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Examples

Example Data description Observations Features
3 Monthly exchange rates data 144 6
6 Weekly measurements of SO2 342 22
4 Daily exchange rates data 2650 26
1 Human development index data 5481 22
2 BOVESPA data 21802 15
7 Quarterly US economic data 202 224
5 Daily returns for S&P500 firms 2000 300
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Outline
Principal components analysis

Example 1: hdi data (5481× 22)
Full OLS regression
Eigenvalues and eigenvectors
Singular value and spectral decompositions
Principal components analysis
Full regression vs PCA-based regression
Example 2: ibovespa data (21802× 15)

Factor analysis
Early days
Basic model
Example 3: Monthly exchange rates data (144× 6)
Example 4: Daily exchange rates data (2650× 26)
Example 5: Daily returns for S&P500 firms (2000× 300)
Example 6: Weekly measurements of SO2 (342× 22)

Related models
Factor regression
Partial least squares
Canonical correlation analysis
Example 7: Quarterly data on the US economy (202× 224)
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hdi data

RESPONSE:
14. Indice de Desenvolvimento Humano

21 PREDICTORS:
4. Renda domiciliar per capita - media do 1o quintil (R$ por mes)
5. Renda domiciliar per capita - media do 2o quintil (R$ por mes)
6. Renda domiciliar per capita - media do 3o quintil (R$ por mes)
7. Renda domiciliar per capita - media do 4o quintil (R$ por mes)
8. Renda domiciliar per capita - media do 5o quintil (R$ por mes)
9. Razao entre a renda dos 10% mais ricos e 40% mais pobres

10. Mulheres chefes de familia sem conjuge e com filhos menores de 15 anos (%)
11. Medicos residentes (por mil habitantes)
12. Enfermeiros residentes com curso superior (%)
13. Alfabetizados - pessoas 15 anos e mais (%)
18. Mortalidade ate cinco anos de idade (por mil nascidos vivos)
19. Probabilidade de sobrevivencia ate 40 anos (%)
20. Probabilidade de sobrevivencia ate 60 anos (%)
21. Taxa de fecundidade (%)
22. Pessoas 65 anos ou mais - morando sozinhas (%)
23. Pessoas 10 e 14 anos - mulheres com filhos (%)
24. Professores do fundamental residentes com curso superior (%)
25. Esperanca de vida ao nascer
26. Mortalidade infantil (por mil nascidos vivos)
27. Domicilios - com agua encanada - pessoas (%)
28. Domicilios - com servico de coleta de lixo - pessoas (%)
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Full OLS regression (p = 21)
Full regression: hdi = β0 +

∑p
i=1 βixi + ε
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Eigenvalues and eigenvectors1

Let x be a zero-mean p-dimensional vector of features with variance Σ > 0.

Eigenvalues: If Σ (p × p) is any square matrix then

q(λ) = |Σ− λIp|

is a pth order polynomial in λ. The roots λ1, . . . , λp are called eigenvalues of Σ.

Eigenvectors: For each i = 1, . . . , p, |Σ− λi Ip| = 0, so Σ− λi Ip is singular.
Hence, there exists a non-zero vector γ satisfying

Σγ = λiγ.

Any such vector is called an eigenvector of Σ for the eigenvalue λi .

Symmetric matrices: All the eigenvalues of a symmetric matrix are real
Rank of a matrix:. The rank of Σ equals the number of non-zero eigenvalues.

1Mardia, Kent and Bibby (1979) Multivariate Analysis. Academic Press. Page 466-469.
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Singular value and spectral decompositions
Singular value decomposition theorem
If A is an (n × p) matrix of rank r , then A can be written as

A = ULV ′ =
r∑

i=1

`iu(i)v
′
(i)

where U = (u(1), . . . , u(r)) is (n × r) and V = (v(1), . . . , v(r)) is (p × r) are
column orthonormal matrices (U ′U = V ′V = Ir ) and L is a diagonal matrix with
positive elements, i.e. L = diag(`1, . . . , `r ).

Spectral decomposition theorem, or Jordan decomposition theorem
Any symmetric matrix Σ (p × p) can be written as

Σ = ΓΛΓ′ =

p∑
i=1

λiγ(i)γ
′
(i)

where Λ is a diagonal matrix of eigenvalues of Σ, and Γ is an orthogonal matrix
whose columns are standardized eigenvectors.
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Principal components analysis

Recall that E (x) = 0 and V (x) = Σ = ΓΛΓ′.

Let y = Γ′x .

By using the spectral decomposition theorem, we can see that

E (y) = 0

V (y) = Λ

V (y1) ≥ V (y2) ≥ · · · ≥ V (yp) ≥ 0

Result 1: No linear combination of x has variance larger than λ1, the variance of
the first principal component.

Result 2: If α = a′x is a linear combination of x which is uncorrelated with the
first k principal components of x , then the variance of α is maximized when α is
the (k + 1)th principal component of x .
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Sample principal components

Let X be our hdi data, i.e. a (n × p) matrix with n = 5, 481 municipalities and
its p = 21 features.

The sample covariance matrix is Σ̂, which can be decomposed as

Σ̂ = GLG ′,

such that the ith principal component can be written as

y(i) = Xg(i)

or simply Y = XG , such that the sample covariance matrix of Y is L.

The vector g(i) are the loadings of the ith principal component.
The vector y(i) are the scores of the ith principal component.
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Toy example
S = var(dados[,2:6])

rendapc1 rendapc2 rendapc3 rendapc4 rendapc5
rendapc1 1.0000000 0.9694697 0.9368180 0.8922824 0.7548276
rendapc2 0.9694697 1.0000000 0.9871980 0.9567946 0.8208739
rendapc3 0.9368180 0.9871980 1.0000000 0.9859019 0.8535538
rendapc4 0.8922824 0.9567946 0.9859019 1.0000000 0.8876594
rendapc5 0.7548276 0.8208739 0.8535538 0.8876594 1.0000000

svd(S)
$d
[1] 4.62446396 0.28228144 0.07769785 0.01265673 0.00290002

$u
[,1] [,2] [,3] [,4] [,5]

[1,] -0.4411378 0.4941891 0.608777172 -0.42710055 0.09027785
[2,] -0.4586014 0.2724745 -0.007324998 0.66916141 -0.51731208
[3,] -0.4613133 0.1018765 -0.368647838 0.23092054 0.76654138
[4,] -0.4571075 -0.1142474 -0.575268235 -0.55792360 -0.36849418
[5,] -0.4163232 -0.8112358 0.403115279 0.07214636 0.02940206

$v
[,1] [,2] [,3] [,4] [,5]

[1,] -0.4411378 0.4941891 0.608777172 -0.42710055 0.09027785
[2,] -0.4586014 0.2724745 -0.007324998 0.66916141 -0.51731208
[3,] -0.4613133 0.1018765 -0.368647838 0.23092054 0.76654138
[4,] -0.4571075 -0.1142474 -0.575268235 -0.55792360 -0.36849418
[5,] -0.4163232 -0.8112358 0.403115279 0.07214636 0.02940206

round(100*svd(S)$d/sum(svd(S)$d),2)
[1] 92.49 5.65 1.55 0.25 0.06
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Back to the hdi dataset
Using the R function princomp
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First principal component: loadings g(1)
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HDI vs 1st principal component
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Full regression vs PCA-based regression
Full regression: hdi = β0 +

∑p
j=1 βjxj + ε

PCA-based regression: hdi = γ0 + γ1y1 + ε = γ0 +
∑p

j=1(γ1gj)xj + ε
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PCA-based regressions: 1 to p principal components
PCA regression: hdi = γ0 +

∑k
j=1 γjyj + ε, for k = 1, . . . , p.
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PCA-based regressions: 15 and ALL principal components

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
● ●

●

●

●
●

co
ef

ic
ie

nt
s

−
0.

2
0.

0
0.

2
0.

4

re
nd

ap
c1

re
nd

ap
c2

re
nd

ap
c3

re
nd

ap
c4

re
nd

ap
c5

ra
za

o1
04

0
m

ul
he

rc
he

fe
m

ed
ic

o
en

fe
rm

ei
ro

al
fa

be
tiz

ad
o

m
or

ta
l5

pr
ob

40
pr

ob
60

ta
xa

fe
cu

nd
LX

V
ou

m
ai

s
m

ae
s1

0a
14

pr
of

es
so

re
s

es
pe

ra
nc

a
m

or
ta

l
ag

ua lix
o

●
●

● ●

●

●
●

● ●

●

●

●

●

●

● ●
●

●

●

●
●

15 principal components

●

●

rmse(ols)=0.094
rmse(pca)=0.098

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
● ●

●

●

●
●

co
ef

ic
ie

nt
s

−
0.

2
0.

0
0.

2
0.

4

re
nd

ap
c1

re
nd

ap
c2

re
nd

ap
c3

re
nd

ap
c4

re
nd

ap
c5

ra
za

o1
04

0
m

ul
he

rc
he

fe
m

ed
ic

o
en

fe
rm

ei
ro

al
fa

be
tiz

ad
o

m
or

ta
l5

pr
ob

40
pr

ob
60

ta
xa

fe
cu

nd
LX

V
ou

m
ai

s
m

ae
s1

0a
14

pr
of

es
so

re
s

es
pe

ra
nc

a
m

or
ta

l
ag

ua lix
o

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
● ●

●

●

●
●

ALL principal components

18/81



Remarks from the hdi exercise

A single principal component is responsible for 50% of the variability of X .

A total of 15 principal components are needed to fit hdi.

19/81



ibovespa data: January 2nd, 2008

Date Time.of.Day VALE5 BVMF3 GGBR4 BBDC4 OGXP3 ITUB4 ITSA4 BBAS3
1 1/2/08 11.38 50.70 11.77 51.26 56.55 1274.9 30.4 11.78 29.91
2 1/2/08 11.63 50.40 11.77 51.46 56.60 1274.9 30.4 11.78 30.03
3 1/2/08 11.88 50.39 11.77 51.41 56.41 1274.9 30.4 11.78 30.18
4 1/2/08 12.13 50.50 11.77 51.43 56.30 1274.9 30.4 11.77 30.28
5 1/2/08 12.38 50.39 11.77 51.49 56.31 1274.9 30.4 11.76 30.42
6 1/2/08 12.63 50.31 11.77 51.60 56.15 1274.9 30.4 11.79 30.50
7 1/2/08 12.88 50.30 11.77 51.68 55.90 1274.9 30.4 11.76 30.51
8 1/2/08 13.13 50.03 11.77 51.60 55.49 1274.9 30.4 11.70 30.50
9 1/2/08 13.38 49.79 11.77 51.35 55.30 1274.9 30.4 11.67 30.46
10 1/2/08 13.63 49.93 11.77 51.40 55.70 1274.9 30.4 11.66 30.55
11 1/2/08 13.88 49.87 11.77 51.30 55.80 1274.9 30.4 11.63 30.60
12 1/2/08 14.13 49.77 11.77 50.70 55.65 1274.9 30.4 11.62 30.55
13 1/2/08 14.38 49.65 11.77 50.60 55.33 1274.9 30.4 11.55 30.55
14 1/2/08 14.63 49.35 11.77 50.55 55.01 1274.9 30.4 11.45 30.50
15 1/2/08 14.88 49.70 11.77 50.78 55.14 1274.9 30.4 11.49 30.55
16 1/2/08 15.13 49.64 11.77 50.65 55.03 1274.9 30.4 11.45 30.61
17 1/2/08 15.38 49.45 11.77 50.56 54.62 1274.9 30.4 11.44 30.67
18 1/2/08 15.63 49.45 11.77 50.76 54.60 1274.9 30.4 11.46 30.72
19 1/2/08 15.88 49.45 11.77 50.71 54.20 1274.9 30.4 11.47 30.51
20 1/2/08 16.13 49.50 11.77 50.57 54.34 1274.9 30.4 11.45 30.51
21 1/2/08 16.38 49.48 11.77 50.80 54.47 1274.9 30.4 11.44 30.60
22 1/2/08 16.63 49.50 11.77 50.61 54.48 1274.9 30.4 11.44 30.65
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Standardized returns
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% of explained variance
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Principal components: scores
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Principal components: scores
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PCA over partition of the data

Each subset has 482 observations, but the last which has 503

1 1/2/08 2/1/08
2 2/6/08 3/6/08
3 3/7/08 4/8/08
4 4/9/08 5/12/08
5 5/13/08 6/12/08
6 6/13/08 7/15/08
7 7/16/08 8/14/08
8 8/15/08 9/15/08
9 9/16/08 10/15/08

10 10/16/08 11/14/08
11 11/17/08 12/17/08
12 12/18/08 1/22/09
13 1/23/09 2/25/09
14 2/26/09 3/27/09
15 3/30/09 4/30/09
16 5/4/09 6/2/09
17 6/3/09 7/3/09
18 7/6/09 8/5/09
19 8/6/09 9/4/09
20 9/8/09 10/7/09
21 10/8/09 11/10/09
22 11/11/09 12/11/09
23 12/14/09 1/18/10

24 1/19/10 2/22/10
25 2/23/10 3/24/10
26 3/25/10 4/27/10
27 4/28/10 5/27/10
28 5/28/10 6/29/10
29 6/30/10 7/30/10
30 8/2/10 8/31/10
31 9/1/10 10/1/10
32 10/4/10 11/4/10
33 11/5/10 12/7/10
34 12/8/10 1/10/11
35 1/11/11 2/10/11
36 2/11/11 3/16/11
37 3/17/11 4/15/11
38 4/18/11 5/19/11
39 5/20/11 6/20/11
40 6/21/11 7/21/11
41 7/22/11 8/22/11
42 8/23/11 9/22/11
43 9/23/11 10/25/11
44 10/26/11 11/28/11
45 11/29/11 12/29/11
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First 4 principal components: standard deviations
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First 4 principal components: % of explained variance
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PCA and factor analysis

Principal components analysis is a dimension-reduction and projection tool for
high dimensional matrices.

Factor analysis is a modeling framework for high dimensional and highly
structure data.
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Outline
Principal components analysis

Example 1: hdi data (5481× 22)
Full OLS regression
Eigenvalues and eigenvectors
Singular value and spectral decompositions
Principal components analysis
Full regression vs PCA-based regression
Example 2: ibovespa data (21802× 15)

Factor analysis
Early days
Basic model
Example 3: Monthly exchange rates data (144× 6)
Example 4: Daily exchange rates data (2650× 26)
Example 5: Daily returns for S&P500 firms (2000× 300)
Example 6: Weekly measurements of SO2 (342× 22)

Related models
Factor regression
Partial least squares
Canonical correlation analysis
Example 7: Quarterly data on the US economy (202× 224)
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Factor analysis: early days

Bartholomew (1995)2 starts his paper by saying that

Spearman invented factor analysis but his almost exclusive concern
with the notion of a general factor prevented him from realizing its full
potential.

Factor analysis, however, has flourished ever since Spearman’s (1904) seminal
paper on the American Journal of Psychology (Vol 15, pp. 201-292) entitled
“General Inteligente objectively determined and measured”.

2Spearman and the origin and development of factor analysis, British Journal of
Mathematical and Statistical Psychology, 48, 211-220.
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Spearman’s general intelligence

Psychologists were trying to define intelligence by a single, all-encompassing
unobservable entity, the g factor.

Spearman studied the influence of the g factor on examinees test scores on
several domains:

I Pitch

I Light

I Weight

I Classics

I French

I English

I Mathematics

End of the day: Postulating g provides a mechanism to detect common
correlations among such variables.
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Spearman’s one-factor model

One-factor model:

yi1 = µ1 + λ1gi + εi1

yi2 = µ2 + λ2gi + εi2
...

yim = µm + λmgi + εim

where

I yij : score of examinee i on test domain j .

I µj : mean of test domain j .

I gi : value of the intelligence factor for person i .

I λj : loading of test domain j onto the intelligence factor g .

I εij : random error term for person i and test domain j .
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Multiple factor analysis

Factor models are mainly applied in two major situations:

1. Identifying underlying structures.

2. Data reduction.
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Basic model

The Gaussian linear factor model relates a m-vector of observables yt to a
r -vector of latent variables ft via

yt |ft ,Λ,Σ ∼ N(Λft ,Σ).

Common factors:
ft |Λ,Σ ∼ N(0, Ir ).

Specific/idiosyncratic factor variances:

Σ = diag(σ2
1 , . . . , σ

2
m).
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Variance structure

Conditional variance
The common latent factors explain all the dependence structure among the m
variables:

cov(yit , yjt |ft ,Λ,Σ) =

{
σ2
i i = j

0 i 6= j

Unconditional variance
V (yt |Λ,Σ) = ΛΛ′ + Σ

Invariance
The factor model is invariant to orthogonal transformations, i.e.

Λ̃ = ΛP ′ and f̃t = Pft ,

for any orthogonal matrix P, such that

V (yt |Λ,Σ) = ΛΛ′ + Σ = Λ̃Λ̃′ + Σ
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Dealing with invariance
Classical approach: Orthogonality of the columns of Λ

Λ′Σ−1Λ = Ir

Bayesian approach: Λ is block lower triangular

Λ =



λ11 0 0 · · · 0
λ21 λ22 0 · · · 0
λ31 λ32 λ33 · · · 0

...
...

...
. . .

...
λr1 λr2 λr ,r−1 · · · λrr

...
...

...
. . .

...
λm1 λm2 λm,r−1 · · · λmr



Frühwirth-Schnatter and Lopes (2009/2017): Λ is generalized block lower
triangular. Our generalization provides both identification and, often, useful
interpretation of the factor model.
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Classical literature

I Thurstone (1934)

I Bartlett (1937)

I Lawley (1940,1941)

I Kendall and Smith (1950)

I Anderson and Rubin (1956)

I Jöreskog (1969,1970)

I Rubin and Thayer (1982)

I Bentler and Tanaka (1983)

I Rubin and Thayer (1983)

I Akaike (1987)

I Anderson and Amemiya (1988)

I Amemiya and Anderson (1990)

37/81



Bayesian literature
Pre-MCMC

I Press (1972)
I Martin and McDonald (1975)
I Geweke and Singleton (1980)
I Bartholomew (1981)
I Lee (1981)
I Press and Shigemasu (1989)

Post-MCMC
I Geweke and Zhou (1996)
I Aguilar and West (2000)
I Lopes, Aguilar and West (2000)
I Lopes and Migon (2002)
I West (2003)
I Wang and Wall (2003)
I Lopes and West (2004)
I Quinn (2004)
I Hogan and Tchernis (2004)
I Lopes, Salazar and Gamerman (2008)
I Carvalho et al. (2008)
I Chib and Ergashev (2009)
I Frühwirth-Schnatter and Lopes (2009/2017)
I Carvalho, Lopes and Aguilar (2011)
I Lopes, Schmidt, Salazar, Gomez and Achkar (2012)
I Bhattacharya and Dunson (2011)
I Lopes, Conti, Heckman and Piatek (2012)
I Hahn, He and Lopes (2017)
I Kastner, Frühwirth-Schnatter and Lopes (2017)
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Factor analysis by area3

3Kaplunovsky (2004) Why using factor analysis? 39/81



Modern Bayesian factor analysis

Scanned by CamScanner Scanned by CamScanner
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Prior specification

Loadings
For i = 1, . . . , r

λii ∼ N(0,∞)(m0,C0)

For i = 2, . . . , r and j = 1, . . . ,min{i − 1, r}

λij ∼ N(m0,C0)

Idiosyncratic variances
For i = 1, . . . ,m

σ2
i ∼ IG (ν/2, νs2/2)

The hyperparameters m0, C0, ν and s2 are known.
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Posterior inference via Gibbs sampler
A factor model is a multivariate regression model when deriving the full
conditional distributions of p(Λ, f ,Σ|y).

The two easiest ones are the full conditional distributions of the common factors
f1, . . . , fn and the idiosyncratic variances σ2

1 , . . . , σ
2
m.

Let y = (y ′1, . . . , y
′
n)′ = (y(1), . . . , y(m)), Λ = (λ1, . . . , λm)′ and

Fi = (f(1), . . . , f(i)) for i = 1, . . . , r , with F = Fr .

(fi |Λ, σ, y): For i = 1, . . . , n,

(fi |Λ,Σ, y) ∼ N((Ik + Λ′Σ−1Λ)−1Λ′Σ−1yi , (Ik + Λ′Σ−1Λ)−1).

(σ2
i |Λ, f , y):. For i = 1, . . . ,m,

(σ2
i |Λ, f , y) ∼ IG

(
ν + n

2
,
νs2 + (y(i) − Fλi )

′(y(i) − Fλi )

2

)
.
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Full conditional of Λ, (Λ|σ, f , y)
The identifiability constraints are such that, for i = 1, . . . , r − 1,

λi = (λ̃′i , 0
′
r−i )

′.

For i = 1, . . . , r :
(λ̃i |Σ, f , y) ∼ N(mi ,Ci )1{λ̃ii > 0},

where

mi = Ci (C
−1
0 m01i + σ−2

i F ′i y(i))

C−1
i = C−1

0 Ii + σ−2
i F ′i Fi

For i = r + 1, . . . ,m:
(λi |Σ, f , y) ∼ N(mi ,Ci ),

where

mi = Ci

(
C−1

0 m01r + σ−2
i F ′y(i)

)
C−1
i = C−1

0 Ir + σ−2
i F ′F
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Exchange rate data (Lopes and West, 2004)

I Monthly exchange rates from January 1975 to December 1986.

I Time series are the exchange rates in British pounds of
I US dollar (US) and Canadian dollar (CAN)
I Japanese yen (JAP)
I French franc (FRA), Italian lira (ITA) and German Deutschmark (GER)

I The prior hyperparameters are
I Informative prior: (m0,C

−1
0 , ν0, s

2) = (0, 1, 2.2, 0.0455)
Prior mode of σi is 0.154.

I Noninformative prior: (m0,C
−1
0 , ν0, s

2) = (0, 0, 0.001, 1)
Prior mode of σ2

i is 0.032.

I We burn-in the Gibbs sampler for 10,000 iterations, and then save equally
spaced samples of 5,000 draws from a longer run of 100,000.

I It takes about one minute to run a two-factor model (in R) on my MacBook
Pro with a 2.6GHz Intel Core i7 processor, 8 GB 1600 MHz DDR3 Memory
running a Mac OS X Lion 10.7.5.
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Posterior means

The posterior means of Σ and Λ′ in a two-factor model are

E (Σ|y) = diag(0.05, 0.13, 0.62, 0.04, 0.25, 0.26),

and

E (Λ′|y) =

(
1.00 0.96 0.46 0.39 0.42 0.41
0.00 0.05 0.43 0.92 0.78 0.78

)
,

respectively.

One can argue that

I The first common factor groups North American currencies, and

I The second common factor groups European currencies.
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Ordering of the variables

1st ordering

Λ̂ =


US 1.00 0.00
CAN 0.96 0.05
JAP 0.46 0.43
FRA 0.39 0.92
ITA 0.42 0.78
GER 0.41 0.78

 Σ̂ = diag


0.05
0.13
0.62
0.04
0.25
0.26


2nd ordering

Λ̂ =


US 0.98 0.00
JAP 0.45 0.42
CAN 0.95 0.03
FRA 0.39 0.91
ITA 0.41 0.77
GER 0.40 0.77

 Σ̂ = diag


0.06
0.62
0.12
0.04
0.25
0.26
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Variance decomposition
The proportion of the variance of currency i attributed to factor j is given by νij = β2

ij/(λ2
i1 + λ2

i2 + σ2
i ).

Informative prior (white boxplots). Noninformative prior (grey boxplots).
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Marginal posteriors based on 2- and 3-factor models
Two-factor model (histograms) and a (overfitted) three-factor model (solid lines).
Informative prior (top row) and noninformative prior (bottom row).
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Factor stochastic volatility4

For each point in time t = 1, . . . ,T ,

I m observed returns: yt = (y1t , . . . , ymt)′

I r unobserved factors: ft = (f1t , . . . , frt)′

I Volatilities: ht = (hUt , h
V
t ), hUt = (h1t , . . . , hmt)′ and hVt = (h1,m+1, . . . , hm+r,t)′.

Our factor stochastic volatility model is

yt |ft ∼ N(Λft ,Ut)

ft ∼ N(0,Vt)

where

I Factor loadings: Λ is m × r

I Idiosyncratic variance: Ut = diag(exp(h1t , . . . , hmt))

I Factor variance: Vt = diag(exp(hm+1,t , . . . , hm+r,t))

I Log-volatilities:

hit = (1− φi )µi + φihi,t−1 + σiηit i = 1, . . . ,m

hit = φihi,t−1 + σiηit i = m + 1, . . . ,m + r .

4Kastner, Frühwirth-Schnatter & Lopes (2017) Efficient Bayesian inference for multivariate
FSV models. Journal of Computational and Graphical Statistics.
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Shallow/deep interweaving5

Trace plots (10,000) ACF (5,000,000)

Top: Standard sampler
Middle: Shallow interweaving
Bottom: Deep interweaving

5Yu and Meng (2011) To Center or not to Center: That is not the Question – An
Ancillarity-Suffiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency, Journal of
Computational and Graphical Statistics, 20, 531-570.
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Inefficiency factor (based on Λ11)
Estimated inefficiency factors for draws from p(Λ11|y [i ]), where y [i ], i ∈ {1, . . . , 100},denote
artificially generated datasets whose underlying parameters are identical.
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Application to exchange rate data

We analyze exchange rates with respect to EUR.

Data were obtained from the European Central Bank’s Statistical Data
Warehouse and ranges from April 1, 2005 to August 6, 2015.

It contains m = 26 daily exchange rates on 2650 days.
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Posterior means of factor loadings
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Marginal posteriors of the first two factor loadings
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Marginal posteriors of the factor log-variances
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Posterior volatilities of log returns (18 of 26 countries)
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Posterior correlation matrices

R-package factorstochvol containing code to run the samplers described in the article.
Available at https://cran.rproject.org/package=factorstochvol.
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Sparse FSV6

Kastner (2017) applies a sparse 4-factor SV to model stock prices listed in the
Standard & Poor’s 500 index.

A total of m = 300 firms were continuously included in the index.
Time span: 5/3/2006 to 12/31/2013 (T = 2000).

GICS sector Members
Consumer Discretionary 45
Consumer Staples 28
Energy 23
Financials 54
Health Care 30
Industrials 42
Information Technology 27
Materials 23
Telecommunications Services 3
Utilities 25

6Kastner (2018) Bayesian Time-Varying Covariance Estimation in Many Dimensions.
Journal of Econometrics.
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Sparse loadings matrix
Prior for loadings Λ with row-wise shrinkage with element-wise adaption:

Λij |τ 2
ij ∼ N(0, τ 2

ij ), τ 2
ij ∼ G (ai , aiλi/2) and λ2

i ∼ G (ci , di ).

They used ai = 0.1 and ci = di = 1, for all i = 1, . . . ,m = 300.

λij
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Density goes all the way to 4. Standard normal in red.
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MCMC set up

Normal-Gamma prior with row-wise shrinkage for 110,000 draws.

Discard the first 10,000 draws as burn-in.

Of the remaining 100,000 draws every 10th draw is kept.

Posterior inference based on 10, 000 draws.
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Factor loadings
F1: overall; F2: Utilities; F3: Energy & Materials; F4: Financial
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Log-variances of common factors
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Posterior mean of the time-varying correlation matrix

Last trading day in 2006, 2008, 2010.
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Spatial dynamic factor models

Lopes, Salazar and Gamerman (2008) introduces the following spatio-temporal
model for yt = (y1t , . . . , ymT )′, measurements on m spatial locations and over T
time periods:

Dimension reduction:
yt ∼ N(Λft ,Σ)

Time series component:
ft ∼ N(Γft−1, Γ)

Spatial component:
λj ∼ GP(µj , τ

2
j Rφj )

where Λ = (λ1, . . . , λr ) and Rφj spatial correlation matrix.

A Reversible Jump MCMC is proposed to select r , as in Lopes and West (2004).
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SO2 in Eastern US
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Spatial loadings
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Dynamic factors
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Seasonal loadings and factor
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Spatial interpolation
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Forecasting
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Outline
Principal components analysis

Example 1: hdi data (5481× 22)
Full OLS regression
Eigenvalues and eigenvectors
Singular value and spectral decompositions
Principal components analysis
Full regression vs PCA-based regression
Example 2: ibovespa data (21802× 15)

Factor analysis
Early days
Basic model
Example 3: Monthly exchange rates data (144× 6)
Example 4: Daily exchange rates data (2650× 26)
Example 5: Daily returns for S&P500 firms (2000× 300)
Example 6: Weekly measurements of SO2 (342× 22)

Related models
Factor regression
Partial least squares
Canonical correlation analysis
Example 7: Quarterly data on the US economy (202× 224)
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Latent factor regression7

Recall the hdi data, where yi is the DHI and xi is the m-dimensional vector of
characteristics for municipality i . A latent r -factor regression model is:

p(fi ) = N(0, Ir )

p(xi |fi ) = N(Λfi ,Ψ)

p(yi |fi ) = N(β′fi , σ
2)

so

(xi , yi ) ∼ N(0,WW ′ + Ω) W =

(
Λ
β′

)
and Ω =

(
Ψ 0
0 σ2

)
It can be shown that

yi |xi ∼ N(x ′i θ, τ
2)

where θ = V−1
x Λβ, τ 2 = σ2 + β′(Im − Λ′V−1

x Λ)β, and Vx = ΛΛ′ + Ψ.

7West (2003) called this Bayesian factor regression. When Ψ = ψIm, Yu et al. (2006) call
this supervised PCA. See Chapter 12 of Murphy (2012) Machine Learning: A Probabilistic
Perspective.
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Partial least squares
The technique of partial least squares (PLS) (Gustafsson 2001; Sun et al. 2009)
is an asymmetric or more “discriminative” form of supervised PCA. The key idea
is to allow some of the (co)variance in the input features to be explained by its
own subspace, f xi , and to let the rest of the subspace, f si , be shared between
input and output:

p(fi ) = N(f si ; 0, Irs )N(f xi ; 0, Irx )

p(xi |fi ) = N(Λs f
s
i + Λx f

x
i ,Ψ)

p(yi |fi ) = N(β′s f
s
i , σ

2)

so

(xi , yi ) ∼ N(0,WW ′ + Ω) W =

(
Λs Λx

β′s 0

)
and Ω =

(
Ψ 0
0 σ2

)
Again,

yi |xi ∼ N(x ′i θ, τ
2)

where θ = V−1
x Λsβs , τ 2 = σ2 + β′s(Im − Λ′sV

−1
x Λs)βs , and Vx = ΛΛ′ + Ψ.

We should choose r = rs + rx large enough so that the shared subspace does not
capture covariate-specific variation.
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Canonical correlation analysis
Canonical correlation analysis (CCA) is like a symmetric unsupervised version of
PLS: it allows each view to have its own “private” subspace, but there is also a
shared subspace.

p(fi ) = N(f si ; 0, Irs )N(f xi ; 0, Irx )N(f yi ; 0, Iry )

p(xi |fi ) = N(Λs f
s
i + Λx f

x
i ,Ψ)

p(yi |fi ) = N(β′s f
s
i + β′y f

y
i , σ

2)

so
(xi , yi ) ∼ N(0,WW ′ + Ω)

where

W =

(
Λs Λx 0
β′s 0 β′y

)
and Ω =

(
Ψ 0
0 σ2

)
Again,

yi |xi ∼ N(x ′i θ, τ
2)

where θ = V−1
x Λsβs , τ 2 = σ2 + β′yβy + β′s(Im − Λ′sV

−1
x Λs)βs , and

Vx = ΛsΛ′s + ΛxΛ′x + Ψ.
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A few more references

Gustafsson (2001). A probabilistic derivation of the partial least-squares
algorithm. Journal of Chemical Information and Modeling, 41, 288-294.

West (2003) Bayesian Factor Regression Models in the “Large p, Small n”
Paradigm. Bayesian Statistics 7.

Yu, Yu, Tresp and Wu (2006) Supervised probabilistic principal component
analysis. In Proc. of the Int’l Conf. on Knowledge Discovery and Data Mining.

Sun, Ji, Yu and Ye (2009) On the equivalence between canonical correlation
analysis and orthonormalized partial least squares. In Intl. Joint Conf. on AI.

Hahn, He and Lopes (2017) Bayesian Factor Model Shrinkage for Linear IV
Regression With Many Instruments. Journal of Business and Economic Statistics.
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Sparse factor augmented VAR8

Beyeler and Kaufmann (2017) Factor augmented VAR revisited - A sparse
dynamic factor model approach

8
Bernanke, Boivin and Eliasz (2005) Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive(FAVAR) Approach

The Quarterly Journal of Economics, 120, 387-422.
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Sparsity
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Application to the US economy

We apply our methodology to a large panel of series for the US economy to
illustrate estimation and identification of the sparse FAVAR.

We find evidence for a high degree of sparsity and indeed, given the structure of
estimated zero loadings, we achieve model identification.

In addition to one observed factor, i.e. the federal funds rate (FFR), we estimate
seven unobserved factors.

The variance share explained by the common component amounts to 52 percent.
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FRED-QD database: Federal Reserve Bank of St. Louis.

It consists of 253 macroeconomic time series for the US economy which are
regularly updated and reported at a quarterly frequency starting in 1959Q1.

The FRED-QD database has been constructed along the lines of the data set
used in Stock and Watson (2012) 9

In addition, we include the utilization adjusted total factor productivity (TFP)
series from Fernald (2012)10

Final set: 224 times series from 1965Q1 to 2015Q2.

9Stock and Watson (2012) Disentangling the channels of the 2007-2009 recession. NBER
Working Paper Series 18094.

10Fernald (2012) A quarterly, utilization-adjusted series on total factor productivity. Federal
Reserve Bank of San Francisco Working Paper Series.
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Sparse loadings
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Impulse response functions
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