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boston dataset
Boston Housing data, Harrison and Rubinfeld (1978)1

The data consist of 14 characteristics of 506 census tracts in the Boston area.
The response is the logged median value of owner occupied homes in each tract.

1Harrison and Rubinfeld (1978) Hedonic prices and the demand for clean air. Journal of
Environmental Economic and Management, 5, 81-102.
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Let us try p = 1
lstat: lower status of the population (percent)

|
lstat < 9.725

lstat < 4.65

lstat < 3.325

lstat < 3.12

lstat < 2.95

lstat < 4.15

lstat < 3.645

lstat < 3.935

lstat < 4.55

lstat < 5.495

lstat < 5.155

lstat < 5.005

lstat < 4.83

lstat < 5.31

lstat < 7.685

lstat < 7.435

lstat < 5.66

lstat < 5.945

lstat < 7.3

lstat < 6.885

lstat < 6.7

lstat < 6.575

lstat < 6.17

lstat < 6.395

lstat < 7.13

lstat < 9.335

lstat < 8.935

lstat < 8.66

lstat < 8.13

lstat < 8.03

lstat < 7.81

lstat < 9.605

lstat < 9.515

lstat < 16.085

lstat < 14.4

lstat < 11.675

lstat < 10.685

lstat < 9.95

lstat < 10.515

lstat < 10.33

lstat < 10.2

lstat < 11.265

lstat < 11.465

lstat < 12.125

lstat < 12.335

lstat < 13.1

lstat < 13.335

lstat < 13.48

lstat < 13.985

lstat < 14.645

lstat < 14.795

lstat < 15.705

lstat < 15.145

lstat < 19.9

lstat < 19.23

lstat < 18.74

lstat < 17.98

lstat < 17.51

lstat < 17.105

lstat < 16.455 lstat < 17.24

lstat < 18.405

lstat < 29.95

lstat < 21.49

lstat < 21.11 lstat < 23.035

lstat < 29.17

lstat < 23.47

lstat < 26.435

lstat < 25.16 lstat < 27.545

lstat < 34.195

42.34044.050

46.220

34.170

45.35038.540

33.44037.100

30.81028.260

35.98026.50031.460

23.580

29.150

25.070

27.11025.730

29.750

23.20029.72027.830

24.080

29.770

24.68021.240

27.740

22.190

28.220

21.330

26.14030.920

23.87022.540

20.83019.520

21.820

19.280

24.250

20.75023.140

19.260

22.240

19.680

21.800

18.940

22.30020.350

15.640

21.930

17.91015.390

20.320

15.77017.18014.25016.320

18.29015.15017.100

19.000

15.290

11.74017.10010.090

14.520

11.89013.46010.38012.500

14.940

 8.462 13.380
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Fitted model
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Pruned tree

|
lstat < 9.725

lstat < 4.65

lstat < 3.325 lstat < 5.495

lstat < 16.085

lstat < 19.9

43.99 37.32 30.47 25.85

20.30

16.37 12.33
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Fitted model
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R code

install.packages("tree")

library(tree)

library(MASS)

attach(Boston)

# Fitting a large tree

# -----------------------------

temp.tree = tree(medv~lstat,data=Boston,mindev=.0001)

plot(temp.tree,type="uniform")

text(temp.tree,col="blue",label=c("yval"),cex=.3)

temp.fit = predict(temp.tree)

oo=order(lstat)

preddf = data.frame(lstat=c(15,19,25))

yhat = predict(temp.tree,preddf)

plot(lstat,medv,cex=.5,pch=16)

lines(lstat[oo],temp.fit[oo],col="red",lwd=3)

points(preddf$lstat,yhat,col="blue",pch="*",cex=3)

# Pruning the large tree

# -----------------------------

boston.tree=prune.tree(temp.tree,best=7)

plot(boston.tree,type="uniform")

text(boston.tree,col="blue",label=c("yval"),cex=.8)

boston.fit = predict(boston.tree)

oo=order(lstat)

preddf = data.frame(lstat=c(15,19,25))

yhat = predict(boston.tree,preddf)

plot(lstat,medv,cex=.5,pch=16)

lines(lstat[oo],boston.fit[oo],col="red",lwd=3)

points(preddf$lstat,yhat,col="blue",pch="*",cex=3)
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Let us try p = 2
lstat: lower status of the population (percent)
dis: weighted mean of distances to five Boston employment centres.

|
lstat < 9.725

lstat < 4.65

dis < 3.20745 dis < 2.4501

lstat < 16.085

dis < 2.0037

48.30 37.01 34.38 25.68

20.30

11.97 16.75

5 10 15 20 25 30 35

2
4

6
8

10
12

lstat

di
s

48.3

37.0

34.4

25.7

20.3

12.0

16.8
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Terminal nodes: 5

5 10 15 20 25 30 35
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4

6
8

10
12
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25.7

20.3 14.3
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Terminal nodes: 6

5 10 15 20 25 30 35

2
4

6
8

10
12

lstat

di
s

48.3

37.0

34.4

25.7

20.3 14.3

12/71



Terminal nodes: 7
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Terminal nodes: 20
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R code

df2=Boston[,c(8,13,14)]

temp.tree = tree(medv~.,df2,mindev=.0001)

boston.tree=prune.tree(temp.tree,best=7)

par(mfrow=c(1,2))

plot(boston.tree,type="u")

text(boston.tree,col="blue",label=c("yval"),cex=.8)

partition.tree(boston.tree)
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Comparing in-sample fits

boston.fit2 = predict(boston.tree)

fmat = cbind(medv,boston.fit,boston.fit2)

colnames(fmat)=c("y=medv","treel","treeld")

print(cor(fmat))

y=medv treel treeld

y=medv 1.0000000 0.8338431 0.8560183

treel 0.8338431 1.0000000 0.9364702

treeld 0.8560183 0.9364702 1.0000000
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Let us try p = 4
nox: nitrogen oxides concentration (parts per 10 million)
rm: average number of rooms per dwelling
ptratio: pupil-teacher ratio by town
lstat: lower status of the population (percent)

|
rm < 6.941

lstat < 14.4

lstat < 4.91

nox < 0.466 lstat < 9.715

nox < 0.618

rm < 6.1245

nox < 0.607

ptratio < 19.45 lstat < 19.645

rm < 7.437

lstat < 11.455

lstat < 5.44

rm < 7.0835

ptratio < 17.9

29.72 37.10

20.75 24.97

34.32

20.77 19.83 16.32 15.48 10.63 35.36

25.58 33.40

20.74 46.82 36.48
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R code

df4=Boston[,c(5,6,11,13,14)]

temp = tree(medv~.,df4,mindev=.0001)

boston.tree4=prune.tree(temp,best=15)

par(mfrow=c(1,1))

plot(boston.tree4,type="u")

text(boston.tree4,col="blue",label=c("yval"),cex=.8)

fmat4=cbind(fmat,predict(boston.tree4))

colnames(fmat4)[4]="tree4"

print(cor(fmat4))

y=medv treel treeld tree4

y=medv 1.0000000 0.8338431 0.8560183 0.9266955

treel 0.8338431 1.0000000 0.9364702 0.8783099

treeld 0.8560183 0.9364702 1.0000000 0.8830659

tree4 0.9266955 0.8783099 0.8830659 1.0000000
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Tree with all p = 13 predictors
library (MASS)

set.seed (31415)

train = sample (1: nrow(Boston ), nrow(Boston )/2)

tree.boston = tree(medv~.,Boston ,subset =train,mindev=.0001)

plot(tree.boston,type="u")

text(tree.boston,pretty=0,cex=0.3)

|
rm < 6.797

lstat < 14.405

rm < 6.543

dis < 1.96885

tax < 223.5

lstat < 7.835

rm < 6.3845

ptratio < 19.4

ptratio < 20.95

ptratio < 15.6

rm < 6.0145

age < 43.85

ptratio < 19.65

black < 390.07

nox < 0.5125

black < 393.78

black < 395.38

nox < 0.521

dis < 4.1128

crim < 5.76921

age < 77.75

lstat < 17.995

crim < 0.171525

age < 94.4

ptratio < 19.6

ptratio < 16.3 black < 383.34

crim < 22.3241

nox < 0.628

lstat < 23.47

lstat < 19.08

rm < 7.433

lstat < 6.06

age < 51.75

tax < 253

black < 394.095

ptratio < 15.4

rm < 7.8275

28.900

27.880

23.020 21.870

24.560

23.160

21.120

18.080 19.060

19.740

22.820

22.340

19.620 21.310

17.080

30.220 25.840

23.630 21.900

19.200

16.010 17.970 15.080 18.100 12.100 14.780

16.380

14.000 12.460

10.060

 7.212

35.250

31.200 33.560

39.280

27.090

44.980 49.790

42.140
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Cross-validation

cv.boston = cv.tree(tree.boston)

plot(cv.boston$size,cv.boston$dev,type="b")
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Pruned tree

prune.boston = prune.tree(tree.boston,best=9)

plot(prune.boston,type="u")

text(prune.boston,pretty=0)

|rm < 6.797

lstat < 14.405

rm < 6.543

dis < 1.96885

crim < 5.76921

crim < 22.3241

rm < 7.433

lstat < 6.06

28.900 21.720

26.330 17.090

13.170  7.212

34.840 27.090

45.520

21/71



Large and pruned trees
y = Boston[-train,"medv"]

yhat = predict(tree.boston,newdata=Boston[-train,])

yhat1 = predict(prune.boston,newdata=Boston[-train,])

corr(y,yhat) = 0.798, corr(y,yhat1) = 0.806, corr(yhat,yhat1) = 0.946

par(mfrow=c(1,2))

plot(yhat,boston.test,xlab="Fitted (large tree)",ylab="Testing data")

title(paste("MSE = ",round(mean((yhat-y)^2),4),sep=""))

abline(0,1,col=2)

plot(yhat1,boston.test,xlab="Fitted (pruned tree)",ylab="Testing data")

title(paste("MSE = ",round(mean((yhat1-y)^2),4),sep=""))

abline(0,1,col=2)
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Trees versus linear models2

Regression and classification trees have a very different flavor from the more
classical approaches for regression and classification.

In particular, linear regression assumes a model of the form

f (x) =

p∑
j=1

βjxj

whereas regression trees assume a model of the form

f (x) =
M∑

m=1

cm1x∈Rm

where R1, . . . ,Rm represent a partition of feature space.

2ISLR, Section 8.1.3
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Trees versus linear models
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Advantages of trees3

I Trees are very easy to explain to people. In fact, they are even easier to
explain than linear regression!

I Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches.

I Trees can be displayed graphically, and are easily interpreted even by a
non-expert (especially if they are small).

I Trees can easily handle qualitative predictors without the need to create
dummy variables.

3ISLR, Section 8.1.4
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Disadvantages of trees

I Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches.

I Additionally, trees can be very non-robust. In other words, a small change in
the data can cause a large change in the final estimated tree.

Bagging, random forests and boosting

However, by aggregating many decision trees, using methods like bagging,
random forests, and boosting, the predictive performance of trees can be
substantially improved.
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Bootstrap aggregation: bagging4

Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing
the variance of a statistical learning method.

A natural way to reduce the variance and hence increase the prediction accuracy
of a statistical learning method is to take many training sets from the
population, build a separate prediction model using each training set, and
average the resulting predictions. In other words, we could calculate

f̂ 1(x), f̂ 2(x), . . . , f̂ B(x)

using B separate training sets, and average them in order to obtain a single
low-variance statistical learning model given by

f̂avg (x) =
1

B

B∑
b=1

f̂ b(x)

4ISLR 8.2.1
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Bagging

Of course, this is not practical because we generally do not have access to
multiple training sets.

Instead, we can bootstrap, by taking repeated samples from the (single) training
data set.

In this approach we generate B different bootstrapped training data sets.

We then train our method on the bth bootstrapped training set in order to get
f̂ ∗b(x), and finally average all the predictions, to obtain

f̂bag (x) =
1

B

B∑
b=1

f̂ ∗b(x)

This is called bagging.
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Bagging for regression trees

Construct B regression trees using B bootstrapped training sets, and average the
resulting predictions.

These trees are grown deep, and are not pruned.

Hence each individual tree has high variance, but low bias.

Averaging these B trees reduces the variance.

Bagging has been demonstrated to give impressive improvements in accuracy by
combining together hundreds or even thousands of trees into a single procedure.
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Bagging the boston data

bag.boston = randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)

Type of random forest: regression
Number of trees: 500

No. of variables tried at each split: 13

Mean of squared residuals: 15.33724
% Var explained: 83.59

bag.boston = randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=25)

Type of random forest: regression
Number of trees: 25

No. of variables tried at each split: 13

Mean of squared residuals: 16.46512
% Var explained: 82.38
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Fitted models
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cor(cbind(boston.test,yhat,yhat1,yhat.bag,yhat.bag1))
boston.test yhat yhat1 yhat.bag yhat.bag1

boston.test 1.0000000 0.7982040 0.8057710 0.8686673 0.8932177
yhat 0.7982040 1.0000000 0.9461125 0.9317866 0.9363935
yhat1 0.8057710 0.9461125 1.0000000 0.9357755 0.9395889
yhat.bag 0.8686673 0.9317866 0.9357755 1.0000000 0.9893311
yhat.bag1 0.8932177 0.9363935 0.9395889 0.9893311 1.0000000
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R code

library(randomForest)
set.seed(31415)

bag.boston = randomForest(medv~.,data=Boston,subset=train,mtry=13,importance=TRUE)
bag.boston

bag.boston = randomForest(medv~.,data=Boston,subset=train,mtry=13,ntree=25)
bag.boston

yhat.bag = predict (bag.boston ,newdata =Boston [-train ,])
yhat.bag1 = predict (bag.boston ,newdata =Boston [-train ,])

par(mfrow=c(1,2))
plot(yhat.bag,boston.test,xlab="Fitted (bagging 1)",ylab="Testing data")
title(paste("MSE = ",round(mean((yhat-yhat.bag)^2),4),sep=""))
abline(0,1,col=2)

plot(yhat.bag1,boston.test,xlab="Fitted (pruned tree)",ylab="Testing data")
title(paste("MSE = ",round(mean((yhat1-yhat.bag1)^2),4),sep=""))
abline(0,1,col=2)

cor(cbind(boston.test,yhat,yhat1,yhat.bag,yhat.bag1))
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Random forests5

Random forests provide an improvement over bagged trees by way of a random
small tweak that decorrelates the trees.

As in bagging, we build a number forest of decision trees on bootstrapped
training samples.

But when building these decision trees, each time a split in a tree is considered, a
random sample of m predictors is chosen as split candidates from the full set of p
predictors.

The split is allowed to use only one of those m predictors. A fresh sample of m
predictors is taken at each split, and typically we choose m ≈ √p.

5ISLR, Section 8.2.2
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When does random forests beat bagging?

One very strong predictor + many moderately strong predictors.

Bagging:

I Most or all of the trees will use this strong predictor in the top split.

I All of the bagged trees will look quite similar to each other.

I The predictions from the bagged trees will be highly correlated.

I Averaging many highly correlated quantities does not reduce the variance.

Random forests:

I Random forests forces each split to consider only m predictors.

I On average (p −m)/p of the splits will not consider the strong predictor.

I Other predictors will have more of a chance.

I This process decorrelates the trees.

I The average of the resulting trees less variable and hence more reliable.
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Random Forest for Regression or Classification6

6Hastie, Tibshirani and Friedman (2008) The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd Edition, page 588. 38/71



Out-of-bag error7

The out-of-bag (OOB) estimate, for response observation yi in the training data,
is obtained by averaging those Tb(xi ) for which observation i was NOT in the
bootstrap sample:

f̂
(i)
rf =

1

Bi

∑
b:i 6∈Z∗

b

Tb(xi ),

where Bi is the number of times observation i was not in the bootstrap sample.

The overall out-of-bag (OOB) error estimate is

errOOB =
1

N

N∑
i=1

L[yi , f̂
(i)
rf ]

I Random forests deliver cross-validated error estimates at virtually no extra cost.

I If B is sufficiently large (about three times the number needed for the random
forest to stabilize), we can see that the OOB error estimate is equivalent to
leave-one-out cross-validation error.

7Efron and Hastie (2016) Computer Age Statistical Inference: Algorithms, Evidence, and
Data Science, page 327-330.
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Adele Cutler’s Random Forests page8

8http://www.math.usu.edu/∼adele/forests
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Revisiting the spam dataset
Overall misclassification erros: 9.3% (tree) vs 5.7% (lasso with interactions)
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Test error
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OOB error
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Variable-importance plots
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Random forest: the boston data
randomForest() defaults:
m = p/3 variables (regression trees)
m =

√
p variables (classification trees)
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R code
set.seed(31415)
rf.boston = randomForest(medv~.,data=Boston,subset=train,mtry=10,importance=TRUE)
rf.boston
yhat.rf = predict (rf.boston ,newdata =Boston [-train ,])

rf.boston = randomForest(medv~.,data=Boston,subset=train,mtry=10,ntree=25,importance=TRUE)
rf.boston
yhat.rf1 = predict (rf.boston ,newdata =Boston [-train ,])

par(mfrow=c(1,2))
plot(yhat.rf,boston.test,xlab="Fitted (Random forest with 500 trees)",ylab="Testing data")
title(paste("MSE = ",round(mean((yhat-yhat.rf)^2),4),sep=""))
abline(0,1,col=2)

plot(yhat.rf1,boston.test,xlab="Fitted (Random forest with 25 trees)",ylab="Testing data")
title(paste("MSE = ",round(mean((yhat1-yhat.rf1)^2),4),sep=""))
abline(0,1,col=2)

round(cor(cbind(boston.test,yhat,yhat1,yhat.bag,yhat.bag1,yhat.rf,yhat.rf1)),4)
boston.test yhat yhat1 yhat.bag yhat.bag1 yhat.rf yhat.rf1

boston.test 1.0000 0.7982 0.8058 0.8687 0.8932 0.8801 0.8754
yhat 0.7982 1.0000 0.9461 0.9318 0.9364 0.9367 0.9306
yhat1 0.8058 0.9461 1.0000 0.9358 0.9396 0.9431 0.9401
yhat.bag 0.8687 0.9318 0.9358 1.0000 0.9893 0.9963 0.9874
yhat.bag1 0.8932 0.9364 0.9396 0.9893 1.0000 0.9902 0.9802
yhat.rf 0.8801 0.9367 0.9431 0.9963 0.9902 1.0000 0.9939
yhat.rf1 0.8754 0.9306 0.9401 0.9874 0.9802 0.9939 1.0000
>
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IncNodePurity
“IncNodePurity is a measure of the total decrease in node impurity that results
from splits over that variable, averaged over all trees. In the case of regression
trees, the node impurity is measured by the training RSS, and for classification
trees by the deviance.” (ISLR, page 330)

cbind(importance(bag.boston),importance(rf.boston))

IncNodePurity IncNodePurity

crim 686.54263 1096.69409

zn 42.13764 34.86653

indus 59.16361 126.10467

chas 12.19279 15.02267

nox 255.99583 582.10465

rm 14242.36653 9118.38936

age 416.35425 661.10425

dis 1032.03573 818.34677

rad 113.72632 49.43791

tax 335.51800 367.36610

ptratio 471.69760 623.26081

black 165.22122 295.30598

lstat 5357.56649 9214.00802
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Variable importance
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“The results indicate that across all of the trees considered in the random forest,
the wealth level of the community (lstat) and the house size (rm) are by far the
two most important variables.” (ISLR, page 330)
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Simulated exercise
n = 200 (100 for training and 100 for testing)
xi ∼ U(−1, 1)
yi ∼ N(x3

i , 0.1
2)
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Regression tree
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Bagging regression trees
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Boosting regression trees
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Bayesian additive regression trees
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True versus fitted
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Revisiting the motorcycle data
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Regression tree
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Bagging regression tree
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Boosting
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BART
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The ALS data9

These data represent measurements on patients with amyotrophic lateral sclerosis (Lou Gehrig’s disease).
The goal is to predict the rate of progression of an ALS functional rating score (FRS). There are 1197 training
measurements on 369 predictors and the response, with a corresponding test set of size 625 observations.

9Computer Age Statistical Inference, pages 334-337.
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Variable-importance plot

Only 267 of the 369 variables were ever used, with one variable Onset.Delta standing out ahead of the
others. This measures the amount of time that has elapsed since the patient was first diagnosed with ALS,
and hence a larger value will indicate a slower progression rate.
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The DREAM challenge10

The ALS data were kindly provided by Lester Mackey and Lilly Fang, who won the DREAM challenge
prediction prize in 2012 (Kuffner et al., 2015). It includes some additional variables created by them.
Their winning entry used Bayesian trees, not too different from random forests.

10https://web.stanford.edu/ lmackey/papers/alsprize4life-slides.pdf
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The DREAM challenge11

Küffner, Zach, Norel, Hawe, Schoenfeld, Wang, Li, Fang, Mackey, Hardiman, Cudkowicz, Sherman, Ertaylan,
Grosse-Wentrup, Hothorn, van Ligtenberg, Macke, Meyer, Schölkopf, Tran, Vaughan, Stolovitzky and Leitner
(2014) Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression.
Journal Nature Biotechnology, 33, 51.

11http://neurology.arizona.edu/sites/default/files/dr scherer-nbt 3051.pdf
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14 Institute of Social- and Preventive Medicine, University of Z̈ırich, Zürich, Switzerland.
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Bibliographic Notes12

Random forests as described here were introduced by Breiman (2001), although many of the ideas had
cropped up earlier in the literature in different forms.

Notably Ho (1995) introduced the term “random forest,” and used a consensus of trees grown in random
subspaces of the features.

The idea of using stochastic perturbation and averaging to avoid overfitting was introduced by Kleinberg
(1990), and later in Kleinberg (1996).

Amit and Geman (1997) used randomized trees grown on image features for image classification problems.

Breiman (1996) introduced bagging, a precursor to his version of random forests.

Dietterich (2000) also proposed an improvement on bagging using additional randomization. His approach
was to rank the top 20 candidate splits at each node, and then select from the list at random. He showed
through simulations and real examples that this additional randomization improved over the performance of
bagging.

Friedman and Hall (2007) showed that sub-sampling (without replacement) is an effective alternative to
bagging. They showed that growing and averaging trees on samples of size N/2 is approximately equivalent
(in terms bias/variance considerations) to bagging, while using smaller fractions of N reduces the variance
even further (through decorrelation).

12ESL, page 602.
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