
Neural networks (NN)1

Hedibert F. Lopes
Insper Institute of Education and Research

São Paulo, Brazil

1Slides based on Chapter 11 of Hastie, Tibshirani and Friedman’s book The Elements of
Statistical Learning: Data Mining, Inference, and Prediction (2nd Edition).

Chapter’s Introduction

In this chapter we describe a class of learning methods that was developed
separately in different field – statistics and artificial intelligence – based on
essentially identical models.

The central idea is to extract linear combinations of the inputs as derived
features, and then model the target as a nonlinear function of these features.

The result is a powerful learning method, with widespread applications in many
fields.

2/18

Single hidden layer, feed-forward neural network

Input layer
covariates

Hidden layer
features

Output layer
response

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

2/18

Neural network

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

3/18

Neural network2

2From http://mdtux89.github.io/2015/12/11/torch-tutorial.html
3/18

Vanilla neural net

Single hidden layer back-propagation network or single layer perceptron.

A neural network is a two-stage regression or classification model.

Derived features zm are created from linear combinations of the inputs, and then
the target y (with K categories or K -dimensional responses) is modeled as a
function of linear combinations of the zm,

zm = σ(α0m + α′mx), for m = 1, . . . ,M,

yk = β0k + β′kz , for k = 1, . . . ,K ,

fk(x) = gk(y),

where x = (x1, . . . , xp), z = (z1, . . . , zM)′ and y = (y1, . . . , yK).

4/18

Activation function
The activation function σ(v) is usually chosen to be the sigmoid

σ(v) =
1

1 + e−v
.

Sometimes Gaussian radial basis functions are used for the σ(v), producing what
is known as a radial basis function network.

5/18

Output function

The output function gk(y) allows a transformation of the vector of outputs y .

I For regression we typically choose the identity function gk(y) = yk .

I Early work in K -class classification also used the identity function, but this
was later abandoned in favor of the softmax function:

gk(y) =
eyk∑K
l=1 e

yl

Linear regression and classification:
Notice that if σ is the identity function, then the entire model collapses to a
linear model in the inputs. Hence a neural network can be thought of as a
nonlinear generalization of the linear model, both for regression and classification.

6/18

Weights
The neural network model has unknown parameters, often called weights, and we
seek values for them that make the model fit the training data well.

We denote the complete set of weights by θ, which consists of

{α0m, αm;m = 1, 2, . . . ,M} and {β0k , βk ; k = 1, 2, . . . ,K},

or M(p + 1) plus K (M + 1) weights!

Measures of fit
Regression - sum-of-squared errors

R(θ) =
K∑

k=1

N∑
i=1

(yik − fk(xi))2.

Classification - cross-entropy

R(θ) = −
K∑

k=1

N∑
i=1

yik log fk(xi),

and the corresponding classifier is G (x) = argmaxk fk(x).
7/18

Back-propagation

With the softmax activation function and the cross-entropy error function, the
neural network model is exactly a linear logistic regression model in the hidden
units, and all the parameters are estimated by maximum likelihood.

The generic approach to minimizing R(θ) is by gradient descent, called
back-propagation in this setting.

Because of the compositional form of the model, the gradient can be easily
derived using the chain rule for differentiation.

This can be computed by a forward and backward sweep over the network,
keeping track only of quantities local to each unit.

8/18

Back-propagation (part 1)

9/18

Back-propagation (part 2)

10/18

Back-propagation (part 3)

The advantages of back-propagation are its simple, local nature. In the back
propagation algorithm, each hidden unit passes and receives information only to
and from units that share a connection. Hence it can be implemented efficiently
on a parallel architecture computer.

11/18

Zip Code Data
This example is a character recognition task: classification of handwritten
numerals scanned from envelopes by the U.S. Postal Service.

Input: 256 pixel values (16× 16)
Output: digits {0, 1, 2, . . . , 8, 9}
Training set: 320 digits
Test set: 160 digits

12/18

Five different networks

13/18

Five different networks

14/18

Test performance curves

15/18

Test performance

16/18

Keras and RStudio

https://keras.rstudio.com

Keras is a high-level neural networks API developed with a focus on enabling fast
experimentation. Being able to go from idea to result with the least possible
delay is key to doing good research.

dataset mnist
From keras v2.1.6, by JJ Allaire
MNIST Database Of Handwritten Digits

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set
of 10,000 images. Lists of training and test data: train$x, train$y, test$x, test$y,
where x is an array of grayscale image data with shape (num samples, 28, 28)
and y is an array of digit labels (integers in range 0-9) with shape (num samples).

17/18

R script
devtools::install_github("rstudio/keras")

library(keras)

install_keras()

mnist <- dataset_mnist()

x_train <- mnist$train$x

y_train <- mnist$train$y

x_test <- mnist$test$x

y_test <- mnist$test$y

reshape

x_train <- array_reshape(x_train, c(nrow(x_train), 784))

x_test <- array_reshape(x_test, c(nrow(x_test), 784))

rescale

x_train <- x_train / 255

x_test <- x_test / 255

y_train <- to_categorical(y_train, 10)

y_test <- to_categorical(y_test, 10)

model <- keras_model_sequential()

model %>%

layer_dense(units = 256, activation = ’relu’, input_shape = c(784)) %>%

layer_dropout(rate = 0.4) %>%

layer_dense(units = 128, activation = ’relu’) %>%

layer_dropout(rate = 0.3) %>%

layer_dense(units = 10, activation = ’softmax’)

summary(model)

model %>% compile(

loss = ’categorical_crossentropy’,

optimizer = optimizer_rmsprop(),

metrics = c(’accuracy’)

)

history <- model %>% fit(

x_train, y_train,

epochs = 30, batch_size = 128,

validation_split = 0.2

)

plot(history)

model %>% evaluate(x_test, y_test)

model %>% predict_classes(x_test)
18/18

