chain

Monte Carlo in synthetic and real data applications.
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1 INTRODUCTION

Stochastic volatility (SV) models with jumps have become standard tool in asset pricing finance literature.1 Lévy-driven SV

models provide a highly adaptable modeling framework that can handle many asset pricing problems regularly encountered.

Models with Lévy jumps offer great flexibility for modeling returns. The stochastic volatility variance-gamma (SVVG) model

is particularly useful with a wide range of finance applications. The goal of our paper is to show sequential Bayesian methods2

can be applied to this class of models. Specifically, a Lévy-driven jump diffusion with a leverage effect for the price process

is used where the jump component of the return process obtains as a Brownian motion with drift subordinated to a gamma

subordinator. This is the so-called variance gamma (VG) process of Madan and Seneta.3 The latent SV is a square-root diffusion

that can be correlated with diffusion in the price process. A direct implication and benefit of SVVG's modeling structure is that

the leverage effect can be modeled explicitly.

SVVG's combination of flexibility and parsimony makes it an attractive modeling choice for researchers and practitioners

alike. The VG process can have infinite jump arrival rate within finite time intervals. The infinite-activity jump process has

been proposed as a model for markets with high liquidity and high activity. Carr et al4 later extended the VG process by adding

a parameter to permit finite or infinite activity and finite or infinite variation.

Unlike Brownian motion with infinite activity, the sum of absolute jumps within a finite time interval is bounded for the

standard VG process.3 Infinite activity with finite variation gives SVVG an advantage over the finite-activity compound Pois-

son process of competing affine jump diffusion (AJD) models. Prior studies have shown that traditional AJD models cannot

adequately account for infinite-activity jumps in index returns, even at daily sampling frequencies. In particular, Li et al6 find

that infinite activity jumps in returns are better able to model high kurtosis as is often observed in asset return data at daily and

higher sampling frequencies.

Our work focuses attention on developing algorithms for SVVG estimation using sequential importance sampling/resampling

scheme of Carvalho et al.2 Despite the modeling conveniences it offers, SVVG has not received great attention in the statistical
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finance literature because of computational challenges in estimation, filtering, smoothing, and prediction. Much of the literature

on the VG process tends to focus on modeling returns with a VG distribution directly rather than embedding VG via jumps in

an SV model.

Likelihood-based inference for the VG model is given in Carr et al4 and Seneta.5 However, intractability of the likelihood

complicates frequentist analysis of SVVG. The gamma-subordinated Gaussian jump process produces a nonlinearity in the

SVVG likelihood, which cannot be marginalized analytically. Furthermore, analysis of the marginal SVVG jump distribution

is complicated and requires computationally costly evaluations of special functions.

Li et al6 develop Markov chain Monte Carlo (MCMC) methods for Bayesian inference of SVVG. They show that diffusion,

latent SV, and infinite-activity jumps in returns can be identified jointly using discretely observed asset prices. In particular,

enough information exists in daily index returns to identify parameters and latent states of SVVG. They also show that Lévy

jump models can outperform traditional AJD models for daily returns. They conclude that infinitely many small jumps are too

large to be modeled by Brownian motion and too small for the compound Poisson process.

Sequential simulation–based estimation has the potential to offer computational efficiency gains over bulk estimation tech-

niques such as MCMC. In addition, sequential, or “online,” techniques yield tangible benefits over off-line methods in

high-frequency and low-latency settings where the arrival rate of new information requires very rapid updating of posteriors to

perform inference. We show that estimation via sequential Bayesian learning is feasible and produces adequate estimates for

SVVG, see also Jasra et al7 who propose a sequential Monte Carlo (SMC) estimation algorithm for SVVG based on the SMC

scheme of Del Moral et al.8

The rest of the paper is outlined as follows. Section 2 provides technical discussion of the SVVG modeling framework.

Section 3 describes previous approaches to posterior inference of SVVG via MCMC. Section 4 develops our sequential learning

algorithm. Section 5 presents simulation results on the performance of our algorithm and shows its comparison to traditional

MCMC methods. Section 6 illustrates our methodology in a real-data setting on SP500 returns. Section 7 discusses limitations

of our filter and related work. Details of prior distributions are provided in a technical appendix.

2 METHODOLOGY

2.1 Model specification
The SVVG model consists of a jump diffusion price process with gamma-subordinated Brownian motion jumps, a correlated

Cox-Ingersoll-Ross (CIR) variance process9 and leverage in the price process. To make the model specification more precise,

consider the following description of the model's dynamics. Let Yt be the natural logarithm of a stock's price, Jt is the jump

component of returns, and pt = Yt − Jt. The sample paths of the SVVG model satisfy the system of stochastic differential

equations:

dYt = 𝜇dt +
√

vtdW1(t) + dJt (1)

dvt = 𝜅(𝜃 − vt)dt + 𝜌𝜎v
√

vtdW1(t) + 𝜎v
√
(1 − 𝜌2)vtdW2(t) (2)

dJt = 𝛾dg(t; 1, 𝜈) + 𝜎JdW3(g(t; 1, 𝜈)) (3)

where W1(t), W2(t), and W3(t) are independent Wiener processes evaluated at time t; 𝜇 is the drift in log price or expected return;

vt is the instantaneous variance of returns; 𝜃 is the stationary mean of the variance process; 𝜅 is the speed of mean-reversion

of the variance process; 𝜎v is the volatility of volatility, or 𝜎2
v is the conditional variance of the variance process; 𝜌 measures

instantaneous correlation of returns and variance, ie, leverage; 𝛾 is the conditional drift in jumps; 𝜎J is the volatility of jumps

conditional on the random time change; and g(t; 1, 𝜈) is a gamma process time change with unit mean rate and variance rate 𝜈.

Bayesian inference can be performed by using an Euler approximation of the continuous-time model with daily sampling fre-

quencyΔ = 1. Discretization is a modeling convenience for SVVG that makes the model more tractable with standard sampling

techniques. The continuous-time transition density of the latent variance p(vt+𝜏 |vt,Θ) is known to be noncentral gamma.10 The

conditional transition density of the observation equation p(Yt+𝜏 |Yt, Jt+𝜏 , … , Jt, vt+𝜏 , … , vt,Θ) is Gaussian only if the entire

paths of the latent variance process vt and latent jump process Jt are known from t to t + 𝜏. Analytical marginalization of the

jump process presents an intractable problem. As an alternative to numerical or Monte Carlo integration, discretization provides

a reasonable approximation to continuous-time SVVG and is commonly used in the literature. Discretization bias, see Eraker

et al,1 is typically small with daily data.
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The discretized SVVG model is described by the state-space model:

rt = 𝜇Δ +
√

vt−1Δ𝜀1,t + Jt (4)

vt = vt−1 + 𝜅(𝜃 − vt−1)Δ + 𝜌𝜎v
√

vt−1Δ𝜀1,t

+ 𝜎v
√
(1 − 𝜌2)vt−1Δ𝜀2,t

(5)

Jt = 𝛾Gt + 𝜎J
√

Gt𝜀3,t (6)

Gt ∼ (Gt;
Δ
𝜈
, 𝜈
)

(7)

where rt is the log return (Yt − Yt−1); 𝜀1,t, 𝜀2,t, and 𝜀3,t are independent standard Gaussian random variables; Jt is the jump in

returns; vt−1 is the return variance; Gt is the gamma-distributed time change with mean Δ and variance Δ𝜈; and the model's

static parameters Θ = {𝜇, 𝜅, 𝜃, 𝜎v, 𝜌, 𝛾, 𝜎J, 𝜈} have the same interpretations as in the continuous-time model. In the dis-

crete time specification, the observation equation is given by Equation 4 and the latent states' evolutions are described by

Equations 5, 6, and 7.

Stochastic volatility models can account for excess kurtosis in returns through autocorrelation in the volatility series and

feedback effects between the return and volatility processes. The jump process Jt provides the SVVG model an additional

mechanism whereby excess kurtosis and skewness in the return distribution can be modeled. The marginal moments of the the

jump process Jt are functions of 𝛾 , 𝜎2
J , and 𝜈. In particular, the sign of 𝛾 determines the sign of the skewness of Jt, and 𝜈 indicates

percentage excess kurtosis relative to Gaussian kurtosis11 when 𝛾 = 0.

2.2 Prior specification
Completion of the Bayesian model structure requires specification of prior distributions for the static parameter vector Θ and

the initial latent variance state v0. The prior dependence structure is as follows:

𝜋(Θ, v0) = 𝜋(𝜇) 𝜋(𝜅) 𝜋(𝜃) 𝜋(𝜎v, 𝜌) 𝜋(𝛾) 𝜋(𝜎J) 𝜋(𝜈) 𝜋(v0).

The Bayesian model considered here follows closely the general specification proposed by Li et al.6 All prior distributions

are proper and conjugate where conjugacy exists. This simplifies posterior inference somewhat by providing a more intuitive

analytical framework. Conjugacy also allows for the use of efficient direct sampling of full conditional posterior distributions.

Prior hyperparameters are chosen to be rather uninformative and, where applicable, consistent with unconditional moments of

historical data. For most parameters of SVVG, the likelihood overwhelms the contribution from the priors rather quickly for

the sample sizes used in the simulation and empirical studies considered here. In limited testing on synthetic data, these prior

choices often provide good results for fitting SVVG to individual asset returns.

The initial variance state v0 is assumed to be gamma on the positive real line. Prior beliefs of the static parameters are

modeled as follows. Expected drift in log returns 𝜇 is Gaussian, with mean value equal to historical mean return of the asset

being analyzed. Mean reversion of the variance process is governed by 𝜅 (speed of mean reversion in variance) and 𝜃 (long-run

variance). Truncated Gaussian priors on both parameters ensure the nonnegativity constraint of the CIR variance process holds.

The prior belief for 𝜅 favors slow mean reversion in the variance process (ie, small values of 𝜅). The prior mean for 𝜃 is chosen

to be consistent with historical unconditional return variance of the asset being analyzed. Priors for static parameters of the

jump and time-change processes are informed by previous SVVG calibration studies where available.

The volatility of volatility parameter 𝜎v and leverage parameter 𝜌 are modeled jointly in the prior structure. Under reparam-

eterization, the estimation of 𝜌 and 𝜎v is framed as estimation of the slope and error variance of regression of the volatility

shock 𝜀2 on the return shock 𝜀1. This regression naturally elicits the common conditional Gaussian-inverse gamma prior on the

transformed parameter space. Operationally, this modeling choice induces a diffuse prior on the leverage parameter 𝜌. The prior

choice follows the treatment of the correlated errors SV model of Jacquier et al.12

An alternate Bayesian analysis of SVVG by Jasra et al 7 takes a different route to prior elicitation for parameters governing the

variance process. The prior dependence structure keeps 𝜌 independent of the other parameters a priori. Rather, an improper joint

prior links the 3 variance parameters 𝜅, 𝜃, and 𝜎v. Jasra et al7 impose CIR regularity conditions on these parameters to satisfy

the nonnegativity constraint for the variance process. In the sequential Bayesian algorithm developed here, this restriction is

imposed through truncated Gaussian priors for volatility mean-reversion parameters 𝜅 and 𝜃 and the joint prior structure for
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𝜎v and 𝜌. As discussed above, Jasra et al7 also do not pursue estimation of the Gamma time-change variance rate parameter 𝜈,

instead fixing its value in their simulation and empirical studies.

Appendix A.1 provides further technical detail regarding the specific prior structure used in the analysis.

3 POSTERIOR INFERENCE VIA MCMC

The Bayesian analysis of Li et al6 uses Gibbs sampling for all static parameters and latent states and incorporates adaptive

rejection Metropolis sampling (ARMS) steps to sample difficult-to-sample (and potentially non–log-concave) posteriors. This

includes ARMS steps for the gamma process variance rate 𝜈 and sequences of latent variances vT and time-changes GT.

The gamma process variance rate 𝜈 requires special attention in developing the estimation routine. The posterior of 𝜈 is not

log-concave. This phenomenon arises directly from the nonlinear fashion in which 𝜈 enters the likelihood of Gt at Equation 7

through both the shape and rate/scale parameters of the gamma distribution. This non–log-concavity complicates the Gibbs

sampling step for 𝜈 in the MCMC algorithm of Li et al.6 To overcome this issue, the algorithm uses ARMS steps to sample

posteriors that cannot be sampled directly.13

ARMS is an extension of adaptive rejection sampling (ARS).14 At each sampling step, ARS constructs an envelope of the

target log density, which is used as the proposal density in a rejection sampling scheme. The envelope is progressively updated

whenever a point is rejected. When the target log density is not concave, ARMS extends ARS by including Metropolis steps

for accepted proposal points. The procedure is exact for sampling from the target density regardless of the degree of convexity,

although it can have a high-computational cost when the target log density is complicated.

4 SEQUENTIAL BAYESIAN LEARNING OF SVVG

We estimate the parameters of the SVVG model with an SMC sampling scheme based on Carvalho et al.2 An overview of the

algorithm's implementation follows.

Let xt = (vt, vt−1, Jt,Gt) be the vector of latent states entering the augmented likelihood at time t. This algorithm approxi-

mates the filtering distribution of states and parameters p(xt,Θ|rt) sequentially using the discrete representation p̂(xt,Θ|rt) =∑M
i=1 𝛿(xt ,Θ)(i) (xt,Θ), where {(xt,Θ)(i)}M

i=1
is the set of particles in the discrete approximation at time t and 𝛿(xt ,Θ)(i) (·) is the Dirac

delta function located at (xt,Θ)(i). The particle distribution is updated sequentially as new information arrives. The algorithm

presented here uses a resample-propagate-type approach similar to the auxiliary particle filter developed by Pitt and Shephard.15

For the state-space model described at Equations 4 to 7, the joint posterior for the static parameters conditional on the full

state space p(Θ|xt, rt) can be written as p(Θ|zt), where zt is a vector of parameter conditional sufficient statistics computed

deterministically according to an updating rule zt = (zt−1, xt, rt). Conditioning on conditional sufficient statistics achieves

variance reduction in resampling weights.

The algorithm can be summarized as follows:

1. Blind propagation of Jt. Draw candidate jump state particles {J̃(i)t }M
i=1

with proposal density p
(

J̃t|(𝛾, 𝜎2
J , 𝜈

)(i))
.

2. Resample particles. Draw {(Jt, xt−1,Θ, zt−1)(i)}M
i=1

from {(J̃t, xt−1,Θ, zt−1)(i)}M
i=1

with weights w(i)t ∝ p
(
rt|(vt−1, Jt, 𝜇)(i)

)
.

3. Propagate vt and Gt. Draw G(i)
t from density p(G(i)

t |(Jt,Θ)(i)). Draw v(i)t from density p
(

v(i)t |rt, (vt−1, Jt,Θ)(i)
)

.

4. Update zt. Compute z(i)t = (
z(i)t−1

, x(i)t , rt

)
.

5. Sample Θ. Draw Θ(i) ∼ p
(
Θ(i)|z(i)t

)
.

Details of the algorithm, including sampling densities, posterior densities, and conditional sufficient statistics, are given in

Appendices A.2 and A.3.

The filter presented here is not fully adapted because of difficulties presented by the form of the likelihood. Work is ongoing

to address this deficiency. For SVVG, the likelihood based only on observable rt is not available in closed form. There is no

analytical closed form when integrating both the contemporaneous latent jump Jt and time-change Gt from the observation

equation at Equation 4. Further, numerical and Monte Carlo integration methods are not practical in this application. The fully

adapted filter that resamples according to weights w∗t ∝ p(rt|(xt−1, zt−1,Θ)(i)) does not appear to be readily available. The filter
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is developed as a hybrid of the extended bootstrap filter of Storvik 16 and the sequential learning filter of Carvalho et al. 2 This

filter has produced good results in synthetic and real-data applications.

Storvik's filter addresses the partial adaption problem by generating proposal draws for the problem latent states to evaluate

the likelihood on an augmented space of observables. The current set of particles is resampled according to weights proportional

to the conditional likelihood scaled by a factor to adjust for proposal draws that do not come from the “correct” posterior

distribution. This adjustment takes the form of the the ratio of the true predictive density to the propagation proposal density:

w(i)t ∝ p
(

rt|J̃(i)t , v
(i)
t−1
,Θ(i)

) p
(

J̃(i)t |J(i)t−1
, v(i)t−1

,Θ(i)
)

q
(

J̃(i)t |J(i)t−1
, v(i)t−1

,Θ(i), rt
)

= p
(

rt|J̃(i)t , v
(i)
t−1
,Θ(i)

) p
(

J̃(i)t |Θ(i))
q
(

J̃(i)t |rt,Θ(i)
)

where the simplification obtains because Jt has no serial dependence.

Sampling directly from the posterior p(J̃(i)t |rt,Θ(i)) as a proposal density is not trivial. Instead, the blind propagation proposal

q(J̃(i)t |Θ(i)), ie, the marginal of Jt conditional on the static parameter set, given above is used. The proposal and evolution densities

are identical, which yields resampling weights proportional to the conditional likelihood of (rt|Jt). The algorithm using blind

propagation gives good performance.

The sequential estimation algorithm approaches sampling of static parameters similarly to Li et al.6 Static parameters for

which conditional conjugacy exists are sampled efficiently from their full-conditional distribution in Gibbs sampler steps. It

does not appear that there are any efficient, specialized algorithms for sampling from the full-conditional posterior distribution

of the Gamma time-change variance rate parameter 𝜈. Following Li et al,6 we retain an ARMS step to sample 𝜈.

ARMS allows for sampling from the exact target density even in the absence of log-concavity. However, ARMS also requires

initial construction of an envelope and multiple evaluations of the log-density, which can be very expensive computationally

for complicated log-density functions. The computational toll is large and especially so for sequential algorithms due to the

multiplicity of evaluations during each update step. As such, sampling 𝜈 represents somewhat of a computational bottleneck

in sequential estimation of SVVG. We have considered alternate methods, including discrete sampling of 𝜈 and alternate prior

distributions. However, alternate approaches to estimation of 𝜈 do not prove to be better than ARMS. These are discussed in

greater detail below with the estimation results.

We propagate the latent variance vt and latent time-change Gt from their respective conditional posterior distributions. The

latent volatility is conditionally Gaussian. The time-change is distributed generalized inverse Gaussian (GIG). Li et al6 sample

Gt with an ARMS step in their MCMC algorithm. However, the overhead of this sampling choice is reduced by implementing

efficient sampling of the GIG density using the algorithm of Leydold and Hörmann,17 which updates a commonly used algorithm

proposed by Dagpunar.18 Further detail is given at A.2.11.

The sequential estimation algorithm outputs a sequence of particle distributions that constitute discrete approximations to

filtered posteriors of the latent states and static parameters given by p(xt,Θ|rt). For inference of the latent states and static

parameters, we rely on summaries of the sequential particle distributions that are by-products of the sampling. Time series

of point estimates for static parameters and latent states obtain from cross-sectional means of the sequential particle distribu-

tions. We measure posterior uncertainty by cross-sectional standard deviations and extreme quantiles of the particle sampling

distributions.

Availability of the sequence of particle distributions also allows the user to approximate integrals of interest numerically. In

particular, one can obtain approximations to the sequential marginal likelihoods, which can be used to compute sequential Bayes

factors for model comparison.19 The marginal predictive density p(rt+1|rt) can be approximated using the algorithm's output

at time t:

p̂(rt+1|rt) = 1

M

M∑
i=1

p
(
rt+1|(xt,Θ)(i)

)
where {(xt,Θ)(i)}M

i=1
is the filtered particle distribution at time t.

An alternate filter specification also considered consisted of blind propagation of Gt and resampling with weights proportional

to p(rt|Gt,Θ). However, this alternate filter performed very poorly compared to the approach described above in detail. It is

unclear why this is the case, although it appears to be an issue of differing conditioning information sets. Blind propagation
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of Gt relies on filtered information on 𝜈 in the initial propagation step. Blind propagation of Jt uses information encoded in

the particle distributions of 𝛾 and 𝜎2
J in addition to 𝜈. The 3-tuple

(
𝛾, 𝜎2

J , 𝜈
)

fully specifies the first 4 marginal moments of

the jump process,11 so posterior samples of these parameters should carry more information about the posterior distribution

of interest than using only samples of 𝜈. It is possible that the filter used here may not perform as well as the alternate filter

when a considerably smaller number of particles is used and the posterior samples of
(
𝛾, 𝜎2

J , 𝜈
)

do not adequately explore the

parameter space.

The aforementioned assumption of Jasra et al7 regarding the gamma process variance rate 𝜈 implies Gt is distributed expo-

nential with scale parameter Δ. This assumption does not appear to be validated by estimation results for daily data, although

the authors estimate their model on hourly returns. This assumption has implications for the marginal moments of the jump

process. When the magnitude of 𝛾 is small, the marginal distribution of Jt would be near mesokurtic. This would understate

the jump process's variance. This could potentially impair the model's ability to adequately identify large jump events, which

tend to happen at frequencies suggested by a leptokurtic distribution. The sequential algorithm presented here models 𝜈 as an

unknown static parameter and allows the user to learn about it sequentially. In particular, the claim that 𝜈 = Δ can be tested in

a sequential manner using the algorithm developed here.

5 SIMULATION STUDY

To illustrate the performance of the sequential filter for SVVG, we apply the methodology to synthetic data simulated from the

discrete-time SVVG model at Equations 4 to 7. The simulated data consist of approximately 20 years of data (T= 5000). Figure 1

demonstrates one realization from the model. As a comparison, we also report the performance of the MCMC algorithm of Li

et al.6 All estimation routines were written in C. Sequential particle filtering used M= 10 000 particles; tables and figures report

summaries over 10 particle learning (PL) runs. MCMC retained 20 000 sampler iterations after burn-in of 30 000 iterations.

Figure 2 shows the time series of true instantaneous variances vt, sequential filtered estimates E[vt|rt], and smoothed estimates

E[vt|rT] from MCMC. Sequential filtering of vt appears to perform well and compares favorably with the performance of

MCMC. However, there are clear problem spots where the filtered variances fail to track the latent states closely. In particular,

sequential estimation suffers from a deficiency common to many filtering algorithms. Sequential filtering tends to underestimate

latent variance when the true latent state attains very large values for short periods. During short episodes of high-latent variance,

the mass of the posterior distribution shifts substantially. It is promising, although, that the particle filter can move its particles

FIGURE 1 Simulated realization from the stochastic volatility with variance-gamma (SVVG) model (T = 5000)
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FIGURE 2 Posterior estimates of instantaneous variance vt for simulated data. True series shown in black, sequential posterior mean estimates

E[vt|rt] in red, and Markov chain Monte Carlo posterior mean estimates E[vt|rT ] in green [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Posterior inference of stochastic volatility with variance gamma for 20 years of simulated

daily returns (T = 5000)

Sequential MCMC
Truth Mean SD RMSE Mean SD RMSE

𝜇 0.050 0.0577 0.0099 0.0166 0.0598 0.0168 0.0195

𝜃 0.800 0.7129 0.0327 0.0930 0.7985 0.0919 0.0919

𝜅 0.015 0.0055 0.0023 0.0096 0.0125 0.0029 0.0039

𝜎v 0.100 0.1539 0.0022 0.0540 0.0828 0.0089 0.0194

𝜌 −0.400 −0.3749 0.0183 0.0310 −0.3504 0.0725 0.0878

𝛾 −0.010 0.0137 0.0034 0.0239 −0.0156 0.0149 0.0159

𝜎2
J 0.160 0.2020 0.0059 0.0425 0.1442 0.0255 0.0300

𝜈 3.000 3.1813 0.0505 0.1882 3.1186 0.0866 0.1468

Abbreviation: MCMC, Markov chain Monte Carlo; RMSE, root mean squared error.

sufficiently fast across the support of the distribution to avoid subsequent overestimation of latent variance once high variance

periods subside.

Table 1 and Figure 3 demonstrate each algorithm's performance for the model's static parameters. These results indicate

that the sequential algorithm is able to recover many of the static parameters and is able to do so quickly. In most cases, the

particle approximations are quite good after only 500 returns have been processed. Sequential estimation performance in learning

diffusion parameters is generally better than in learning jump parameters. Notable is the performance of the sequential filter for

𝛾 and 𝜅, both of which are learned very poorly. Further, the very small posterior standard deviations and narrow credible bands

for certain parameters suggest particle degeneracy might be a problem.

The particle distributions obtained here generally exhibit low contemporaneous correlations between parameters after roughly

500 to 1000 returns have been processed. The exception is 𝜅 and 𝜃, which routinely have correlations in the range [−0.8,−0.5].
Correlation in the particle distributions could have a deleterious effect on some estimation runs if the initial particle distribution

is chosen poorly. The results presented here attempt to mitigate this effect by running estimation in parallel with multiple

chains each starting from individually sampled initial particle distributions. Results are then aggregated across sampling chains.

This approach also minimizes certain computational issues associated with the numerical precision of weight and sampling

calculations in the presence of a very large number of particles with large variance in particle weights.

Similar results obtain across alternate realizations from the SVVG model and when using different sets of initial particles.

Implementing a more optimal propagation rule in the first step of the algorithm might mitigate this poor performance. Another

http://onlinelibrary.wiley.com/
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FIGURE 3 Sequential learning of static parameters for simulated data. True series shown in black, sequential posterior mean estimates [EΘ|rt] in

red, and Markov chain Monte Carlo posterior mean estimates [EΘ|rT ] in green. Dashed lines show posterior 95% credible intervals [Colour figure

can be viewed at wileyonlinelibrary.com]

alternative would be to include a smoothing step to backward sample vt−1 at time t rather than simply resampling old particles.

This latter strategy would nullify benefits of an online estimation strategy. However, this may be necessary to deal with degen-

eracy of the particle distribution when the sample size T grows very large, and the number of particles is limited by practical

concerns such as computation time.

The performance of the sequential algorithm in parameter learning can be attributed largely to its adequate performance in

filtering variance vt and poor performance filtering jump Jt and time-change Gt for this set of static parameters. Running the

estimation on realizations from alternate configurations of static parameters suggests that this sequential estimation algorithm

struggles to identify the jump process when jump drift 𝛾 is near 0. We observe similarly poor performance when the gamma

http://onlinelibrary.wiley.com/
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time-change variance rate 𝜈 is small. These conditions result in reduced skewness and reduced excess kurtosis in the marginal

distribution of Jt. When this is the case, sample realizations of the Jt process appear very noisy with few large jump events. In

turn, this provides little information with which to identify the jump process against random noise in the return process.

Sequential estimation's performance improves greatly as the marginal distribution of Jt becomes more skewed and heavier

tailed, which are features that correspond to larger values of |𝛾| and 𝜈.

6 REVISITING LI ET AL

In this section, we examine the empirical performance of the sequential Bayesian algorithm. In particular, we benchmark sequen-

tial estimation against the MCMC approach proposed by Li et al.6 The results show that the sequential filter performs well when

applied to actual data, although there appear to be some deficiencies that require additional investigation.

The data comprise 21 years of log returns for the S&P 500 Index from January 12, 1980, to December 29, 2000 (T = 5307).

The sample period is the same as that of Li et al.6 Table 2 reports summary statistics for the data sample. Figure 4 provides a

time series plot of the log return series. Salient features of the data include what appear to be a few very large jumps in October

1987 (Black Monday), January 1989 and 1997 (Asian financial crisis), August 1998 (Russian default), and April 2000 (tech

bubble crash), and periods of apparent volatility clustering in the early 1980s and late 1990s. The measure of the sequential

algorithm's performance will depend on its ability to identify such stylized facts of the data. Our experience in estimation SV in

periods of crisis20 makes us believe that our model ought to perform very well in the European/Greek crisis. We feel however

that this is an interesting topic for further exploration.

Figures 5 and 6 visualize sequential and MCMC posterior estimates of instantaneous variances and large jumps, respectively.

As noted previously, we can expect the sequential variance estimates to be noisier than those produced by the MCMC smoother.

The sequential estimates track the smoother estimates well. In particular, sequential learning does identify periods of high

volatility. Further, sequential learning and MCMC are both able to identify the times of many of the same large jumps. However,

the sequential estimates of jump sizes tend to be smaller and large positive jumps occur with greater frequency than in the MCMC

estimates. This may be attributable to the 2 algorithms' disparate performance in estimating the model's static parameters.

Table 3 shows summaries of estimation ofΘ. Relative to MCMC, sequential learning struggles with the mean-reversion speed

of volatility 𝜅 and parameters associated with the jump process. The magnitudes of the posterior standard errors for sequential

TABLE 2 Summary statistics for 21-year sample of log returns of S&P 500 Index for January

2, 1980, to December 29, 2000

Sample Size Mean Variance Skewness Kurtosis Minimum Maximum

5307 0.0476 1.0437 −2.3578 55.5870 −22.8997 8.7089

FIGURE 4 Log returns of the S&P 500 Index for January 2, 1980, to December 29, 2000 (T = 5307)
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FIGURE 5 Posterior estimates of instantaneous variance vt for S&P 500 Index data. Sequential posterior mean estimates E[vt|rt] in red and

Markov chain Monte Carlo posterior mean estimates E[vt|rT ] in green [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Posterior estimates of large jumps Jt for S&P 500 Index data. Log return series shown in black, sequential posterior mean estimates

E[vt|rt] in red, and Markov chain Monte Carlo posterior mean estimates E[vt|rT ] in green [Colour figure can be viewed at wileyonlinelibrary.com]

learning again suggest particle degeneracy might be an issue. Despite these issues, filtering of variances vt and jumps Jt does

not appear to suffer greatly. As documented in Figures 5 and 6, the sequential filter recovers similar latent variances as MCMC

and manages to identify many of the same large jumps in returns.

It appears that identification of 𝛾 in both algorithms greatly influences the ability to identify jumps of either sign. The data

may not bear enough information to deal with extreme jumps. Both algorithms have difficulty identifying large jumps with

opposite sign as 𝛾 . Such jumps could conceivably be thought of as outliers as they occur far in the “short tail” of the marginal

distribution of Jt, ie, in the opposite direction of the skewness. In this implementation of MCMC as well as in Li et al,6 𝛾 is

estimated to be negative for the S&P 500 data, and negative jumps are identified with much greater frequency and intensity than

positive jumps. The most notable instance is the apparent large positive jump on October 21, 1987, following the large decline

on October 19, 1987. This phenomenon would also explain why the sequential approach may underestimate the magnitude of

large negative jumps. The sequential estimates of average jump size 𝛾 are positive.

The time-change variance rate parameter 𝜈 represents a significant challenge to sequential estimation and inference of

SVVG. As in the simulation study, sequential estimation of 𝜈 is very poor for this empirical example. The particle distribution

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
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TABLE 3 Posterior inference of stochastic volatility with variance

gamma for 21 years of daily S&P 500 Index returns (T = 5, 307)

Sequential MCMC
Parameter Mean SD Mean SD

𝜇 0.0722 0.0009 0.0768 0.0245

𝜃 0.8173 0.0643 0.8244 0.1720

𝜅 0.0225 0.0018 0.0096 0.0025

𝜎v 0.1362 0.0010 0.1060 0.0085

𝜌 −0.5455 0.0033 −0.5737 0.0697

𝛾 0.0519 0.0113 −0.0441 0.0261

𝜎2
J 0.4210 0.0088 0.2442 0.0263

𝜈 1.6817 0.0274 5.7455 0.0968

Abbreviation: MCMC, Markov chain Monte Carlo.

FIGURE 7 Sequential Bayes factors for learning of 𝜈 versus 𝜈 = 1 for S&P 500 Index data (red line and left vertical axis). Observed return series

is superimposed (grey line and right vertical axis) [Colour figure can be viewed at wileyonlinelibrary.com]

degenerates to a near point mass quickly. Poor estimation of this parameter is closely linked to difficulties in filtering the

time-change Gt, which may stem from the absence of any serial dependence in the time-change process.

Another driver of the poor filtering performance for Jt and Gt is the blind propagation rule used in the first step of the

algorithm. Blind propagation in this case introduces orthogonal noise into the particle approximation and has been shown to

lead to degeneracy of the particle distribution. We are currently working to determine whether a fully adapted filter is available

or if a more optimal proposal density would improve the activity of the filter.

Despite poor estimation performance of the time change, the sequential algorithm performs reasonably well filtering the latent

variances and large jumps and learning the other static parameters. Estimation results with such robustness to poor identifica-

tion of the time-change parameters and latent state could suggest model misspecification for these data. That is, treating the

time-change variance rate 𝜈 as an unknown parameter may introduce an unnecessary parameter that is poorly estimated. The

sequential algorithm's output offers a direct method of comparison to the case of Jasra et al7 where 𝜈 is fixed and known. This

comparison may be assessed with a sequential Bayes factor:

Bt =
p(r1∶t| learning 𝜈)
p(r1∶t| fixed 𝜈 = 1)

One would expect that evidence for 𝜈 ≠)1 would increase when observing returns consistent with return distribution with high

excess kurtosis indicated by large values of 𝜈. Within the framework of SVVG, such returns may be attributable to very large

http://onlinelibrary.wiley.com/
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jumps as well as high volatility in jumps. Results are summarized by Figure 7. In spite of poor identification, the estimation

output suggests that evidence for 𝜈 ≠ 1 grows exponentially over time. As expected, evidence against 𝜈 = 1 increases greatly

when large magnitude returns are observed, which coincides with identification of large jumps in Figure 6. These results agree

with MCMC inference for SVVG for these data here and in Li et al,6 suggesting that poor estimation of 𝜈 is indicative of the

sequential algorithm's performance rather than model misspecification.

7 DISCUSSION

A more sophisticated observation model for SVVG may be introduced by generalizing the mean function from the constant

conditional mean model specified at Equation 4. We may consider the following general specification:

rt = f (·)Δ +
√

vt−1Δ𝜀1,t + Jt, (8)

where f(·) represents the generalized conditional mean return function. The choice of f(·) provides modeling flexibility by allow-

ing the practitioner to incorporate other sources of information to solve the SVVG filtering and estimation problem. Perhaps

the simplest such mean model extension is a “regression-in-mean” specification in which f(·) consists of a linear regression on

an exogenous regressor x:

f (x) = 𝜇′ + 𝛽xx,

where 𝜇′ is, in general, different from 𝜇 considered earlier.

Well-chosen explanatory variables should improve modeling of the cross section of returns, thereby increasing the filtering

algorithm's efficiency in learning the latent states and static parameters from the sequence of observed returns. This may mitigate

model identification difficulties that arise from using information derived solely from observed returns of the asset under study.

For example, observable measures of market volatility could potentially help to differentiate true jump events from large returns

associated with periods of high volatility.

The use of the latent volatility vt−1 as a predictive regressor presents a particularly compelling regression-in-mean specifica-

tion for SVVG:

f (vt−1) = 𝜇′ + 𝛽vvt−1,

where 𝛽v represents the equity risk premium associated with vt−1. Such a specification would allow the algorithm to learn

sequentially about the potentially changing market price of risk. Details of posterior inference for this SVVG extension are

included at Appendix A.4.

Alternate explanatory variables may also prove to be good candidates for risk premium estimation in the regression-in-mean

framework. Candidates for inclusion in the model include VIX index levels, option-based implied volatilities, or realized volatil-

ity measures for the asset under study. This latter model extension should be tractable within the sequential estimation setup but

requires further evaluation of the likelihood and Bayesian model. This approach could also be extended further to the inclusion

of exogenous regressors in the model of SV at Equation 5.

The regression-in-mean specification can also be used to mimic GARCH-in-mean modeling by including the contempora-

neous latent volatility vt in the observation equation (Equation 8) at time t. However, this could potentially introduce practical

difficulty in model identification. The SVVG model so far considered attempts to extract all information about the latent states

and static parameters from the single observable return series rT. This can pose a difficult state filtering problem for SVVG. The

posterior for Gt depends only on the parameter vector Θ and contemporaneous information. As such, the filter has very little

information to identify Gt simultaneously with the other latent states and static parameters. Finally, our SMC scheme could be

extended to conditionally Gaussian errors, including generalized volatility models with nonparametric innovation as in Jensen

and Maheu.21
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TECHNICAL APPENDIX ??

A.1 Prior specif icat ion
The parametrizations of standard statistical distributions used here are as follows. The Gaussian distribution  (

x;𝜇, 𝜎2
)

has

mean 𝜇 and variance 𝜎2. The Gamma distribution (x; 𝛼, 𝛽) has mean 𝛼𝛽 and variance 𝛼𝛽2. The inverse gamma distribution

(x; 𝛼, 𝛽) has mean
1

(𝛼−1)𝛽
for 𝛼 > 1 and variance

1

(𝛼−1)2(𝛼−2)𝛽2
for 𝛼 > 2.

The prior structure used in this study is given by the following set of distributions:

𝜋(𝜇) ∼ (𝜇; 0, 1)
𝜋(𝜅) ∼ (𝜅; 0, 0.25) 1(0,∞)(𝜅),
𝜋(𝜃) ∼ (𝜃; 0, 1) 1(0,∞)(𝜃),
𝜋(𝛾) ∼ (𝛾; 0, 1),

𝜋(𝜎v, 𝜌) = 𝜋(wv)𝜋(𝜙v|wv) ∼ (wv; 2, 200)  (𝜙v; 0,wv∕2),
𝜋(𝜎2

J ) ∼ (𝜎2
J ; 2.5, 5),

𝜋(𝜈) ∼ (𝜈; 10, 0.1),
𝜋(v0) ∝ 1(0,∞)(v0),

where (𝜙v,wv) = g(𝜌, 𝜎v) =
(
𝜎v𝜌, 𝜎

2
v (1 − 𝜌2)

)
and 1A(x) is the indicator function equal to 1 when x ∈ A and 0 otherwise.

https://doi.org/10.1002/asmb.2258
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The joint prior and reparametrization of (𝜎v, 𝜌) follows the treatment of the correlated errors stochastic volatility model of

Jacquier et al.12 The inverse mapping is given by (𝜌, 𝜎v) = g−1(𝜙v,wv) =

(
𝜙v√
wv+𝜙2

v

,wv + 𝜙2
v

)
.

A.2 Posterior distributions
Let xt refer to observation of x at time t and xt the set of all observations of x from time 1 up to and including time t. At time

T > 0, the posterior distribution for the static parameter vector Θ and the initial latent volatility state v0 conditional on the full

observed and latent information set T = (rT , vT , JT ,GT ) is

p(Θ, v0|T ) ∝ p(Θ, v0, rT , vT , JT ,GT )
= p(rT , vT |JT ,Θ, v0)p(JT |Θ,GT )
× p(GT |Θ)𝜋(v0)𝜋(Θ)

∝ exp
(
−Tlog(𝜎vΔ(1 − 𝜌2))

−
T∑

t=1

(At∕2 + logvt−1)

)
× exp

(
−Tlog𝜎J −

1

2

×
T∑

t=1

(
logGt +

J2
t

𝜎2
J Gt

− 2𝛾Jt

𝜎2
J

+ 𝛾2Gt

𝜎2
J

))
× exp

(
−Tlog

(
𝜈
Δ
𝜈 Γ

(Δ
𝜈

))
×

T∑
t=1

((Δ
𝜈
− 1

)
logGt −

Gt

𝜈

))
× 𝜋(𝜇) 𝜋(𝜅) 𝜋(𝜃) 𝜋(𝜎v, 𝜌) 𝜋(𝛾) 𝜋(𝜎J) 𝜋(𝜈),

where

At =
(
1 − 𝜌2

)−1
((
𝜀r

t
)2 − 2𝜌𝜀r

t𝜀
v
t +

(
𝜀v

t
)2
)
,

𝜀r
t =

rt − 𝜇Δ − Jt√
vt−1Δ

,

𝜀v
t =

vt − vt−1 − 𝜅(𝜃 − vt−1)Δ
𝜎v
√

vt−1Δ
.

A.2.1 Condit ional posterior for 𝝁

The posterior of 𝜇 at time T is Gaussian:

p(𝜇|𝜃, 𝜎v, 𝜌,T ) ∼
(
𝜇;

𝜇
𝜇

,
1

𝜇

)
,

𝜇 =
Δ

1 − 𝜌2

T∑
t=1

1

vt−1

+ 1

M2
,

𝜇 = 1

1 − 𝜌2

T∑
t=1

1

vt−1

(
Ct − 𝜌

Dt

𝜎v

)
+ m

M2
,

Ct = rt − Jt,

Dt = vt − vt−1 − 𝜅(𝜃 − vt−1)Δ,

where m and M are the hyperparameters for the prior of 𝜇.
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A.2.2 Condit ional posterior for 𝜽

The posterior of 𝜃 at time T is truncated Gaussian on the nonnegative real line:

p(𝜃|𝜇, 𝜅, 𝜎v, 𝜌,T ) ∼
(
𝜃; 𝜃𝜃

,
1

𝜃

)
1(0,∞)(𝜃),

𝜃 =
𝜅2Δ

𝜎2
v (1 − 𝜌2)

T∑
t=1

1

vt−1

+ 1

M2
,

𝜃 = 𝜅

𝜎v(1 − 𝜌2)

T∑
t=1

1

vt−1

×
(

Dt

𝜎v
− 𝜌Ct

)
+ m

M2
,

Ct = rt − 𝜇Δ − Jt,

Dt = vt − vt−1 + 𝜅vt−1Δ,

where m and M are the hyperparameters for the prior of 𝜃. Truncated Gaussian sampling of 𝜃 and 𝜅 uses the normal-exponential

rejection sampling algorithm of Geweke 22 and Geweke and Zhou.23 This algorithm is more efficient than simple rejection

sampling with a Gaussian proposal. It also avoids potential arithmetic underflow problems of random uniform quantile inversion

methods when the mean of the left-truncated distribution is far to the left of the truncation point.

A.2.3 Condit ional posterior for 𝜿

The posterior of 𝜅 at time T is

p(𝜅|𝜇, 𝜃, 𝜎v, 𝜌,T ) ∼
( 𝜅
𝜅

,
1

𝜅

)
1(0,∞)(𝜅),

𝜅 =
Δ

𝜎2
v (1 − 𝜌2)

T∑
t=1

1

vt−1

(𝜃 − vt−1)2 +
1

M2
,

𝜅 = 1

𝜎v(1 − 𝜌2)

T∑
t=1

1

vt−1

(𝜃 − vt−1)

×
(

Dt

𝜎v
− 𝜌Ct

)
+ m

M2
,

Ct = rt − 𝜇Δ − Jt,

Dt = vt − vt−1,

where m and M are the hyperparameters for the prior of 𝜅.

A.2.4 Condit ional posterior for 𝝈v and 𝝆

After reparametrizing to (𝜙v,wv) = (𝜎v𝜌, 𝜎
2
v (1 − 𝜌2)), the posterior of (𝜙v,wv) at time T is
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p(𝜙v|wv, 𝜇, 𝜃, 𝜅,T ) ∼
( v

v
,

wv

v

)
,

p(wv|𝜇, 𝜃, 𝜅,T ) ∼ 
(

T
2
+ m,

(
1

2

T∑
t=1

D2
t + 1

M
−

2
v

2v

)−1
)
,

v = 2 +
T∑

t=1

C2
t ,

v =
T∑

t=1

CtDt,

Ct =
1√

vt−1Δ
(rt − 𝜇Δ − Jt),

Dt =
1√

vt−1Δ
(vt − vt−1 − 𝜅(𝜃 − vt−1)Δ),

where m and M are the hyperparameters for the prior of wv.

A.2.5 Condit ional posterior for 𝜸

The posterior of 𝛾 at time T is

p(𝛾|𝜎J ,T ) ∼
( 𝛾
𝛾

,
1

𝛾

)
,

𝛾 =
1

𝜎2
J

T∑
t=1

Gt +
1

M2
,

𝛾 = 1

𝜎2
J

T∑
t=1

Jt +
m

M2
,

where m and M are the hyperparameters for the prior of 𝛾 .

A.2.6 Condit ional posterior for 𝝈J

The posterior of 𝜎2
J at time T is

p
(
𝜎2

J |𝛾,T
)
∼ 

⎛⎜⎜⎝T
2
+ m,

(
1

2

T∑
t=1

(Jt − 𝛾Gt)2

Gt
+ 1

M

)−1⎞⎟⎟⎠ ,
where m and M are the hyperparameters for the prior of 𝜎J.

A.2.7 Condit ional posterior for 𝝂

The posterior of 𝜈 at time T is

p(𝜈|·) ∝ ⎛⎜⎜⎜⎝
1

𝜈
Δ
𝜈 Γ

(
Δ
𝜈

)⎞⎟⎟⎟⎠
T( T∏

t=1

Gt

) Δ
𝜈

× exp

(
−1

𝜈

( T∑
t=1

Gt +
1

M

))(
1

𝜈

)m+1

,

where m and M are the hyperparameters for the prior of 𝜈.
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Sampling of this posterior is complicated by non–log-concavity. In the Gibbs sampling step of the sequential algorithm, this

parameter is sampled via an adaptive rejection Metropolis sampling (ARMS) step with convexity correction parameter set to

2.0. We also investigated sampling 𝜈 on a discrete grid with weights proportional to the conditional posterior. However, this

discrete sampling scheme is very inefficient and requires a large number of evaluations of the log density function. Further, the

ARMS approach has yielded far superior results in the applications considered to date.

A.2.8 Condit ional posterior for v0

The posterior for v0 at time T = 1 is

p(v0|·) ∝ exp (−D1∕2 − logv0) ,

D1 =
(
1 − 𝜌2

)−1 ((𝜀r
1
)2 − 2𝜌𝜀r

1
𝜀v

1
+ (𝜀v

1
)2
)
,

𝜀r
1
= r1 − 𝜇Δ − J1√

v0Δ
,

𝜀v
1
= v1 − v0 − 𝜅(𝜃 − v0)Δ

𝜎v
√

v0Δ
.

A.2.9 Condit ional posterior for vT

For T > 0, the posterior for vT at time T is

p(vT |𝜇, 𝜃, 𝜅, 𝜎v, rT , JT , vT−1) ∼ (vT ;v,v)1(0,∞)(vt),
v = vT−1 + 𝜅(𝜃 − vT−1)Δ
+ 𝜌𝜎v(rT − 𝜇Δ − JT ),

v = (1 − 𝜌2)𝜎2
v vT−1Δ.

The prior structures for 𝜅, 𝜃, and 𝜎2
v help to ensure the nonnegativity and stationarity of the variance process. However, when

the ex-jump excess return (rT − 𝜇Δ − JT) is very large, there is a greater probability that the sampler generates negative values

for vt(𝜌 tends to be negative empirically). To guard against this case, propagation of vt is truncated Gaussian.

A.2.10 Condit ional posterior for JT

For T > 0, the posterior of JT at time T is

p(JT |𝜇, 𝜃, 𝜅, 𝜎v, 𝜌, 𝜎J , rT , vT , vT−1,GT ) ∼
( J

J
,

1

J

)
,

J =
1

vT−1Δ(1 − 𝜌2)
+ 1

𝜎2
J GT

,

J =
1

vT−1Δ(1 − 𝜌2)

(
CT −

𝜌DT

𝜎v

)
+ 𝛾

𝜎2
J

,

CT = rT − 𝜇Δ,
DT = vT − vT−1 − 𝜅(𝜃 − vT−1)Δ.

At present, this conditional distribution is not sampled as new particles for Jt are obtained via blind propagation from the

marginal p(Jt|Θ).
A.2.11 Condit ional posterior for GT

For T > 0, the posterior of GT at time T is generalized inverse gaussian (GIG):
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p(GT |𝜈, 𝛾, 𝜎J , JT ) ∝ 
(

GT ;𝜒 =
J2

T

𝜎2
J

, 𝜓 = 𝛾2

𝜎2
J

+ 2

𝜈
, 𝜆 = Δ

𝜈
− 0.5

)
.

Draws of Gt can be obtained, for example, via ARMS or GIG sampling algorithms such as those developed by Dagpunar18

or Leydold and Hörmann17 and Hörmann and Leydold.24 Both methods produce similar results. However, ARMS can have a

considerably higher computation cost than GIG samplers when the region from which proposals are drawn is large. In this

application, the GIG samplers tend to run 30% faster than ARMS. The efficient algorithm of Leydold and Hörmann17 and

Hörmann and Leydold24 is used here. The authors document deterioration in the performance of Dagpunar's method when 𝜆 < 1

and
√
𝜒ψ are close to 0, which is often the case in this application. Further, the GIG distribution is potentially log-concave over

certain regions of the parameter space,25 which would increase the overhead of ARMS because the Metropolis step would be

unnecessary.

A.3 Sequential learning algorithm

A.3.1 Propagate latent state Jt

As the stochastic volatility with variance-gamma (SVVG) likelihood is not available in closed form, the sequential algorithm

presented here relies on proposal draws of Jt to evaluate the conditional likelihood p(rt|Jt,Θ) in the resampling step. The set of

proposal draws
{

J̃(i)t

}M

i=1
is obtained from the marginal distribution of Jt. The propagation proposal density is given by Madan

et al11, theorem 1:

p
(
J̃t|(𝛾, 𝜎2

J , 𝜈)
(i)) = ∫

∞p
(

J̃t|Gt ,𝛾
(i),
(
𝜎
(i)
J

)2
)

p(Gt|𝜈(i))dGt

0

∝ exp
(
𝛾𝜎−2

J J̃t
) (

J̃t
2
) Δ

2𝜈
− 1

4

× K Δ
𝜈
− 1

2

⎛⎜⎜⎝𝜎−2
J

√√√√J̃2
t

(
2𝜎2

J

𝜈
+ 𝛾2

)⎞⎟⎟⎠ ,
where p(Gt|𝜈) is the gamma distribution density function (Gt; Δ∕𝜈, 𝜈) and K𝛼(·) is the modified Bessel function of the second

kind with order 𝛼.

The marginal density of Jt is easily sampled in a 2-step procedure using the conditional Gaussian-gamma property of the

subordinated Brownian motion given at Equations 6 and 7. When evaluating the likelihood, the intermediate gamma draws can

be discarded because rt is conditionally independent of Gt when Jt is known.

A.3.2 Resample particles after observing rt

Propagation of Jt is blind in that it does not condition on the current observation rt. In this implementation, the proposal density

and marginal density of Jt are identical. Therefore, resampling weights equal to the conditional likelihood p(rt|Jt,Θ) require

no adjustment. The set of particles
{
(Jt, xt−1,Θ, zt−1)(i)

}M
i=1

is reweighted to reflect the likelihood of parameters given
(

rt, J(i)t

)
.

Resampling weights are given by

w(i)t = p
(
rt|(vt−1, Jt, 𝜇)(i)

)
∝ exp

⎛⎜⎜⎜⎝−
(

rt − 𝜇(i)Δ − J(i)t

)2

2v(i)t−1
Δ

⎞⎟⎟⎟⎠ .
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This method requires no evaluations of the marginal density of Jt given at A.3.1, although this may not be the case when

using an alternative proposal density.

A.3.3 Propagate latent states vt and Gt

The latent states vt and Gt are propagated with draws from their respective conditional posterior distributions:

p
(

v(i)t |rt, (vt−1, Jt,Θ)(i)
)
∼ (

v(i)t ; (i)v , (i)
v

)
1(0,∞)(vt),

 (i)v = v(i)t−1
+ 𝜅(i)

(
𝜃(i) − v(i)t−1

)
Δ

+ 𝜌(i)𝜎(i)v

(
rt − 𝜇(i)Δ − J(i)t

)
,

 (i)
v =

(
1 −

(
𝜌(i)

)2
) (
𝜎2

v
)(i)v(i)t−1

Δ,

p
(

G(i)
t |(Jt, 𝛾, 𝜎

2
J , 𝜈

)(i)) ∼ 
⎛⎜⎜⎝G(i)

t ;

(
J(i)t

𝜎
(i)
J

)2

,

(
𝛾 (i)

𝜎
(i)
J

)2

+ 2

𝜈(i)
,
Δ
𝜈(i)

− 0.5
)
.

Details of obtaining draws of Gt are given at A.2.11.

A.3.4 Update condit ional suff ic ient stat ist ics vector zt

The form of the posterior suggests 14 parameter- and state-conditional sufficient statistics. For each particle, the vector zt is

updated as follows:

z(i)t = (z(i)t−1
, x(i)t , rt) = z(i)t−1

+
(

1, rt, vt−1, vt,
1

vt−1

,
vt

vt−1

,
v2

t

vt−1

, Jt,Gt, logGt,

rt − Jt

vt−1

,
(rt − Jt)vt

vt−1

,
(rt − Jt)2

vt−1

,
J2

t

Gt

)(i)

.

A.3.5 Sample stat ic parameter vector Θ
Sampling of static parameters comprises Gibbs sampling iterating over the elements of Θ. Each element of the static parameter

vector Θ is drawn in turn from its respective conditional posterior given z(i)t . Full-conditional posterior distributions are given

in Appendix A.2.

A.4 SVVG with volat i l i ty in mean
Here, we consider the extended SVVG model with conditional mean equation as specified at Equation 8 and volatility-in-mean

conditional mean function given by

f (vt−1) = 𝜇′ + 𝛽vvt−1.

Posterior distributions for 𝜇′ and 𝛽v are provided below. We assume Gaussian priors for 𝜇′ and 𝛽v to obtain poste-

rior conjugacy. Inference for the latent states and the remaining static parameters follows the methodology presented in

Appendix A.2.
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A.4.1 Condit ional posterior for 𝝁′ for volat i l i ty in mean
The posterior of 𝜇′ at time T is Gaussian:

p(𝜇′|𝛽v, 𝜃, 𝜎v, 𝜌,T ) ∼
(
𝜇′;

𝜇′
𝜇′

,
1

𝜇′

)
,

𝜇′ =
Δ

1 − 𝜌2

T∑
t=1

1

vt−1

+ 1

M2
,

𝜇′ = 1

1 − 𝜌2

T∑
t=1

1

vt−1

(
Ct − 𝜌

Dt

𝜎v

)
+ m

M2
,

Ct = rt − Jt − 𝛽vvt−1Δ,
Dt = vt − vt−1 − 𝜅(𝜃 − vt−1)Δ,

where m and M are the hyperparameters for the prior of 𝜇′.

A.4.2 Condit ional posterior for 𝜷v for volat i l i ty in mean
The posterior of 𝛽v at time T is Gaussian:

p(𝛽v|𝜇, 𝜃, 𝜎v, 𝜌,T ) ∼
(
𝛽v;

𝛽v

𝛽v

,
1

𝛽v

)
,

𝛽v =
Δ

1 − 𝜌2

T∑
t=1

vt−1 +
1

M2
,

𝛽v =
1

1 − 𝜌2

T∑
t=1

(
Ct − 𝜌

Dt

𝜎v

)
+ m

M2
,

Ct = rt − Jt − 𝜇′Δ
Dt = vt − vt−1 − 𝜅(𝜃 − vt−1)Δ,

where m and M are the hyperparameters for the prior of 𝛽v.
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