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2003 the Journal of Machine Learning Research, Volume 3, pages 993-1022.



Paper’s abstract

LDA: generative probabilistic model for collections of discrete data (text corpora).

LDA: 3-level hierarchical Bayesian model, in which each item of a collection is
modeled as a finite mixture over an underlying set of topics.

Topics: modeled as infinite mixtures over underlying sets of topic probabilities.

In the context of text modeling, the topic probabilities provide an explicit
representation of a document.
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Notation and terminology

A word is the basic unit of discrete data, defined to be an item from a
vocabulary indexed by {1, . . . ,V }.

A document is a sequence of N words denoted by ω = (w1,w2, . . . ,wn), where
wn is the nth word in the sequence

A corpus is a collection of M documents denoted by D = {ω1, . . . , ωN}
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Latent Dirichlet allocation

LDA is a generative probabilistic model of a corpus.

Documents are represented as random mixtures over latent topics.

LDA assumes the following generative process for document ω in a corpus D:

1. Choose N ∼ Poisson(ξ).

2. Choose θ ∼ Dirichlet(α).

3. For each of the N words wn:

3.1 Choose a topic zn ∼ Multinomial(θ).
3.2 Choose a word wn from p(wn|zn, β).

Simplifying assumptions:

I The dimensionality k of the Dirichlet distribution is known and fixed.

I The word probabilities are parameterized by β:

βij = Pr(w j = 1|z i = 1)
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Probabilistic topic models2

2David M. Blei (2012) Probabilistic topic models. Communications of the Association for
Computing Machinery (ACM), 55(4), 77-84.
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Probabilistic topic models
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Likelihood

A k-dimensional Dirichlet random variable θ can take values in the
(k − 1)-simplex, and has the following probability density on this simplex:

p(θ|α) =
Γ(
∑k

i=1 αi )∏k
i=1 Γ(αi )

θα1−1
1 · · · θαk−1

k

Given the parameters α and β, the joint distribution of a topic mixture θ, a set
of N topics z , and a set of N words w is given by:

p(θ, z , ω|α, β) = p(θ|α)
N∏

n=1

p(zn|θ)p(wn|zn, β),
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Marginal distribution of a document
Integrating over (θ, z), we obtain the marginal distribution of a document:

p(ω|α, β) =

∫
p(θ|α)

(
N∏

n=1

∑
zn

p(zn|θ)p(wn|zn, β)

)
dθ.

The probability of a corpus is then:

p(D|α, β) =
M∏
d=1

∫
p(θd |α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd .
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Three levels in the LDA representation

Corpus-level:
The parameters α and β are corpus-level parameters, assumed to be sampled
once in the process of generating a corpus.

Document-level:
The variables θd are document-level variables, sampled once per document.

Word-level:
Finally, the variables zdn and wdn are word-level variables and are sampled once
for each word in each document.
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Other latent variable models
Unigram model:
The words of every document are drawn independently from a single multinomial
distribution:

p(ω) =
N∏

n=1

p(wn).

Mixture of unigrams:
Each document is generated by first choosing a topic z and then generating N
words independently from the conditional multinomial p(w |z):

p(ω) =
∑
z

p(z)
N∏

n=1

p(wn|z).

Probabilistic latent semantic indexing (pLSI):
Attempts to relax the simplifying assumption made in the mixture of unigrams
model that each document is generated from only one topic.

p(d ,wn) = p(d)
∑
z

p(wn|z)p(z |d).
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Topic models
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Inference

The key inferential problem that we need to solve in order to use LDA is that of
computing the posterior distribution of the hidden variables given a document:

p(θ, z |ω, α, β) =
p(θ, z , ω|α, β)

p(ω|α, β)
,

with

p(ω|α, β) =
Γ(
∑k

i=1 αi )∏k
i=1 Γ(αi )

∫ ( k∏
i=1

θαi−1
i

) N∏
n=1

k∑
i=1

V∏
j=1

(θiβij)
w j

n

 dθ,

a function which is intractable due to the coupling between θ and β in the
summation over latent topics.

Although the posterior distribution is intractable for exact inference, a wide
variety of approximate inference algorithms can be considered for LDA, including
Laplace approximation, variational approximation, and MCMC (Jordan, 1999)3.

3Michael Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, MA, 1999.
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Example
16,000 documents from a subset of the TREC AP corpus (Harman, 1992)4. They fit a
100-topic LDA model. The top words from some of the resulting multinomial
distributions p(w |z) are illustrated in Figure 8 (top).

Bottom Fig 8: document from TREC AP corpus not used for parameter estimation.
4Harman (1992) Overview of the first text retrieval conference (TREC-1). In Proceedings of

the First Text Retrieval Conference (TREC-1), pages 1-20.
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Perplexity
The perplexity is monotonically decreasing in the likelihood of the test data, and is
algebraically equivalent to the inverse of the geometric mean per-word likelihood. More
formally, for a test set of M documents, the perplexity is:

perplexity(Dtest) = exp

{
−
∑M

d=1 log p(ωd)∑M
d=1 Nd

}
A lower perplexity score indicates better generalization performance.

TREC AP corpus with 16,333 newswire articles with 23,075 unique terms.
90% for training and 10% for testing.
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