Principal components analysis (PCA) \& factor analysis (FA)

Hedibert F. Lopes \& Paulo Marques
Insper Institute of Education and Research
São Paulo, Brazil

Examples

Example	Data description	Observations	Features
3	Monthly exchange rates data	144	6
6	Weekly measurements of SO_{2}	342	22
4	Daily exchange rates data	2650	26
1	Human development index data	5481	22
2	BOVESPA data	21802	15
7	Quarterly US economic data	202	224
5	Daily returns for S\&P500 firms	2000	300

Outline

Principal components analysis

Example 1: hdi data (5481×22)
Full OLS regression
Eigenvalues and eigenvectors
Singular value and spectral decompositions
Principal components analysis
Full regression vs PCA-based regression
Example 2: ibovespa data (21802×15)
Factor analysis
Early days
Basic model
Example 3: Monthly exchange rates data (144×6)
Example 4: Daily exchange rates data (2650×26)
Example 5: Daily returns for S\&P500 firms (2000×300)
Example 6: Weekly measurements of $\mathrm{SO}_{2}(342 \times 22)$
Related models
Factor regression
Partial least squares
Canonical correlation analysis
Example 7: Quarterly data on the US economy (202 $\times 224$)

Outline
 Principal components analysis

Example 1: hdi data (5481×22)
Full OLS regression
Eigenvalues and eigenvectors
Singular value and spectral decompositions
Principal components analysis
Full regression vs PCA-based regression
Example 2: ibovespa data (21802×15)
Factor analysis
Early days
Basic model
Example 3: Monthly exchange rates data (144×6)
Example 4: Daily exchange rates data (2650×26)
Example 5: Daily returns for S\&P500 firms (2000×300)
Example 6: Weekly measurements of $\mathrm{SO}_{2}(342 \times 22)$
Related models
Factor regression
Partial least squares
Canonical correlation analysis
Example 7: Quarterly data on the US economy (202×224)

hdi data

RESPONSE:

14. Indice de Desenvolvimento Humano

21 PREDICTORS:

4. Renda domiciliar per capita - media do 10 quintil ($\mathrm{R} \$ \mathrm{por}$ mes)
5. Renda domiciliar per capita - media do 20 quintil ($\mathrm{R} \$$ por mes)
6. Renda domiciliar per capita - media do 30 quintil ($R \$$ por mes)
7. Renda domiciliar per capita - media do 40 quintil ($R \$$ por mes)
8. Renda domiciliar per capita - media do 50 quintil ($\mathrm{R} \$$ por mes)
9. Razao entre a renda dos 10% mais ricos e 40% mais pobres
10. Mulheres chefes de familia sem conjuge e com filhos menores de 15 anos (\%)
11. Medicos residentes (por mil habitantes)
12. Enfermeiros residentes com curso superior (\%)
13. Alfabetizados - pessoas 15 anos e mais (\%)
14. Mortalidade ate cinco anos de idade (por mil nascidos vivos)
15. Probabilidade de sobrevivencia ate 40 anos (\%)
16. Probabilidade de sobrevivencia ate 60 anos (\%)
17. Taxa de fecundidade (\%)
18. Pessoas 65 anos ou mais - morando sozinhas (\%)
19. Pessoas 10 e 14 anos - mulheres com filhos (\%)
20. Professores do fundamental residentes com curso superior (\%)
21. Esperanca de vida ao nascer
22. Mortalidade infantil (por mil nascidos vivos)
23. Domicilios - com agua encanada - pessoas (\%)
24. Domicilios - com servico de coleta de lixo - pessoas (\%)

Full OLS regression $(p=21)$

Full regression: hdi $=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}+\varepsilon$

RMSE=0.094

Eigenvalues and eigenvectors ${ }^{1}$

Let x be a zero-mean p-dimensional vector of features with variance $\Sigma>0$.

Eigenvalues: If $\Sigma(p \times p)$ is any square matrix then

$$
q(\lambda)=\left|\Sigma-\lambda I_{p}\right|
$$

is a p th order polynomial in λ. The roots $\lambda_{1}, \ldots, \lambda_{p}$ are called eigenvalues of Σ.
Eigenvectors: For each $i=1, \ldots, p,\left|\Sigma-\lambda_{i} I_{p}\right|=0$, so $\Sigma-\lambda_{i} I_{p}$ is singular. Hence, there exists a non-zero vector γ satisfying

$$
\Sigma \gamma=\lambda_{i} \gamma
$$

Any such vector is called an eigenvector of Σ for the eigenvalue λ_{i}.

Symmetric matrices: All the eigenvalues of a symmetric matrix are real Rank of a matrix:. The rank of Σ equals the number of non-zero eigenvalues.
${ }^{1}$ Mardia, Kent and Bibby (1979) Multivariate Analysis. Academic Press. Page 466-469.

Singular value and spectral decompositions

Singular value decomposition theorem
If A is an $(n \times p)$ matrix of rank r, then A can be written as

$$
A=U L V^{\prime}=\sum_{i=1}^{r} \ell_{i} u_{(i)} v_{(i)}^{\prime}
$$

where $U=\left(u_{(1)}, \ldots, u_{(r)}\right)$ is $(n \times r)$ and $V=\left(v_{(1)}, \ldots, v_{(r)}\right)$ is $(p \times r)$ are column orthonormal matrices $\left(U^{\prime} U=V^{\prime} V=I_{r}\right)$ and L is a diagonal matrix with positive elements, i.e. $L=\operatorname{diag}\left(\ell_{1}, \ldots, \ell_{r}\right)$.

Spectral decomposition theorem, or Jordan decomposition theorem Any symmetric matrix $\Sigma(p \times p)$ can be written as

$$
\Sigma=\Gamma \wedge \Gamma^{\prime}=\sum_{i=1}^{p} \lambda_{i} \gamma_{(i)} \gamma_{(i)}^{\prime}
$$

where Λ is a diagonal matrix of eigenvalues of Σ, and Γ is an orthogonal matrix whose columns are standardized eigenvectors.

Principal components analysis

Recall that $E(x)=0$ and $V(x)=\Sigma=\Gamma \wedge \Gamma^{\prime}$.

Let $y=\Gamma^{\prime} x$.
By using the spectral decomposition theorem, we can see that

$$
\begin{aligned}
E(y) & =0 \\
V(y) & =\Lambda \\
V\left(y_{1}\right) & \geq V\left(y_{2}\right) \geq \cdots \geq V\left(y_{p}\right) \geq 0
\end{aligned}
$$

Result 1: No linear combination of x has variance larger than λ_{1}, the variance of the first principal component.

Result 2: If $\alpha=a^{\prime} x$ is a linear combination of x which is uncorrelated with the first k principal components of x, then the variance of α is maximized when α is the $(k+1)$ th principal component of x.

Sample principal components

Let X be our hdi data, i.e. a ($n \times p$) matrix with $n=5,481$ municipalities and its $p=21$ features.

The sample covariance matrix is $\hat{\Sigma}$, which can be decomposed as

$$
\hat{\Sigma}=G L G^{\prime},
$$

such that the ith principal component can be written as

$$
y_{(i)}=X g_{(i)}
$$

or simply $Y=X G$, such that the sample covariance matrix of Y is L.

The vector $g_{(i)}$ are the loadings of the i th principal component. The vector $y_{(i)}$ are the scores of the i th principal component.

A few references

Pearson (1901) On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559-572.

Hotelling (1933) Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24(6), 417.

Tipping and Bishop (1999) Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B, 61(3), 611-622.

Jolliffe (200) Principal component analysis. Wiley Online Library.

Hoff (2007) Model averaging and dimension selection for the singular value decomposition. Journal of the American Statistical Association, 102(478), 674-685.

Zhang and El Ghaoui (2011) Large-scale sparse principal component analysis with application to text data. In Advances in Neural Information Processing Systems, 532-539.

Jolliffe and Cadima (2016) Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 374.

Toy example

```
S = var(dados[,2:6])
    rendapc1 rendapc2 rendapc3 rendapc4 rendapc5
rendapc1 1.0000000 0.9694697 0.9368180
rendapc2 0.9694697 1.0000000 0.9871980 0.9567946 0.8208739
rendapc3 0.9368180 0.9871980 1.0000000 0.9859019 0.8535538
rendapc4 0.8922824 0.9567946 0.9859019 1.0000000 0.8876594
rendapc5 0.7548276 0.8208739 0.8535538 0.8876594 1.0000000
svd(S)
$d
[1] 4.62446396 0.28228144 0.07769785 0.01265673 0.00290002
```

\$u

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	-0.4411378	0.4941891	0.608777172	-0.42710055	0.09027785
$[2]$,	-0.4586014	0.2724745	-0.007324998	0.66916141	-0.51731208
$[3]$,	-0.4613133	0.1018765	-0.368647838	0.23092054	0.76654138
$[4]$,	-0.4571075	-0.1142474	-0.575268235	-0.55792360	-0.36849418
$[5]$,	-0.4163232	-0.8112358	0.403115279	0.07214636	0.02940206

\$v

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	-0.4411378	0.4941891	0.608777172	-0.42710055	0.09027785
$[2]$,	-0.4586014	0.2724745	-0.007324998	0.66916141	-0.51731208
$[3]$,	-0.4613133	0.1018765	-0.368647838	0.23092054	0.76654138
$[4]$,	-0.4571075	-0.1142474	-0.575268235	-0.55792360	-0.36849418
$[5]$,	-0.4163232	-0.8112358	0.403115279	0.07214636	0.02940206

round (100*svd (S) \$d/sum (svd (S) \$d) , 2)
$\begin{array}{llllll}{[1]} & 92.49 & 5.65 & 1.55 & 0.25 & 0.06\end{array}$

Back to the hdi dataset

Using the R function princomp

First principal component: loadings $g_{(1)}$

HDI vs 1st principal component

Full regression vs PCA-based regression

Full regression: hdi $=\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j}+\varepsilon$
PCA-based regression: hdi $=\gamma_{0}+\gamma_{1} y_{1}+\epsilon=\gamma_{0}+\sum_{j=1}^{p}\left(\gamma_{1} g_{j}\right) x_{j}+\epsilon$

PCA-based regressions: 1 to p principal components PCA regression: hdi $=\gamma_{0}+\sum_{j=1}^{k} \gamma_{j} y_{j}+\epsilon$, for $k=1, \ldots, p$.

Dashed line is RMSE of full regression.

PCA-based regressions: 15 and ALL principal components

15 principal components

ALL principal components

Remarks from the hdi exercise

A single principal component is responsible for 50% of the variability of X.

A total of 15 principal components are needed to fit hdi.

ibovespa data: January 2nd, 2008

Date Time.of.Day VALE5 BVMF3 GGBR4 BBDC4 OGXP3 ITUB4 ITSA4 BBAS3

| 1 | $1 / 2 / 08$ | 11.38 | 50.70 | 11.77 | 51.26 | 56.55 | 1274.9 | 30.4 | 11.78 | 29.91 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | $1 / 2 / 08$ | 11.63 | 50.40 | 11.77 | 51.46 | 56.60 | 1274.9 | 30.4 | 11.78 | 30.03 |
| 3 | $1 / 2 / 08$ | 11.88 | 50.39 | 11.77 | 51.41 | 56.41 | 1274.9 | 30.4 | 11.78 | 30.18 |
| 4 | $1 / 2 / 08$ | 12.13 | 50.50 | 11.77 | 51.43 | 56.30 | 1274.9 | 30.4 | 11.77 | 30.28 |
| 5 | $1 / 2 / 08$ | 12.38 | 50.39 | 11.77 | 51.49 | 56.31 | 1274.9 | 30.4 | 11.76 | 30.42 |
| 6 | $1 / 2 / 08$ | 12.63 | 50.31 | 11.77 | 51.60 | 56.15 | 1274.9 | 30.4 | 11.79 | 30.50 |
| 7 | $1 / 2 / 08$ | 12.88 | 50.30 | 11.77 | 51.68 | 55.90 | 1274.9 | 30.4 | 11.76 | 30.51 |
| 8 | $1 / 2 / 08$ | 13.13 | 50.03 | 11.77 | 51.60 | 55.49 | 1274.9 | 30.4 | 11.70 | 30.50 |
| 9 | $1 / 2 / 08$ | 13.38 | 49.79 | 11.77 | 51.35 | 55.30 | 1274.9 | 30.4 | 11.67 | 30.46 |
| 10 | $1 / 2 / 08$ | 13.63 | 49.93 | 11.77 | 51.40 | 55.70 | 1274.9 | 30.4 | 11.66 | 30.55 |
| 11 | $1 / 2 / 08$ | 13.88 | 49.87 | 11.77 | 51.30 | 55.80 | 1274.9 | 30.4 | 11.63 | 30.60 |
| 12 | $1 / 2 / 08$ | 14.13 | 49.77 | 11.77 | 50.70 | 55.65 | 1274.9 | 30.4 | 11.62 | 30.55 |
| 13 | $1 / 2 / 08$ | 14.38 | 49.65 | 11.77 | 50.60 | 55.33 | 1274.9 | 30.4 | 11.55 | 30.55 |
| 14 | $1 / 2 / 08$ | 14.63 | 49.35 | 11.77 | 50.55 | 55.01 | 1274.9 | 30.4 | 11.45 | 30.50 |
| 15 | $1 / 2 / 08$ | 14.88 | 49.70 | 11.77 | 50.78 | 55.14 | 1274.9 | 30.4 | 11.49 | 30.55 |
| 16 | $1 / 2 / 08$ | 15.13 | 49.64 | 11.77 | 50.65 | 55.03 | 1274.9 | 30.4 | 11.45 | 30.61 |
| 17 | $1 / 2 / 08$ | 15.38 | 49.45 | 11.77 | 50.56 | 54.62 | 1274.9 | 30.4 | 11.44 | 30.67 |
| 18 | $1 / 2 / 08$ | 15.63 | 49.45 | 11.77 | 50.76 | 54.60 | 1274.9 | 30.4 | 11.46 | 30.72 |
| 19 | $1 / 2 / 08$ | 15.88 | 49.45 | 11.77 | 50.71 | 54.20 | 1274.9 | 30.4 | 11.47 | 30.51 |
| 20 | $1 / 2 / 08$ | 16.13 | 49.50 | 11.77 | 50.57 | 54.34 | 1274.9 | 30.4 | 11.45 | 30.51 |
| 21 | $1 / 2 / 08$ | 16.38 | 49.48 | 11.77 | 50.80 | 54.47 | 1274.9 | 30.4 | 11.44 | 30.60 |
| 22 | $1 / 2 / 08$ | 16.63 | 49.50 | 11.77 | 50.61 | 54.48 | 1274.9 | 30.4 | 11.44 | 30.65 |

Standardized returns

RDCD3

NATU3

ITSA4

LAME4

BRAP4

BBAS3

JBSS 3

BISA3

VALE3

LREN3

EMBR3

CYRE3

GOLL4

\% of explained variance

Principal components: scores

Principal components: scores

PCA over partition of the data

Each subset has 482 observations, but the last which has 503

1	$1 / 2 / 08$	$2 / 1 / 08$
2	$2 / 6 / 08$	$3 / 6 / 08$
3	$3 / 7 / 08$	$4 / 8 / 08$
4	$4 / 9 / 08$	$5 / 12 / 08$
5	$5 / 13 / 08$	$6 / 12 / 08$
6	$6 / 13 / 08$	$7 / 15 / 08$
7	$7 / 16 / 08$	$8 / 14 / 08$
8	$8 / 15 / 08$	$9 / 15 / 08$
9	$9 / 16 / 08$	$10 / 15 / 08$
10	$10 / 16 / 08$	$11 / 14 / 08$
11	$11 / 17 / 08$	$12 / 17 / 08$
12	$12 / 18 / 08$	$1 / 22 / 09$
13	$1 / 23 / 09$	$2 / 25 / 09$
14	$2 / 26 / 09$	$3 / 27 / 09$
15	$3 / 30 / 09$	$4 / 30 / 09$
16	$5 / 4 / 09$	$6 / 2 / 09$
17	$6 / 3 / 09$	$7 / 3 / 09$
18	$7 / 6 / 09$	$8 / 5 / 09$
19	$8 / 6 / 09$	$9 / 4 / 09$
20	$9 / 8 / 09$	$10 / 7 / 09$
21	$10 / 8 / 09$	$11 / 10 / 09$
22	$11 / 11 / 09$	$12 / 11 / 09$
23	$12 / 14 / 09$	$1 / 18 / 10$

24	$1 / 19 / 10$	$2 / 22 / 10$
25	$2 / 23 / 10$	$3 / 24 / 10$
26	$3 / 25 / 10$	$4 / 27 / 10$
27	$4 / 28 / 10$	$5 / 27 / 10$
28	$5 / 28 / 10$	$6 / 29 / 10$
29	$6 / 30 / 10$	$7 / 30 / 10$
30	$8 / 2 / 10$	$8 / 31 / 10$
31	$9 / 1 / 10$	$10 / 1 / 10$
32	$10 / 4 / 10$	$11 / 4 / 10$
33	$11 / 5 / 10$	$12 / 7 / 10$
34	$12 / 8 / 10$	$1 / 10 / 11$
35	$1 / 11 / 11$	$2 / 10 / 11$
36	$2 / 11 / 11$	$3 / 16 / 11$
37	$3 / 17 / 11$	$4 / 15 / 11$
38	$4 / 18 / 11$	$5 / 19 / 11$
39	$5 / 20 / 11$	$6 / 20 / 11$
40	$6 / 21 / 11$	$7 / 21 / 11$
41	$7 / 22 / 11$	$8 / 22 / 11$
42	$8 / 23 / 11$	$9 / 22 / 11$
43	$9 / 23 / 11$	$10 / 25 / 11$
44	$10 / 26 / 11$	$11 / 28 / 11$
45	$11 / 29 / 11$	$12 / 29 / 11$

First 4 principal components: standard deviations

First 4 principal components: \% of explained variance

PCA and factor analysis

Principal components analysis is a dimension-reduction and projection tool for high dimensional matrices.

Factor analysis is a modeling framework for high dimensional and highly structure data.

Outline

ncipal components analysis

Example 1: hdi data (5481×22)
Full OLS regression
Eigenvalues and eigenvectors
Singular value and spectral decompositions
Principal components analysis
Full regression vs PCA-based regression
Example 2: ibovespa data (21802×15)

Factor analysis

Early days
Basic model
Example 3: Monthly exchange rates data (144×6)
Example 4: Daily exchange rates data (2650×26)
Example 5: Daily returns for S\&P500 firms (2000×300)
Example 6: Weekly measurements of $\mathrm{SO}_{2}(342 \times 22)$
Related models
Factor regression
Partial least squares
Canonical correlation analysis
Example 7: Quarterly data on the US economy (202×224)

Factor analysis: early days

Bartholomew (1995) ${ }^{2}$ starts his paper by saying that
Spearman invented factor analysis but his almost exclusive concern with the notion of a general factor prevented him from realizing its full potential.

Factor analysis, however, has flourished ever since Spearman's (1904) seminal paper on the American Journal of Psychology (Vol 15, pp. 201-292) entitled "General Inteligente objectively determined and measured".

[^0]
Spearman's general intelligence

Psychologists were trying to define intelligence by a single, all-encompassing unobservable entity, the g factor.

Spearman studied the influence of the g factor on examinees test scores on several domains:

- Pitch
- Light
- Weight
- Classics
- French
- English
- Mathematics

End of the day: Postulating g provides a mechanism to detect common correlations among such variables.

Spearman's one-factor model

One-factor model:

$$
\begin{aligned}
y_{i 1} & =\mu_{1}+\lambda_{1} g_{i}+\epsilon_{i 1} \\
y_{i 2} & =\mu_{2}+\lambda_{2} g_{i}+\epsilon_{i 2} \\
& \vdots \\
y_{i m} & =\mu_{m}+\lambda_{m} g_{i}+\epsilon_{i m}
\end{aligned}
$$

where

- $y_{i j}$: score of examinee i on test domain j.
- μ_{j} : mean of test domain j.
- g_{i} : value of the intelligence factor for person i.
- λ_{j} : loading of test domain j onto the intelligence factor g.
- $\epsilon_{i j}$: random error term for person i and test domain j.

Multiple factor analysis

Factor models are mainly applied in two major situations:

1. Identifying underlying structures.
2. Data reduction.

Basic model

The Gaussian linear factor model relates a m-vector of observables y_{t} to a r-vector of latent variables f_{t} via

$$
y_{t} \mid f_{t}, \Lambda, \Sigma \sim N\left(\wedge f_{t}, \Sigma\right)
$$

Common factors:

$$
f_{t} \mid \Lambda, \Sigma \sim N\left(0, I_{r}\right) .
$$

Specific/idiosyncratic factor variances:

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}\right)
$$

Variance structure

Conditional variance

The common latent factors explain all the dependence structure among the m variables:

$$
\operatorname{cov}\left(y_{i t}, y_{j t} \mid f_{t}, \Lambda, \Sigma\right)=\left\{\begin{array}{cc}
\sigma_{i}^{2} & i=j \\
0 & i \neq j
\end{array}\right.
$$

Unconditional variance

$$
V\left(y_{t} \mid \Lambda, \Sigma\right)=\Lambda \Lambda^{\prime}+\Sigma
$$

Invariance

The factor model is invariant to orthogonal transformations, i.e.

$$
\tilde{\Lambda}=\Lambda P^{\prime} \quad \text { and } \quad \tilde{f}_{t}=P f_{t}
$$

for any orthogonal matrix P, such that

$$
V\left(y_{t} \mid \Lambda, \Sigma\right)=\Lambda \Lambda^{\prime}+\Sigma=\tilde{\Lambda} \tilde{\Lambda}^{\prime}+\Sigma
$$

Dealing with invariance

Classical approach: Orthogonality of the columns of Λ

$$
\Lambda^{\prime} \Sigma^{-1} \Lambda=I_{r}
$$

Bayesian approach: Λ is block lower triangular

$$
\Lambda=\left(\begin{array}{ccccc}
\lambda_{11} & 0 & 0 & \cdots & 0 \\
\lambda_{21} & \lambda_{22} & 0 & \cdots & 0 \\
\lambda_{31} & \lambda_{32} & \lambda_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_{r 1} & \lambda_{r 2} & \lambda_{r, r-1} & \cdots & \lambda_{r r} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_{m 1} & \lambda_{m 2} & \lambda_{m, r-1} & \cdots & \lambda_{m r}
\end{array}\right)
$$

Frühwirth-Schnatter and Lopes (2009/2017): Λ is generalized block lower triangular. Our generalization provides both identification and, often, useful interpretation of the factor model.

Classical literature

- Thurstone (1934)
- Bartlett (1937)
- Lawley $(1940,1941)$
- Kendall and Smith (1950)
- Anderson and Rubin (1956)
- Jöreskog $(1969,1970)$
- Rubin and Thayer (1982)
- Bentler and Tanaka (1983)
- Rubin and Thayer (1983)
- Akaike (1987)
- Anderson and Amemiya (1988)
- Amemiya and Anderson (1990)

Bayesian literature

Pre-MCMC

- Press (1972)
- Martin and McDonald (1975)
- Geweke and Singleton (1980)
- Bartholomew (1981)
- Lee (1981)
- Press and Shigemasu (1989)

Post-MCMC

- Geweke and Zhou (1996)
- Aguilar and West (2000)
- Lopes, Aguilar and West (2000)
- Lopes and Migon (2002)
- West (2003)
- Wang and Wall (2003)
- Lopes and West (2004)
- Quinn (2004)
- Hogan and Tchernis (2004)
- Lopes, Salazar and Gamerman (2008)
- Carvalho et al. (2008)
- Chib and Ergashev (2009)
- Frühwirth-Schnatter and Lopes (2009/2017)
- Carvalho, Lopes and Aguilar (2011)
- Lopes, Schmidt, Salazar, Gomez and Achkar (2012)
- Bhattacharya and Dunson (2011)
- Lopes, Conti, Heckman and Piatek (2012)
- Hahn, He and Lopes (2017)
- Kastner, Frühwirth-Schnatter and Lopes (2017)

Factor analysis by area ${ }^{3}$

	1904	1981	1986	1991	1995	2000	Total
	-1980	-1985	-1990	-1995	-2000	-2004	
Biology	18	17	20	23	47	41	166
Chemistry	12	14	36	53	88	77	244
Chromatography	4	7	16	22	24	15	88
Ecology	2	4	11	15	61	45	138
Economics	14	12	9	4	20	26	85
Food	1	4	5	2	17	21	50
Geriatry	8	5	10	9	25	31	88
Image Processing	2	7	22	27	38	51	151
Industry	4	0	2	6	38	28	78
Magnetic Resonance	1	1	3	6	25	13	49
Medicine	30	32	64	67	109	116	418
Methodology	10	25	31	49	125	151	391
Operational Research	1	1	1	9	42	41	95
Physiology	20	26	38	39	51	29	203
Psychiatry	15	14	39	61	137	99	365
Psychology	93	86	159	219	379	344	1287
Spectroscopy	11	27	40	50	108	90	326
(a) Total FA-papers	196	242	408	545	1065	1002	3460
(b) All papers $\left(* 10^{3}\right)$	5186	1518	1890	2117	2430	1999	14707
(c) FA/All $\left(* 10^{-6}\right)$	38	159	216	257	438	501	235

Table 1. Distribution of papers on factor analysis in the Internet.

Modern Bayesian factor analysis

MODERN BAYESIAN FACTOR ANALYSIS

Hedibert Freitas Lopes

George Washington University, D.C., USA

5.1 Introduction

The origin of factor analysis can be traced back to Spearman's (1904) seminal paper on general intelligence. At the time, psychologists were trying to define intelligence by a single, all-encompassing unobservable entity, the g factor. Spearman studied the influence of the g factor on examinees' test scores on several domains: pitch, light, weight, classics, French, English, and mathematick. At the end of the $i_{c o s}$. At the end of the day, the g factor would provide a mechansme precisely, Common correlations among such imperfect measurements. More pearman's (1904) one-factor model based on p test domains (measurements) and n examinees (individuals) can be written as

$$
\begin{equation*}
y_{i j}=\mu_{j}+\beta_{j} g_{i}+\varepsilon_{i j}, \tag{5.1}
\end{equation*}
$$

byesian Inference in the Social Sciences. 2014 John Wiley \& Sons, Inc.
By Ivin Jelinzkoy and Xin-She Yang Copyright © 2014 John Whey \& Sons, 1

Prior specification

Loadings
For $i=1, \ldots, r$

$$
\lambda_{i i} \sim N_{(0, \infty)}\left(m_{0}, C_{0}\right)
$$

For $i=2, \ldots, r$ and $j=1, \ldots, \min \{i-1, r\}$

$$
\lambda_{i j} \sim N\left(m_{0}, C_{0}\right)
$$

Idiosyncratic variances
For $i=1, \ldots, m$

$$
\sigma_{i}^{2} \sim I G\left(\nu / 2, \nu s^{2} / 2\right)
$$

The hyperparameters m_{0}, C_{0}, ν and s^{2} are known.

Posterior inference via Gibbs sampler

A factor model is a multivariate regression model when deriving the full conditional distributions of $p(\Lambda, f, \Sigma \mid y)$.

The two easiest ones are the full conditional distributions of the common factors f_{1}, \ldots, f_{n} and the idiosyncratic variances $\sigma_{1}^{2}, \ldots, \sigma_{m}^{2}$.

$$
\begin{aligned}
& \text { Let } y=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)^{\prime}=\left(y_{(1)}, \ldots, y_{(m)}\right), \Lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\prime} \text { and } \\
& F_{i}=\left(f_{(1)}, \ldots, f_{(i)}\right) \text { for } i=1, \ldots, r \text {, with } F=F_{r} \text {. }
\end{aligned}
$$

$$
\left(f_{i} \mid \Lambda, \sigma, y\right): \text { For } i=1, \ldots, n
$$

$$
\left(f_{i} \mid \Lambda, \Sigma, y\right) \sim N\left(\left(I_{k}+\Lambda^{\prime} \Sigma^{-1} \Lambda\right)^{-1} \Lambda^{\prime} \Sigma^{-1} y_{i},\left(I_{k}+\Lambda^{\prime} \Sigma^{-1} \Lambda\right)^{-1}\right)
$$

$$
\left(\sigma_{i}^{2} \mid \Lambda, f, y\right): . \text { For } i=1, \ldots, m
$$

$$
\left(\sigma_{i}^{2} \mid \Lambda, f, y\right) \sim I G\left(\frac{\nu+n}{2}, \frac{\nu s^{2}+\left(y_{(i)}-F \lambda_{i}\right)^{\prime}\left(y_{(i)}-F \lambda_{i}\right)}{2}\right)
$$

Full conditional of $\Lambda,(\Lambda \mid \sigma, f, y)$

The identifiability constraints are such that, for $i=1, \ldots, r-1$,

$$
\lambda_{i}=\left(\tilde{\lambda}_{i}^{\prime}, 0_{r-i}^{\prime}\right)^{\prime} .
$$

For $i=1, \ldots, r$:

$$
\left(\tilde{\lambda}_{i} \mid \Sigma, f, y\right) \sim N\left(m_{i}, C_{i}\right) 1\left\{\tilde{\lambda}_{i i}>0\right\}
$$

where

$$
\begin{aligned}
m_{i} & =C_{i}\left(C_{0}^{-1} m_{0} 1_{i}+\sigma_{i}^{-2} F_{i}^{\prime} y_{(i)}\right) \\
C_{i}^{-1} & =C_{0}^{-1} l_{i}+\sigma_{i}^{-2} F_{i}^{\prime} F_{i}
\end{aligned}
$$

For $i=r+1, \ldots, m$:

$$
\left(\lambda_{i} \mid \Sigma, f, y\right) \sim N\left(m_{i}, C_{i}\right)
$$

where

$$
\begin{aligned}
m_{i} & =C_{i}\left(C_{0}^{-1} m_{0} 1_{r}+\sigma_{i}^{-2} F^{\prime} y_{(i)}\right) \\
C_{i}^{-1} & =C_{0}^{-1} I_{r}+\sigma_{i}^{-2} F^{\prime} F
\end{aligned}
$$

Exchange rate data (Lopes and West, 2004)

- Monthly exchange rates from January 1975 to December 1986.
- Time series are the exchange rates in British pounds of
- US dollar (US) and Canadian dollar (CAN)
- Japanese yen (JAP)
- French franc (FRA), Italian lira (ITA) and German Deutschmark (GER)
- The prior hyperparameters are
- Informative prior: $\left(m_{0}, C_{0}^{-1}, \nu_{0}, s^{2}\right)=(0,1,2.2,0.0455)$ Prior mode of σ_{i} is 0.154 .
- Noninformative prior: $\left(m_{0}, C_{0}^{-1}, \nu_{0}, s^{2}\right)=(0,0,0.001,1)$ Prior mode of σ_{i}^{2} is 0.032 .
- We burn-in the Gibbs sampler for 10,000 iterations, and then save equally spaced samples of 5,000 draws from a longer run of 100,000.
- It takes about one minute to run a two-factor model (in R) on my MacBook Pro with a 2.6 GHz Intel Core i7 processor, 8 GB 1600 MHz DDR3 Memory running a Mac OS X Lion 10.7.5.

Posterior means

The posterior means of Σ and Λ^{\prime} in a two-factor model are

$$
E(\Sigma \mid y)=\operatorname{diag}(0.05,0.13,0.62,0.04,0.25,0.26)
$$

and

$$
E\left(\Lambda^{\prime} \mid y\right)=\left(\begin{array}{llllll}
1.00 & 0.96 & 0.46 & 0.39 & 0.42 & 0.41 \\
0.00 & 0.05 & 0.43 & 0.92 & 0.78 & 0.78
\end{array}\right)
$$

respectively.

One can argue that

- The first common factor groups North American currencies, and
- The second common factor groups European currencies.

Ordering of the variables

1st ordering

$$
\hat{\Lambda}=\left(\begin{array}{lll}
\text { US } & 1.00 & 0.00 \\
\text { CAN } & 0.96 & 0.05 \\
\text { JAP } & 0.46 & 0.43 \\
\text { FRA } & 0.39 & 0.92 \\
\text { ITA } & 0.42 & 0.78 \\
\text { GER } & 0.41 & 0.78
\end{array}\right) \quad \hat{\Sigma}=\operatorname{diag}\left(\begin{array}{l}
0.05 \\
0.13 \\
0.62 \\
0.04 \\
0.25 \\
0.26
\end{array}\right)
$$

2nd ordering

$$
\hat{\Lambda}=\left(\begin{array}{lll}
\text { US } & 0.98 & 0.00 \\
\text { JAP } & 0.45 & 0.42 \\
\text { CAN } & 0.95 & 0.03 \\
\text { FRA } & 0.39 & 0.91 \\
\text { ITA } & 0.41 & 0.77 \\
\text { GER } & 0.40 & 0.77
\end{array}\right) \quad \hat{\Sigma}=\operatorname{diag}\left(\begin{array}{l}
0.06 \\
0.62 \\
0.12 \\
0.04 \\
0.25 \\
0.26
\end{array}\right)
$$

Variance decomposition

The proportion of the variance of currency i attributed to factor j is given by $\nu_{i j}=\beta_{i j}^{2} /\left(\lambda_{i 1}^{2}+\lambda_{i 2}^{2}+\sigma_{i}^{2}\right)$. Informative prior (white boxplots). Noninformative prior (grey boxplots).

Marginal posteriors based on 2- and 3-factor models

Two-factor model (histograms) and a (overfitted) three-factor model (solid lines).
Informative prior (top row) and noninformative prior (bottom row).

Factor stochastic volatility ${ }^{4}$

For each point in time $t=1, \ldots, T$,

- m observed returns: $y_{t}=\left(y_{1 t}, \ldots, y_{m t}\right)^{\prime}$
- r unobserved factors: $f_{t}=\left(f_{1 t}, \ldots, f_{r t}\right)^{\prime}$
- Volatilities: $h_{t}=\left(h_{t}^{U}, h_{t}^{V}\right), h_{t}^{U}=\left(h_{1 t}, \ldots, h_{m t}\right)^{\prime}$ and $h_{t}^{V}=\left(h_{1, m+1}, \ldots, h_{m+r, t}\right)^{\prime}$.

Our factor stochastic volatility model is

$$
\begin{aligned}
y_{t} \mid f_{t} & \sim N\left(\wedge f_{t}, U_{t}\right) \\
f_{t} & \sim N\left(0, V_{t}\right)
\end{aligned}
$$

where

- Factor loadings: Λ is $m \times r$
- Idiosyncratic variance: $U_{t}=\operatorname{diag}\left(\exp \left(h_{1 t}, \ldots, h_{m t}\right)\right)$
- Factor variance: $V_{t}=\operatorname{diag}\left(\exp \left(h_{m+1, t}, \ldots, h_{m+r, t}\right)\right)$
- Log-volatilities:

$$
\begin{aligned}
h_{i t} & =\left(1-\phi_{i}\right) \mu_{i}+\phi_{i} h_{i, t-1}+\sigma_{i} \eta_{i t} \quad i=1, \ldots, m \\
h_{i t} & =\phi_{i} h_{i, t-1}+\sigma_{i} \eta_{i t} \quad i=m+1, \ldots, m+r .
\end{aligned}
$$

[^1]
Shallow/deep interweaving ${ }^{5}$

Trace plots $(10,000)$

ACF $(5,000,000)$

Top: Standard sampler
Middle: Shallow interweaving
Bottom: Deep interweaving

[^2]
Inefficiency factor (based on Λ_{11})

Estimated inefficiency factors for draws from $p\left(\Lambda_{11} \mid y^{[i]}\right)$, where $y^{[i]}, i \in\{1, \ldots, 100\}$, denote artificially generated datasets whose underlying parameters are identical.

Application to exchange rate data

We analyze exchange rates with respect to EUR.

Data were obtained from the European Central Bank's Statistical Data Warehouse and ranges from April 1, 2005 to August 6, 2015.

It contains $m=26$ daily exchange rates on 2650 days.

Table 3. Currency abbreviations.

AUD	Australia dollar	CAD	Canada dollar	CHF
CNY	China yuan renminbi	CZK	Czech R. koruna	Switzerland franc
GBP	UK pound	HKD	Hong Kong dollar	DKK
HUF	Hungary forint	IDR	Indonesia rupiah	HRK
KRW	South Korea won	MYR	Malaysia ringgit	JPY
NZD	New Zealand dollar	PHP	Philippines peso	NOK
RON	Romania fourth leu	RUB	Russia ruble	PLN
SGD	Singapore dollar	Thailand baht	Norway krone	
USD	US dollar	THB	SEK	

Posterior means of factor loadings

Table 4. Posterior means of $p(\boldsymbol{\Lambda} \mid \boldsymbol{y})$, in alphabetical order. Blank entries signify that the respective marginal distribution is not bound away from zero with at least 99% posterior probability. Starred entries are those which have been set to zero a priori.

	$\Lambda_{\bullet, 1}$	$\Lambda_{\bullet, 2}$	$\Lambda_{\bullet, 3}$	$\Lambda_{\bullet, 4}$		$\Lambda_{\bullet, 1}$	$\Lambda_{\bullet, 2}$	$\Lambda_{\bullet, 3}$	$\Lambda_{\bullet, 4}$
AUD	0.418	1.156	2.772	*	MYR	1.285	0.391	0.587	2.439
CAD	0.873	0.805	1.389		NOK		0.619	0.704	
CHF		-0.184			NZD	0.342	1.066	2.665	
CNY	1.592			0.076	PHP	1.330	0.449	0.389	1.702
CZK	-0.099	0.605			PLN	-0.292	1.835	*	*
DKK	0.002				RON	-0.051	0.530		
GBP	0.605	0.230	0.627		RUB	0.813	0.104	0.138	0.237
HKD	1.611		0.003	0.005	SEK	-0.049	0.529	0.527	
HRK					SGD	1.065	0.260	0.642	1.463
HUF	-0.339	2.028			THB	1.358	0.092	0.273	1.049
IDR	1.395	0.419	0.347	1.153	TRY	0.845	1.702	0.549	0.920
JPY	1.176	-0.875	0.310	0.904	USD	1.614	*	*	*
KRW	1.100	0.617	0.750	1.935	ZAR	0.431	2.303	1.219	1.390

Marginal posteriors of the first two factor loadings

Marginal posteriors of the factor log-variances

Posterior volatilities of log returns (18 of 26 countries)

Posterior correlation matrices

R-package factorstochvol containing code to run the samplers described in the article. Available at https://cran.rproject.org/package=factorstochvol.

Sparse FSV ${ }^{6}$

Kastner (2017) applies a sparse 4-factor SV to model stock prices listed in the Standard \& Poor's 500 index.

A total of $m=300$ firms were continuously included in the index. Time span: $5 / 3 / 2006$ to $12 / 31 / 2013(T=2000)$.

GICS sector	Members
Consumer Discretionary	45
Consumer Staples	28
Energy	23
Financials	54
Health Care	30
Industrials	42
Information Technology	27
Materials	23
Telecommunications Services	3
Utilities	25

[^3]
Sparse loadings matrix

Prior for loadings Λ with row-wise shrinkage with element-wise adaption:

$$
\Lambda_{i j} \mid \tau_{i j}^{2} \sim N\left(0, \tau_{i j}^{2}\right), \quad \tau_{i j}^{2} \sim G\left(a_{i}, a_{i} \lambda_{i} / 2\right) \quad \text { and } \quad \lambda_{i}^{2} \sim G\left(c_{i}, d_{i}\right) .
$$

They used $a_{i}=0.1$ and $c_{i}=d_{i}=1$, for all $i=1, \ldots, m=300$.

Density goes all the way to 4 . Standard normal in red.

MCMC set up

Normal-Gamma prior with row-wise shrinkage for 110,000 draws.

Discard the first 10,000 draws as burn-in.

Of the remaining 100,000 draws every 10th draw is kept.
Posterior inference based on 10, 000 draws.

Factor loadings

F1: overall; F2: Utilities; F3: Energy \& Materials; F4: Financial

Log-variances of common factors

coser

Posterior mean of the time-varying correlation matrix

Last trading day in 2006, 2008, 2010.

Spatial dynamic factor models

Lopes, Salazar and Gamerman (2008) introduces the following spatio-temporal model for $y_{t}=\left(y_{1 t}, \ldots, y_{m T}\right)^{\prime}$, measurements on m spatial locations and over T time periods:

Dimension reduction:

$$
y_{t} \sim N\left(\wedge f_{t}, \Sigma\right)
$$

Time series component:

$$
f_{t} \sim N\left(\Gamma f_{t-1}, \Gamma\right)
$$

Spatial component:

$$
\lambda_{j} \sim G P\left(\mu_{j}, \tau_{j}^{2} R_{\phi_{j}}\right)
$$

where $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ and $R_{\phi_{j}}$ spatial correlation matrix.

A Reversible Jump MCMC is proposed to select r, as in Lopes and West (2004).

SO_{2} in Eastern US

Spatial loadings

Dynamic factors

Seasonal loadings and factor

Spatial interpolation

Interpolated values at stations SPD and BWR.

Forecasting

Outline

ncipal components analysis

Example 1: hdi data (5481×22)
Full OLS regression
Eigenvalues and eigenvectors
Singular value and spectral decompositions
Principal components analysis
Full regression vs PCA-based regression
Example 2: ibovespa data (21802×15)
Factor analysis
Early days
Basic model
Example 3: Monthly exchange rates data (144×6)
Example 4: Daily exchange rates data (2650×26)
Example 5: Daily returns for S\&P500 firms (2000×300)
Example 6: Weekly measurements of $\mathrm{SO}_{2}(342 \times 22)$

Related models

Factor regression
Partial least squares
Canonical correlation analysis
Example 7: Quarterly data on the US economy (202×224)

Latent factor regression ${ }^{7}$

Recall the hdi data, where y_{i} is the DHI and x_{i} is the m-dimensional vector of characteristics for municipality i. A latent r-factor regression model is:

$$
\begin{aligned}
p\left(f_{i}\right) & =N\left(0, I_{r}\right) \\
p\left(x_{i} \mid f_{i}\right) & =N\left(\wedge f_{i}, \Psi\right) \\
p\left(y_{i} \mid f_{i}\right) & =N\left(\beta^{\prime} f_{i}, \sigma^{2}\right)
\end{aligned}
$$

SO

$$
\left(x_{i}, y_{i}\right) \sim N\left(0, W W^{\prime}+\Omega\right) \quad W=\binom{\Lambda}{\beta^{\prime}} \text { and } \Omega=\left(\begin{array}{cc}
\Psi & 0 \\
0 & \sigma^{2}
\end{array}\right)
$$

It can be shown that

$$
y_{i} \mid x_{i} \sim N\left(x_{i}^{\prime} \theta, \tau^{2}\right)
$$

where $\theta=V_{x}^{-1} \Lambda \beta, \tau^{2}=\sigma^{2}+\beta^{\prime}\left(I_{m}-\Lambda^{\prime} V_{x}^{-1} \Lambda\right) \beta$, and $V_{x}=\Lambda \Lambda^{\prime}+\Psi$.

[^4]
Partial least squares

The technique of partial least squares (PLS) (Gustafsson 2001; Sun et al. 2009) is an asymmetric or more "discriminative" form of supervised PCA. The key idea is to allow some of the (co)variance in the input features to be explained by its own subspace, f_{i}^{\times}, and to let the rest of the subspace, f_{i}^{s}, be shared between input and output:

$$
\begin{aligned}
p\left(f_{i}\right) & =N\left(f_{i}^{s} ; 0, I_{r_{s}}\right) N\left(f_{i}^{x} ; 0, I_{r_{x}}\right) \\
p\left(x_{i} \mid f_{i}\right) & =N\left(\Lambda_{s} f_{i}^{s}+\Lambda_{x} f_{i}^{x}, \Psi\right) \\
p\left(y_{i} \mid f_{i}\right) & =N\left(\beta_{s}^{\prime} f_{i}^{s}, \sigma^{2}\right)
\end{aligned}
$$

so

$$
\left(x_{i}, y_{i}\right) \sim N\left(0, W W^{\prime}+\Omega\right) \quad W=\left(\begin{array}{cc}
\Lambda_{s} & \Lambda_{x} \\
\beta_{s}^{\prime} & 0
\end{array}\right) \text { and } \Omega=\left(\begin{array}{cc}
\Psi & 0 \\
0 & \sigma^{2}
\end{array}\right)
$$

Again,

$$
y_{i} \mid x_{i} \sim N\left(x_{i}^{\prime} \theta, \tau^{2}\right)
$$

where $\theta=V_{x}^{-1} \Lambda_{s} \beta_{s}, \tau^{2}=\sigma^{2}+\beta_{s}^{\prime}\left(I_{m}-\Lambda_{s}^{\prime} V_{x}^{-1} \Lambda_{s}\right) \beta_{s}$, and $V_{x}=\Lambda \Lambda^{\prime}+\Psi$.
We should choose $r=r_{s}+r_{x}$ large enough so that the shared subspace does not capture covariate-specific variation.

Canonical correlation analysis

Canonical correlation analysis (CCA) is like a symmetric unsupervised version of PLS: it allows each view to have its own "private" subspace, but there is also a shared subspace.

$$
\begin{aligned}
p\left(f_{i}\right) & =N\left(f_{i}^{s} ; 0, I_{r_{s}}\right) N\left(f_{i}^{x} ; 0, I_{r_{x}}\right) N\left(f_{i}^{y} ; 0, I_{r_{y}}\right) \\
p\left(x_{i} f_{i}\right) & =N\left(\Lambda_{s} f_{i}^{s}+\Lambda_{x} f_{i}^{x}, \Psi\right) \\
p\left(y_{i} f_{i}\right) & =N\left(\beta_{s}^{\prime} f_{i}^{s}+\beta_{y}^{\prime} f_{i}^{y}, \sigma^{2}\right)
\end{aligned}
$$

so

$$
\left(x_{i}, y_{i}\right) \sim N\left(0, W W^{\prime}+\Omega\right)
$$

where

$$
W=\left(\begin{array}{ccc}
\Lambda_{s} & \Lambda_{x} & 0 \\
\beta_{s}^{\prime} & 0 & \beta_{y}^{\prime}
\end{array}\right) \quad \text { and } \quad \Omega=\left(\begin{array}{cc}
\Psi & 0 \\
0 & \sigma^{2}
\end{array}\right)
$$

Again,

$$
y_{i} \mid x_{i} \sim N\left(x_{i}^{\prime} \theta, \tau^{2}\right)
$$

where $\theta=V_{x}^{-1} \Lambda_{s} \beta_{s}, \tau^{2}=\sigma^{2}+\beta_{y}^{\prime} \beta_{y}+\beta_{s}^{\prime}\left(I_{m}-\Lambda_{s}^{\prime} V_{x}^{-1} \Lambda_{s}\right) \beta_{s}$, and $V_{x}=\Lambda_{s} \Lambda_{s}^{\prime}+\Lambda_{x} \Lambda_{x}^{\prime}+\Psi$.

A few more references

Gustafsson (2001). A probabilistic derivation of the partial least-squares algorithm. Journal of Chemical Information and Modeling, 41, 288-294.

West (2003) Bayesian Factor Regression Models in the "Large p, Small n" Paradigm. Bayesian Statistics 7.

Yu, Yu, Tresp and Wu (2006) Supervised probabilistic principal component analysis. In Proc. of the Int'I Conf. on Knowledge Discovery and Data Mining.

Sun, Ji, Yu and Ye (2009) On the equivalence between canonical correlation analysis and orthonormalized partial least squares. In Intl. Joint Conf. on Al.

Hahn, He and Lopes (2017) Bayesian Factor Model Shrinkage for Linear IV Regression With Many Instruments. Journal of Business and Economic Statistics.

Sparse factor augmented VAR^{8}

Beyeler and Kaufmann (2017) Factor augmented VAR revisited - A sparse dynamic factor model approach

The framework proposed in BBE05 collects N non-trending observed variables in a $N \times 1$ vector X_{t}, where $t=1, \ldots, T$. These variables are assumed to contain information on some pervasive $k, k \ll N$, economic factors f_{t}^{*} which are not directly observable to the econometrician but are relevant determinants of some m observed series Y_{t}. The FAVAR representation for $\left[f_{t}^{* \prime} Y_{t}^{\prime}\right]$ writes

$$
\begin{align*}
{\left[\begin{array}{c}
X_{t} \\
Y_{t}
\end{array}\right] } & =\left[\begin{array}{cc}
\lambda^{* f} & \lambda^{* Y} \\
0 & I_{m}
\end{array}\right]\left[\begin{array}{c}
f_{t}^{*} \\
Y_{t}
\end{array}\right]+\left[\begin{array}{c}
\xi_{t} \\
0
\end{array}\right] \\
\Phi^{*}(L)\left[\begin{array}{c}
f_{t}^{*} \\
Y_{t}
\end{array}\right] & =\left[\begin{array}{c}
\eta_{t}^{* f} \\
\eta_{t}^{Y}
\end{array}\right] \quad \eta_{t}^{*} \sim N\left(0, \Sigma^{*}\right) \tag{1}\\
\Psi(L) \xi_{t} & =\varepsilon_{t}, \quad \varepsilon_{t} \sim N(0, \Omega)
\end{align*}
$$

where $\lambda^{* f}$ and $\lambda^{* Y}$ are the factor loading matrices with dimension $N \times k$ and $N \times m$, respectively, and I_{m} represents the identity matrix of dimension m. A AR process of order p characterizes the process of $\left[f_{t}^{* \prime} Y_{t}^{\prime}\right]$. We assume that the common comovement in X_{t} is fully explained by f_{t}^{*} and Y_{t}. Therefore, common and idiosyncratic shocks are uncorrelated, i.e. $E\left(\eta_{t}^{*} \varepsilon_{t}^{\prime}\right)=0$, and idiosyncratic components ξ_{t} follow series-specific independent VAR processes, i.e. $\Psi(L)$ and Ω are, respectively, diagonal processes and diagonal with elements $\{\Psi(L), \Omega\}=\left\{\psi_{i}(L), \omega_{i}^{2} \mid \psi_{i}(L)=\right.$ $\left.1-\psi_{i 1} L-\cdots-\psi_{i q} L^{q}, i=1, \ldots, N\right\}$.

[^5]
Sparsity

The sparse factor loading matrices $\lambda^{* f}$ and $\lambda^{* Y}$ will be estimated freely, i.e. without imposing identification restrictions, see also section 2.3. To induce sparsity, we work with a hierarchical point mass-normal mixture prior distribution on the factor loadings $\lambda_{i j}^{*}, i=1, \ldots, N, j=1, \ldots, k+m$ (see e.g. West 2003, Carvalho et al. 2008)

$$
\begin{align*}
& \pi\left(\lambda_{i j}^{*} \mid \beta_{i j}, \tau_{j}\right)=\left(1-\beta_{i j}\right) \delta_{0}\left(\lambda_{i j}^{*}\right)+\beta_{i j} N\left(0, \tau_{j}\right) \tag{2}\\
& \pi\left(\beta_{i j} \mid \rho_{j}\right)=\left(1-\rho_{j}\right) \delta_{0}\left(\beta_{i j}\right)+\rho_{j} B(a b, a(1-b)) \tag{3}\\
& \pi\left(\rho_{j}\right)=B\left(r_{0} s_{0}, r_{0}\left(1-s_{0}\right)\right) \tag{4}
\end{align*}
$$

where δ_{0} is a Dirac delta function that assigns all probability mass to zero and $B(u v, u(1-v))$ denotes a beta distribution with mean v and precision u. For τ_{j}, we assume an inverse Gamma prior distribution $\operatorname{IG}\left(g_{0}, G_{0}\right)$. The factor-independent

Application to the US economy

We apply our methodology to a large panel of series for the US economy to illustrate estimation and identification of the sparse FAVAR.

We find evidence for a high degree of sparsity and indeed, given the structure of estimated zero loadings, we achieve model identification.

In addition to one observed factor, i.e. the federal funds rate (FFR), we estimate seven unobserved factors.

The variance share explained by the common component amounts to 52 percent.

FRED-QD database: Federal Reserve Bank of St. Louis.

It consists of 253 macroeconomic time series for the US economy which are regularly updated and reported at a quarterly frequency starting in 1959Q1.

The FRED-QD database has been constructed along the lines of the data set used in Stock and Watson (2012) ${ }^{9}$

In addition, we include the utilization adjusted total factor productivity (TFP) series from Fernald (2012) ${ }^{10}$

Final set: 224 times series from 1965Q1 to 2015Q2.

[^6]
Sparse loadings

Figure 1: Posterior probabilities of non-zero factor loading.

Impulse response functions

Figure 4: Impulse responses of the factors to an unanticipated change in the FFR.

[^0]: ${ }^{2}$ Spearman and the origin and development of factor analysis, British Journal of Mathematical and Statistical Psychology, 48, 211-220.

[^1]: ${ }^{4}$ Kastner, Frühwirth-Schnatter \& Lopes (2017) Efficient Bayesian inference for multivariate FSV models. Journal of Computational and Graphical Statistics.

[^2]: ${ }^{5} \mathrm{Yu}$ and Meng (2011) To Center or not to Center: That is not the Question - An Ancillarity-Suffiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency, Journal of Computational and Graphical Statistics, 20, 531-570.

[^3]: ${ }^{6}$ Kastner (2018) Bayesian Time-Varying Covariance Estimation in Many Dimensions. Journal of Econometrics.

[^4]: ${ }^{7}$ West (2003) called this Bayesian factor regression. When $\Psi=\psi I_{m}$, Yu et al. (2006) call this supervised PCA. See Chapter 12 of Murphy (2012) Machine Learning: A Probabilistic Perspective.

[^5]: $8_{\text {Bernanke, Boivin and Eliasz (2005) Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive(FAVAR) Approach }}$ The Quarterly Journal of Economics, 120, 387-422.

[^6]: ${ }^{9}$ Stock and Watson (2012) Disentangling the channels of the 2007-2009 recession. NBER Working Paper Series 18094.
 ${ }^{10}$ Fernald (2012) A quarterly, utilization-adjusted series on total factor productivity. Federal Reserve Bank of San Francisco Working Paper Series.

