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5.1 Introduction 

The origin of factor analysis can be traced back to Spearman's (1904) seminal 
paper on general intelligence. At the time, psychologists were trying to define 
intelligence by a single, all-encompassing unobservable entity, the g factor. 
Spearman studied the influence of the g factor on examinees' test scores on 
several domains: pitch, light, weight, classics, French, English, and mathemat-
ics. At the end of the day, the g factor would provide a mechanism to detect 
common correlations among such imperfect measurements. More precisely, 
Spearman's (1904) one-factor model based on p test domains (measurements) 
and n examinees (individuals) can be written as 

Vij = Vj + Pj9i + (5-1) 
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for i = 1 , . . . ,n, j = I,... ,p, where y^ is the score of examinee i on test 
domain j , [ij is the mean of test domain j , (ji is the value of the intelligence 
factor for person i, B3 is the loading of test domain j onto the intelligence 
factor g, and e^ is the random error term for person i and test domain j. 

Spearman spends part of his 90-page paper defending his one-factor model 
of general intelligence, arguably his main, seminal contribution to the fields 
of psychometrics as well as statistical modeling at this time. Nonetheless, 
Bartholomew's (1995) review paper starts by stating that "Spearman invented 
factor analysis but his almost exclusive concern with the notion of a general 
factor prevented him from realizing its full potential." 

For subsequent developments, mainly in psychology studies, see Burt (1940), 
Holzinger and Harman (1941), and Thomson (1953), amongst others, where 
the factors had an a priori known structure. The extension to multiple factors 
as well as its formal statistical framework came many decades later. Multi-
ple factor analysis was first introduced by Thurstone (1935,1947) and Lawley 
(1940,1953), along with estimation via the centroid method and maximum 
likelihood, respectively. Hotelling (1955) proposed a more robust method of 
estimation, the method of principal components, while Anderson and Rubin 
(1956) formalized and elevated factor analysis to the realm of statistically and 
probabilistically sound modeling schemes. 

Computationally speaking, maximum likelihood estimation became prac-
tical in the late 1960s through the work of Joreskog (1967,1969). A further 
improvement was achieved in the early 1980s through the EM algorithms 
of Rubin and Thayer (1983,1983); see also Bentler and Tanaka (1983). In 
the late 1980s, Anderson and Amemiya (1988) and Amemiya and Anderson 
(1990) studied the asymptotic behavior of estimation and hypothesis test-
ing for a large class of factor analysis under general conditions, while Akaike 
(1987) proposed an information criterion to selecting the proper number of 
common factors. 

Table 5.1 illustrates the fast increase in the use of factor analysis in a 
few areas of science and industry over the last century. This chapter dis-
cusses the Bayesian contribution to this table, most of which appearing after 
the mid-1990s due to both the increasing access to faster, smaller, cheaper 
and sharable computers and processors and the revival and/or introduction 
of efficient Monte Carlo schemes for posterior inference in highly structured 
stochastic systems (Gamerman and Lopes, 2006), of which factor analysis is 
an increasingly popular member. 

Factor Analysis at 100: To celebrate the centennial of Spearman (1904), The 
L. L. Thurstone Psychometric Laboratory, University of North Carolina at 
Chapel Hill, hosted in May 2004 a workshop entitled Factor Analysis at 100: 
Historical Developments and Future Directions, with David Bartholomew, 
Michael Browne, Robert Jennrich, Karl Joreskog, Yasuo Amemiya and many 
other distinguished invited speakers. A thought-provoking historical account 
is the paper Three Faces of Factor Analysis presented at the meeting by 
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Table 5.1: Distribution of papers on factor analysis on the Internet. Re-
produced from Kaplunovsky (2004), who presents more areas of science and 
industry and more disaggregated time intervals. 

1904-1985 1986-1995 1996-2004 
80 years 10 years 10 years 

Psychology 179 378 723 
Psychiatry 29 100 236 
Medicine 62 131 225 
Spectroscopy 38 90 198 
Chemistry 26 89 165 
Biology 35 43 88 
Physiology 46 77 80 
Geriatry 14 19 56 
Economics 26 11 46 
Chromatography 11 38 39 

Bartholomew. Another historical account was neatly organized by a group 
of students and faculty at the Thurstone Psychometric Lab entitled Factor 
Analysis Genealogy and Factor Analysis Timeline. See the conference web-
page for these and additional information at h t tp : / /www.fa l00 . info . The 
papers presented at the meeting appeared in Cudeck and MacCallum (2007). 

The rest of the chapter is organized as follows. Section 5.2 reviews and ex-
plores the basic normal linear factor model, identification issues, estimation of 
parameters and factors as well as estimation/selection of the number of com-
mon factors. Section 5.3 deals with factor variance models, commonly present 
in financial econometrics contexts. Factor models for spatial and space-time 
problems are introduced in Section 5.4. Section 5.5 presents recent develop-
ments in factor analysis, such as prior and posterior robustness, mixture of 
factor analyzers, factor analysis in time series and macroeconometric modeling 
and sparse factor structures. Some of the recent contributions to the litera-
ture on non-Bayesian (large dimensional and/or dynamic) factor analysis are 
presented in Section 5.6. The chapter concludes with Section 5.7. 

5.2 Normal Linear Factor Analysis 

Let yi = (yn , . . . , yip)', for i = 1 , . . . , n, be a p-dimensional vector with the 
measurements on p related variables (Spearman's tests, attributes, macroe-
conomic or financial time series, census sectors, monitoring stations, to name 
a few examples). The basic normal linear factor model assumes that ys are 
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independent and identically distributed N(0,fl), i.e., a zero-mean multivari-
ate normal with a p x p non-singular variance matrix Q. Loosely speaking, a 
factor model usually rewrites fi, which depends of q = p(p+1)/2 variance and 
covariance components, as a function of d parameters, where d is potentially 
many orders of magnitude smaller than q. Figure 5.1 illustrate a 3-factor 
model for a p = 9-dimensional vector of attributes. 

More specifically, for any positive integer k < p, a standard normal linear 
A:-factor model for yt is written as 

Vi\fh/3,E ~ JVGS/i.E), (5.2) 
fi\H ~ N(0,H), (5.3) 

where ft is the /c-dimensional vector of common factors, B is the pxk matrix 
of factor loadings, E = diag(<72,..., a2) is the covariance of the specific factors 
and H — diag(/ii , . . . , hk) is the covariance matrix of the common factors. The 
uniquenesses of s, also known as idiosyncratic or specific variances, measure 
the residual variability in each of the data variables once that contributed by 
the factors is accounted for. Conditionally on the common factors, fk, the 
measurements in yi are independent. In other words, the common factors 
explain all the dependence structure among the p variables and, based on 
equations (5.2) and (5.3), the unconditional, constrained covariance matrix of 
yi becomes 

n = pH(3' + E. (5.4) 

The matrix fi depends on d = ( p + l ) ( f c + l ) — 1, the number of elements of 
/?, H and E, a number usually considerably smaller than q = p(p + l)/2, the 
number of elements of the unconstrained f2. 

5.2.1 Parsimony 

In practical problems, especially with larger values of p, the number of factors 
k will often be small relative to p, so most of the variance-covariance structure 
is explained by a small number of common factors. For example, when p — 100 
and k = 10, a configuration commonly found in modern applications of factor 
analysis, q = 5050 and d = 1110, or roughly q = 5d. Similarly, when p = 1000 
and k = 50, if follows that q = 500500 and d = 51050, or roughly q = 10d. 
Such a drastic reduction in the number of unrestricted parameters renders 
factor modeling inherently a parsimony-inducing technique. 

5.2.2 Identifiability 

The k-factor model of equations (5.2) and (5.3) is invariant under transfor-
mations of the form (3* = (iP' and /* = P / , , where P is any orthogonal 
k x k matrix. Likelihood identification is achieved by assuming that /? is a 
block lower triangular matrix of rank k and with ones in the main diagonal. 
It is worth noting that the ones in the main diagonal of can be replaced 
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Nine correlated variables Pii 0 0 
0 0 
0 ft® 0 

0 0 
0 0 
0 0 063 
0 0 
Psi 0 0 
PM 0 0 

Three common factors 

Factor 1 Factor 2 Factor 3 

Figure 5.1: Illustration of a 3-factor model structure for p = 9 correlated vari-
ables. Notice that each variable is explained by only one of the k = 3 common 
factors. Therefore, fi = (ill (3' + £ is block-diagonal, with independent blocks 
defined by variables (2/1,2/4,2/8,2/9), (2/3,2/7) and (2/2,2/5,2/6 )• 

by strictly positive values, as long as H, the common factors' covariance ma-
trix, is replaced by Ik. This form is used, for example, in Geweke and Zhou 
(1996) and Lopes and West (2004), as well as the majority of the Bayesian 
factor modelers after them, and provides both identification and, often, useful 
interpretation of the factor model. 

With U of full rank p, the resulting factor form of f2 has d — p(k + l) — k(k — 
l ) /2 parameters, compared with the total q = p(p+ l ) /2 in an unconstrained 
(or p = k) model, leading to the constraint that 

p(p + l ) / 2 - p(k + 1) + k(k - l ) / 2 > 0, (5 .5) 

which provides an upper bound on k. Even for small p, the bound will often 
not matter as relevant k values will not be so large. In realistic problems, with 
p in double digits or more, the resulting bound will rarely matter. Finally, 
note that the number of factors can be increased beyond such bounds by 
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reducing the rank of E. See also Ihara and Kano (1995), who establish and 
discuss conditions for full, marginal and conditional model identification are 
discussed. 

5.2.3 Invariance 

Three important results for the class of standard normal linear factor models 
are shown below: (i) non-diagonal H is irrelevant, (ii) they are invariant to 
the order of the variables, and (Hi) reduced rank factor loadings and non-
identifiability. 

Result (i): Let us assume that H is non-diagonal and that H = LlJ. Then, 
equations (5.2) could be rewritten as y ~ N(P*f*, E*), where [3* = ftL, 
f* = I / - 1 / and E* = E unchanged. The rotated common factors /* are still 
zero-mean multivariate normal with covariance matrix Iq = L~lH(L~X )'. The 
loading matrix (3* can be transformed into a lower block triangular matrix by 
letting 0* = ((/3{)', (P2)')', P{ a (k x k) matrix, PI a (p - k x k) matrix. So, 

where Pl(P*)' = ZZ', for lower triangular Z. More compactly, (3 = ftP\ and 
/ = P2f for Pi = L(Z')-1 and P2 = Z'iP^L'1. Now, it is straightforward 
to see that 

so equations (5.2] and (5.3) can be recovered by letting j3 be (3 with column 
i normalized by fin, for i = 1 , . . . , q, and H = diag(/3ii,..., /3%k)-

Result (ii): It follows directly and similarly since reordering the components 
of y is equivalent to pre-multiplying it by a permutation matrix Q, accordingly 
pre-multiplying the factor loadings matrix by Q and post-multiplying it by 
L, i.e., /3* = Q/3L, while /* = L " 1 / and E* = QEQ' are still diagonal. /3* 
is transformed into a lower block triangular matrix and / rotated to produce 
orthogonal factors by repeating the steps of result (i). 

Result (Hi): It is important to emphasize that the above two results apply 
only when k is the right number of factors, i.e., when the rank of the loading 
matrix (3 is k. More precisely, when II = ifc, Geweke and Singleton (1980) 
showed that, if P has rank r < k, then there exists a matrix Q such that 
PQ = 0 and Q'Q = Ik and, for any (p x fc) orthogonal matrix M, it follows 
that 

P2HPj
2 = Z'iPD^L-'HiL-^'dP*)-1)^ 

= z'(Px)~i({PD^iyz = z'ipupiyy'z 
= Z'{ZZ')-lZ = Z'{Z,)-1Z-1Z = Ik, 

PP' + E = (P + MQ')'(P + MQ') + (E - MM'). (5.6) 

P = P*{Z')-l=( Z
 t I and f = Z'ift)-1/*, 

v m n z T 1 ; 
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This translation invariance of f2 under the factor model implies a lack of 
identification and, in application, induces symmetries and potential multi-
modalities in the resulting likelihood functions. This issue relates directly 
to the question of uncertainty of the number of factors. Figure 5.3 of Ex-
ample 5.1 illustrates this phenomenon. See also Lopes and West (2004) for 
further discussion and additional empirical evidence. In Friihwirth-Schnatter 
and Lopes (2009), we take advantage of the result (Hi) and propose a new 
stochastic search scheme that navigates the joint space of the sparse factor 
loadings and the number of common factors. 

5.2.4 Posterior Inference 

Early MCMC-based posterior inference in standard factor analysis appears in, 
among others, Geweke and Zhou (1996) and Lopes and West (2004). They ba-
sically propose and implement a standard Gibbs sampler that cycles through 
the full conditional distributions of p(/3|/, £, y), p(E|/ , fi,y) and p(/|/3, £,y), 
which following well known distributions when conditionally conjugate priors 
are used. Here we assume that H = Ik and that 0 is block lower triangular, 
for identification, with diagonal strictly positive diagonal elements. 

Prior Specification. T h e unconstra ined components of /3 are independent and 
identically distributed (i.i.d.) N(mo,Co), the diagonal components /3„;s are 
i.i.d. truncated normal from below at zero, denoted here by iV(0,oo)(mo, Co), 
and the idiosyncratic variances, of are i.i.d. IG{v/2,vs2/2). The hyperpa-
rameters mo, Co, v and s2 are known. It is worth mentioning that the above 
prior specification has been extended and modified many times over to accom-
modate specific characteristics of the scientific modeling under consideration. 
Lopes et al. (2008), for example, utilize spatial proximity to parameterize the 
columns of /3 when modeling pollutants across Eastern US monitoring sta-
tions. See the following sections for more structured factor loading matrices, 
as well as common and specific factor dynamics. 

Full Conditional Distributions. T h e factor model can be seen as a s t andard 
multivariate regression model when deriving the full conditionals (f\/3,a,y) 
and (j3\E,f,y) (Box and Tiao, 1973; Press, 1982; Broemeling, 1985; Zellner, 
1971; Gamerman and Lopes, 2006). More precisely, let us start by denoting 
2/ = (j/(i),---,2/(P))> P = and F{ = ( / ( 1 ) , . . . , f{i)), with ft = 
(/?-, 0k-i)' and Fi = ( / ( 1 ) , . . . , / ( i ) ) , for i = 1 , . . . , k - 1. Therefore, for i = 
1 ,...,n, (£|/3, E, y) ~ N((Ik +0 '£-1 /9)-1 /9 '£-1 j / i , {Ik + p'_ E"1/?)"1). For i = 
1 ,...,k, (ft'|£,/,y) ~ N(mi,Ci)5pii>0, where m» = Ci(C0

 1n0li+ai
 2F'iy{i)), 

C^1 = Cq 11i + a~2F[Fi, 1 i is an ^-dimensional vector of ones and Sx is the 
indicator function at x. For i = k + 1 , . . . ,p, (/3j|E, / , y) ~ N{rrii, C%), where 
mi = Ci{CQlpQlk + a r 2 F ly { i ) ) and C " 1 = C ^ h + a72F^Fk. Finally, 
(of 1/3, / , y) ~ IG{{v+n)/2, {vs2+di)/2), where di = 
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Chib et al. (2006), in the context of multivariate stochastic volatility model-
ing, propose an MCMC scheme that jointly samples the factor loadings matrix 
/3 and the common factor scores fas. They basically integrate the factors out 
of the full conditional distribution of /3 and use a Metropolis-Hastings step to 
sample /3. Then they sample / given /3, as described in our scheme above. See 
also Ghosh and Dunson (2009) for a slight modification of our scheme, and 
Song and Lee (2001) for a factor analysis combining continuous and polyto-
mous data. Paisley and Carin (ICML) propose a nonparametric extension to 
the factor analysis problem using a beta process prior. 

fl E X A M P L E 5.1 

Lopes and West (2004) fit one-, two- and three-factor models to monthly 
international exchange rate data spanning from January of 1975 to De-
cember 1986 (a total of n = 144 observations). The time series are the 
exchange rates in British pounds of the US dollar (US), Canadian dol-
lar (CAN), Japanese yen (JAP), French franc (FRA), Italian lira (ITA) 
and (West) German (Deutsch)mark (GER). Here we replicate the setup 
used in Lopes and West (2004), with prior hyperparameters mo = 0, 
Co = 1, v = 2.2 and s 1 = 0.0455. For the Gibbs sampler, we burn-in 
the algorithms for 10,000 iterations, and then save equally spaced sam-
ples of 5,000 draws from a longer run of 100,000. It takes only about one 
minute to run a two-factor model on my MacBook Pro with a 2.6GHz 
Intel Core i7 processor, 8 GB 1600 MHz DDR3 Memory running a Mac 
OS X Lion 10.7.5. The posterior means of £ and 8 in a two-factor model 
are E{Y,\y) = diag(0.05,0.13,0.62,0.04,0.25,0.26) and 

Apart from the third row of E((3\y), corresponding to the Japanese yen, 
which is equally explained by both common factors, one can argue that 
the first common factor groups North American currencies (US and Cana-
dian dollars) and the second common factor groups European currencies. 
In factor analysis, it is fairly standard to summarize the importance of 
a common factor by its percentage contribution to the variability of a 
given attribute. Figure 5.2 presents the variance decomposition for the 
example and enhances the above statements regarding the interpretation 
of the two latent factors. Finally, Figure 5.3 illustrates the multimodality 
implied by overfitting the number of factors, regardless of using more or 
less informative prior specifications. 

Etf'W) = 
1.00 0.96 0.46 0.39 0.42 0.41 \ 
0.00 0.05 0.43 0.92 0.78 0.78 J ' 
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Figure 5.2: Example 1 - variance decomposition. The proportion of the 
variance of currency i, for i = 1 , . . . ,6, attributed to common factor j, for 
j = 1,2 is given by vl0 = Pfj/iPfi + 8f2 + of). The boxplots summarize 
the posterior distributions of the v^s. Informative prior (white boxplots). 
Noninformative prior (gray boxplots). 

5.2.5 Number of Factors 

Bayesian and non-Bayesian references that tackle the estimation/choice of the 
number of common factors are, amongst many others, Lawley and Maxwell 
(1963), Joreskog (1967), Martin and McDonald (1975), Bartholomew (1981), 
Press (1982) (Chapter 10), Lee (1981), Akaike (1987), Bartholomew (1987), 
Press and Shigemasu (1989), Press and Shigemasu (1994). The book by 
Bartholomew (1987) is an excellent overview of the field right before MCMC 
tools became available. 

Polasek (1997) uses Chib's methods (Chib, 1995) to approximate marginal 
likelihoods, and therefore posterior model probabilities, by running MCMC 
methods for factor models with a different number of common factors. Lopes 
and West (2004) introduced, developed and explored MCMC methods for 
factor models that treat the number of factors as unknown. Building on 
prior work on MCMC methods for a given number of factors, we introduced 
a reversible jump Markov chain Monte Carlo (RJMCMC, see Green, 1995) 
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Figure 5.3: Example 1 - posterior inference. Posterior distributions (MCMC 
approximation) of p(&i\y), i = 2 , . . . , 5 of Example 5.1, when estimat-
ing a two-factor model (histograms) and a (overfitted) three-factor model 
(solid lines). Informative prior (top row): The prior hyperparameters are 
(mo, Co, S2) = (0,1,2.2,0.0455). Prior mode and median of cr* are 0.154 
and 0.252, respectively. Noninformative prior (bottom row): The prior hyper-
parameters are (m0, Co, s2) = (0, oo, 0.001,1). Prior mode and median of 
of are 0.032 and 1.4e149, respectively. 

algorithm for moving between models with different numbers of factors, which 
avoids the computation of marginal likelihoods by treating the number of 
factors as a parameter. 

Lopes and West (2004) served as the motivation to a handful of significant 
contributions to the discussion regarding the estimation of the number of 
common factors. West (2003) and Carvalho et al. (2008), for example, intro-
duced high-dimensional factor analysis for modeling gene expression data with 
highly sparse factor loadings. The sparse representation induces a probability 
distribution over the number of factors. They model the factor scores via a 
Dirichlet. See also Lee and Song (2002) and Chow et al. (2011). Lopes et al. 
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(2008) extend Lopes and West's (2004) RJMCMC to the context of normal 
dynamic factor analysis, particularly when the loadings are spatially mod-
eled. Bhattacharya and Dunson (2011), also focusing on high-dimensional 
problems, propose a gamma process shrinkage prior on the factor loadings 
matrix that allows the introduction of infinitely many factors of decaying 
importance. 

We proposed, in Friihwirth-Schnatter and Lopes (2009), a new stochastic 
search strategy for estimating the number of factors and show that our ap-
proach encompasses and improves upon Carvalho et al. (2008), Bhattacharya 
and Dunson (2011) and most of the existing strategies. In Conti et al. (2011), 
we use and extend the new the strategy to examine the effect of early-life 
conditions and education on health but incorporating discrete attributes as 
well as limited dependent variable structures, commonly present when dealing 
with endogeneity in microeconometric studies. 

5.3 Factor Stochastic Volatility 

The basic, and certainly the most used and cited, stochastic volatility (SV) 
model can be described by the following non-linear dynamic model (West and 
Harrison, 1997): 

where yt are log-returns and log-variances xt = log vt, et and r/( i.i.d. stan-
dard normal errors. We take /x = 0 for simplicity, Bo = Pi = 1 — k. The 
initial log-volatility state XQ ~ N(mo,Co), for known prior moments mo and 
Co- An alternative specification assumes that (XO\Bo, BI, T 2 ) ~ N(BO/(1 — 

/3i), r 2 / ( l — Bi)) with |A | < 1; see Kalayloglu and Ghosh (2009) for Bayesian 
unit root tests regarding (3. The centering parameterization moves Pa to the 
observation equation and centers log-variances. This parameterization only 
marginally affects posterior inference in most cases while creating an unnec-
essary computational burden. We will then keep the simpler, less restrictive, 
more general specification with mo and Co-

The SV model is completed with a conjugate prior distribution for 6 — 
( P , T 2 ) , i.e., p{6) = P ( P \ T 2 ) P ( T 2 ) , where {fi\r2) ~ N{b0,T

2B0) and r 2 ~ 
IG(co,do), for known hyperparameters bo, Bo, Co and do- An alternative 
specification where P and r 2 are independent a priori can be easily imple-
mented with negligible additional computational cost. 

Given a set of observed asset returns yn — ( j / i , . . . , yn) and equations (5.7) 
and (5.8), the posterior distribution of the hidden volatility states and param-
eters (xn,6) is given by Bayes rule 

Vt = exp{xt/2}£t, 
Xt = Po +PlXt-l +TT]T 

(5.7) 
(5.8) 

n 
p{xn,e\yn)^xp{e)J{p{yt\xt,e)p{xt\xt.1,e), (5.9) 

t—1 
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which is analytically intractable because of the nonlinearity of equation (5.7). 
Jacquier, Poison and Rossi (JPR, 1994) performed fully Bayesian inference 
through an MCMC scheme, with Kim et al. (1998) improving upon JPR's 
scheme based on the well known forward filtering-backward sampling (FFBS) 
algorithm of Carter and Kohn (1994) and Friihwirth-Schnatter (1994). Also, 
Jensen (2004) develops semiparametric inference for long-memory SV pro-
cesses, while So et al. (1998) and Carvalho and Lopes (2004) accommodate 
Markov jumps in the log-volatilities. 

5.3.1 Factor Stochastic Volatility 

The literature on multivariate stochastic volatility models is now abundant, 
with Harvey et al. (1994), Pitt and Shephard (1999), Aguilar and West (2000), 
Lopes and Migon (2002), Chib et al. (2006) and Lopes and Carvalho (2007) 
representing only a few. Roughly speaking, they model the levels (or first 
differences) of a set of (financial) time-series by a standard normal factor 
model (Lopes and West, 2004) in which both the commonfactor variances and 
the specific (or idiosyncratic) time-series variances are modeled as univariate 
or multivariate (of low dimension) SV processes. The main practical and 
computational advantage of the factor stochastic volatility (FSV) model is its 
parsimony, where all the variances and covariances of a vector of time-series 
are modeled by a low dimensional stochastic volatility structure dictated by 
common factors. It is fairly common to find that, for large vectors of time 
series, the number of common factors is usually one or two orders of magnitude 
smaller, which speeds up computation and estimation considerably. 

In this more general context, the simple normal linear factor model of 
equations (5.2) and (5.3) are replaced by 

(ifc|/t,A,Et) ~ A W t ; £ t ) , (5.10) 
( f t \ H t ) ~ N (0; H t ) , (5.11) 

where Ht = diag{hu, •••, hkt) contain the variances of the factors and X > = 
diag(of t , . . . ,(Tpt). The main, nontrivial departure from the standard normal 
linear factor model lies in the time-varying structure of (3t, £ t and Ht. Log id-
iosyncratic variances, rju = log oft, are modeled by first-order autoregressions, 
AR(1): 

{riit\Vi,t-i,aii, pi,r?) ~ N(cti+ piT]itt-uT?), (5.12) 
for i = 1 , . . . ,p. This is one of the simplest but certainly the most used spec-
ification in the literature (Jacquier et al., 1994). Similarly, the fc-dimensional 
vector of factors' log variances, At = (Ai t , . . . , Xkt)', where Xit = log hft, is 
modeled by a first-order vector autoregression, VAR(l), as 

(At|At_i, a, (f>, U) ~ N(a + <frXt-i;U), (5.13) 

with correlated innovations characterized by the non-diagonal matrix U (see 
Aguilar and West, 2000). When U is a diagonal matrix, the above multivari-
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ate model is reduced to k univariate conditionally independent autoregres-
sive models (Pitt and Shephard, 1999). Both Pitt and Shephard (1999) and 
Aguilar and West (2000) consider ft = (3 for all t time periods. Lopes and 
Migon (2002) and Lopes and Carvalho (2007) extend the previous works by 
modeling the evolution of the unconstrained loadings, ft, as 

(f t |A- i , C, O, W) ~ N{C + ©ft_i; W), (5.14) 

therefore allowing changes in covariances that are not exclusively associated 
to changes in the individual factor variances. 

Philipov and Glickman (2006a,b) extend the above FSV model (with £ t = 
£) and model Ht as a full covariance matrix via their Wishart random process. 
They implement their model on return series 324 monthly observations of 
88 individual companies from the S&P500 and use k = 2 common factors. 
Han (2006) implements a similar FSV model to form a portfolio based on 36 
stocks, 1200 observations collected from the Center for Research in Security 
Prices (CRSP). Chib et al. (2006) introduce fat-tailed errors and jumps in the 
FSV model as well as efficient and fast MCMC algorithm. They implement 
their extension to simulated data (p = 50) and real data on international 
weekly stock index returns where p = 10 (see also Nardari and Scruggs, 2007). 
Lopes and Carvalho (2007) extend the FSV model to allow for Markovian 
regime shifts in the dynamic of the variance of the common factors and apply 
their model to study Latin America's main markets (p = 5). More recently, 
Nakajima and West (2013) extend the basic factor stochastic volatility model 
by allowing time-varying patterns of occurrence of zero elements in factor 
loadings matrices, which potentially leads to more interpretable, dynamic 
sparsity. 

5.3.2 Financial Index Models 

Carvalho et al. (2011) consider financial index models (FIM) appropriate 
choices for the purpose of covariance estimation and asset allocation. They 
develop a dynamic factor model encompass both the BARRA1 and Fama-
French2 strategies in a simple yet flexible modeling setup. The fact that size, 
book-to-price and momentum are relevant to explain covariation among stocks 
is exploited in two common ways: (i) as individual regressors in a multivariate 
linear model, and (it) as ranking variables used to construct portfolios that 
are used as indices. A very large body of literature is dedicated to selecting 
and testing the indices (Cochrane, 2001; Tsay, 2005). 

1 The BARRA strategy, after the company BARRA, Inc., founded by Barr Rosenberg, 
whose ideas can be found in Rosenberg and McKibben (1973). 
2Fama and French, in a series of papers, identified a significant effect of market capitalization 
and book-to-price ratio into expected returns. This has lead to the now famous Fama-
French three-factor model where, besides the market, two indices are built as portfolios 
selected on the basis of firms' size and book-to-price ratio. 
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FIM leads to tractable and parsimonious estimates of the covariances and it 
is economically interpretable and theoretically justified. From a methodolog-
ical viewpoint, our models can be seen as a "structured" extension of current 
factor model ideas as developed in Aguilar and West (2000), West (2003), 
Lopes and West (2004), Lopes et al. (2008) and Carvalho et al. (2008). On 
the applied side our goal is to propose a model-based strategy that creates 
better FIM, helps deliver better estimates of time-varying covariances, and 
leads to more effective portfolios. 

The general form of an index model assumes that stock returns follows 
rt — at + Pi ft + St, where, as in our general factor model of equation (5.2), 
ft is a vector of common factors at time t, (3t is a matrix of factor loadings 
(or exposures) and et is a vector of idiosyncratic residuals. Therefore, if 
V a r ( f t ) = Ht and Var(et) = £ t , then Var(rf) = PtHtP't + Et, from equation 
(5.4). 

Carvalho et al. (2011) take a dynamic, model-based perspective and assume 
that at time t one observes the vector (rt, xt,Zt), where rt is a p-dimensional 
vector of stock returns; Zt is a p x k matrix of firm specific information; and 
xt is the market return (or some equivalent measure). The index model is 
then defined by a dynamic factor model as 

rt = at + 7 tx t + Ptft + £t, (5-15) 

where 71 is a p-dimensional vector of market loadings, et is the vector of 
idiosyncratic residuals, and ft is a fc-dimensional vector of common factors. 
Each element of both a t and j t follows a standard first-order dynamic linear 
model (West and Harrison, 1997) and that et is defined by a set of independent 
stochastic volatility models (Jacquier et al., 1994; Kim et al., 1998). They also 
assume that ft is zero-mean multivariate normal with diagonal covariance 
matrix Ht driven by univariate stochastic volatility models. Finally, through 
Pt, company specific information will be used to help uncover relevant latent 
structures representing the risk factors. Taking 7t = 0 and fixing the loading 
through time gets us to the factor stochastic volatility models of Section 5.3. 

They consider five models, three of which we briefly list here for illustration. 
In all cases at and pt follow standard first order dynamic linear models and 
et follows standard stochastic volatility AR(1) models. 

Dynamic CAPM: Pt = 0 and rt = at + 7tXt + £(• 

Dynamic BARRA: pt = (market size, book-to-price ratio, momentum) with 
rt = at + ltxt + Ptft + £t and ft ~ N(0, Ht). 

Sparse Dynamic BARRA: We extend sparse factor analysis3 to the dy-
namic BARRA by setting Ptj = 0 with probability 1 — 7Ttj, where 7rtJs 
are the inclusion probabilities. 

3See West (2003), Carvalho et al. (2008) and Priihwirth-Schnatter and Lopes (2009). 
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5.4 Spatial Factor Analysis 

In this section we discuss the extension of the basic normal linear factor model 
from equations (5.2) and (5.3) to accommodate spatially oriented data. Wang 
and Wall (2003), for instance, fit a spatial one-factor model to the mortality 
rates for three major diseases in nearly one hundred counties of Minnesota. In 
their case, y, is the vector of p observed variables at each location Si in region 
V and fi is, as usual, the underlying common spatial factor at location Si. The 
spatial structure comes in through the joint distribution of / = ( / i , . . . , /„) ' 
for the n locations: 

/ | 7 ~ J V ( 0 , t f ( 7 ) ) , (5-16) 

where H{7) is the covariance matrix representing the spatial structure, and 7 
is the vector of parameters in the covariance structure. Two common covari-
ance structures are the exponential model and the conditional autoregressive 
(CAR) model. In the exponential model, H{7) has components h^ given by 
hij = aexp{—(j)dij}, where dij = |sj — Sj\ is the distance between location Sj 
and Sj, a is the correlation-free variance and (j) is a range parameter, which 
represents the decrease in correlation between two locations as the distance 
increases. Here, therefore, 7 = (a,<f>). In the CAR model, / is discretely 
indexed over a partitioned area (areal data) and the correlations depend on 
the neighboring structure. In this case, H(7) = r 2 ( / n — pW)~x, with spatial 
association parameter p, while r 2 is the conditional variance of fi\f-i- W is 
a neighborhood matrix of the lattice with Wij an indicator for whether areas 
i and j share a boundary. Here, therefore, 7 = (p,r2). They also generalize 
their model to the Poisson common spatial factor analysis, which is applied 
to model the number of deaths due to lung, pancreas, esophagus and stomach 
cancers at the county level of Minnesota between the years of 1991 and 1998. 

Christensen and Amemiya (2002, 2003) proposed what they called the 
shift-factor analysis method to model multivariate spatial data with temporal 
behavior modeled by autoregressive components, while Hogan and Tchernis 
(2004) and Lopes et al. (2012) fit a one-factor spatial model and entertained 
several forms of spatial dependence through the single common factor. See 
also Mezzetti and Billari (2005) and Mezzetti (2012) for other applications of 
Bayesian factor analysis to spatially correlated data in the contexts of socio-
demographic and cancer incidence data. 

The next two sections give further details on the spatially hierarchical factor 
model of Lopes et al. (2012), where we propose a model-based vulnerability 
index of the population from Uruguay to vector-borne diseases that combines 
different sources of information via a set of microenvironmental indicators 
and geographical location in the country. Lopes et al. (2008) propose a new 
class of nonseparable and nonstationary space-time models that resembles 
a standard dynamic factor model (Pena and Poncela, 2004, for instance), 
where the temporal dependence is modeled by latent factors while the spatial 
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dependence is modeled by the factor loadings. Our model is applied to model 
the space-time structure of pollutants in the northern US. 

5.4.1 Spatially Hierarchical Factor Analysis 

We propose, in Lopes et al. (2012), a model-based vulnerability index of the 
population from Uruguay to vector-borne diseases. More specifically, the in-
dex is derived form a spatially oriented hierarchical factor model structure 
that combines both (Departamental) capital level data and census tract level 
data (see Figure 5.4). Apart form Bella Union and Montevideo, with 11 
and 1031 census tracts, respectively, the number of census tracts per capital 
varies roughly between 20 and 40. The p = 11 indicators used to construct 
the one-factor (vulnerability) index are standardized to represent percent-
ages, averages, and densities observed at the census tract level: illiteracy 
rate, percentage of the population with access to public health care care, un-
employed males, owed houses, households headed by a woman, households 
without sewage system, average number of persons per household, households 
with more than two persons per room, households without access to treated, 
drinkable water, households with air conditioner, and households poorly built. 

For each one of the rii census tracts of capital i, a p-dimensional vector of 
variables (social-economical, environmental, demographical, etc.) is observed, 
namely j/y = (y^x,...,yijp)', for i = 1 , . . . , I and j = 1 , . . . , r i j . The spatially 
hierarchical factor model (SHFM) we proposed can be described according to 
the following hierarchy levels: 

Observational level: Observations yink are linked to the vulnerability fac-
tor f i j , 

Vijk = Pk + 0k f i j + &k£ijk k = l,...,p, (5.17) 

where pk represents the overall grand mean vector for measurement k. 
The factor loadings vector 0 = (1,02,. •. ,0P)' plays an important role 
in understanding the role and the composition of the common factor. 
Its first element is set to one in order to ensure likelihood identifiabil-
ity (see Lopes and West, 2004). The specific factors £ijk are standard 
normally distributed and independent across capitals, census tracts and 
measurements. 

Vulnerability index level: The vector of factors /» = ( f n , . . . , f i n i ) ' within 
capital i is decomposed as the sum of two spatially structured compo-
nents: one that captures the overall mean of the capital, and the other 
one captures the local structure of the index, in the census tracts' level, 
and also accounts for possible effects of neighboring census tracts. More 
precisely, we assume 

f i j — @i + f i j + y/UiUij, (5.18) 
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Figure 5.4: Spatially hierarchical factor analysis. The state level data is 
summarized by the 19 departmental capitals. Census tract data is exemplified 
here by the city of Melo, which is the capital of Cerro Lago. This figure 
reproduces Figure 1 from Lopes et al. (2012). 

where 6i is the common factor for capital i, f i j is the specific factor for 
census tract j and capital i, and Zl-ij independent standard normals. 
The error term Uij accounts for unanticipated, location specific idiosyn-
crasies. 

Within capital variation: As the capitals are divided into census tracts 
defining irregular subregions, we model the within capital factors f i = 
( f n , . . . , fim)', for i = 1, • • • , / , by a proper conditionally autoregressive 
(CAR) specification (Sun, Tsutakawa, and Speckman, 1999): 

f i - N ^ r f P i ) , (5.19) 

where Pi = Pi{4>) = ( I n i + <f>Mi)"\ Mi = D i - W u with wijh the ( j , l ) 
component of Wt, given by = 1/dji if j and I are neighbors (denoted 
here by j ~ I) and zero otherwise, dji = \ |sj — Si \ | is the Euclidean distance 
between centroids of capitals j and I, Di = diag(u'.a+: • • •, vji„i+) and 
wij+ = 12i~jwiji- The inverse matrix is diagonally dominant and 
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positive definite (Harville, 1997). The parameter <p controls the strength 
of the association between the components of fi, with <f> = 0 implying 
independence. Equation (5.19) approaches the intrinsic autoregressive 
model when <f> approaches infinity (Besag, York, and Mollie, 1991; Besag 
and Kooperberg, 1995). 

Between capitals variation: The (9zs are conditionally independent and 
Gaussian with common baseline vulnerability factor Oo and covariance 
structure driven by the Euclidean distances between the centroids of the 
capitals, i.e., 

where 6 = (0i, • • • ,0j). Although each capital i has its own vulnerabil-
ity factor, the above model allows borrowing-strength across neighboring 
regions. The correlation matrix H is fully specified by a Matern correla-
tion function, i.e., Hi:j = p(X,dij) = 2l~x'iT(\2)-l(dii/\l)X2K\2(dij/\i) 
where 1C\2 is the modified Bessel function of the second kind and of order 
A2, A = (Ai,A2) and dij = |,sl — ,Sj|| is the Euclidean distance between 
the centroids Si and Sj of capitals i and j, for i, j = 1 , . . . , I. 

Figure 5.5 illustrates the performance of the SHFM in producing the vul-
nerability indexes to all 1031 census tracts of Montevideo. The figure helps 
discriminating very opposing situations within the city and captures the lo-
cal effects of the factor/index. In other words, the richest Southeast area of 
the city has fewer census tracts with low values of the index, representing 
low vulnerability. Land in these regions is irregularly owned. Overall, the 
levels of the index in Montevideo are in accordance to what is anticipated 
by experts, showing high values (more vulnerability) towards the North-West 
region which comprise more rural areas. 

The next model uses factor analysis to reduce the dimension of multiple 
time-series representing the dynamics of dozens of locations. In this case, the 
attributes are, in fact, univariate measurements at the locations. We will see 
that the structure of the matrix of factor loadings plays an important role in 
capturing conditional spatial variation. 

5.4.2 Spatial Dynamic Factor Analysis 

Lopes et al. (2008) propose a new class of nonseparable and nonstationary 
space-time models that resembles a standard dynamic factor model (Pena 
and Poncela, 2004, for instance), 

N(h0o,52H(\)) (5.20) 

ft = 

P(3) ~ 

yt = p f + f 3 f t + eu et~N( 0,£), 

r / t _ i + w t ) wt~iV(0)A), 
GRF (p-j*, r? p<f>j (•)) = N(pf .T?^), 

(5.21) 
(5.22) 

(5.23) 
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Figure 5.5: Spatially hierarchical factor analysis. Within-city posterior (stan-
dardized) vulnerability index per census tract of Montevideo. This is Figure 
5 from Lopes et al. (2012). 

where yt = (jju- ••• ,ymY is the N-dimensional vector of observations (loca-
tions s i , . . . , Sjv and times t = 1 , . . . , T), ji(* is the mean level of the space-
time process, ft is an m-dimensional vector of common factors, for TO < N 
(m is potentially several orders of magnitude smaller than N) and the j t h 
column of the factor loadings matrix, 

/%) = (/%)(si)>- ••,/%)(sJv))', 

for j = 1 , . . . ,m, is modeled as a conditionally independent, distance-based 
Gaussian process or a Gaussian random field (GRF). The matrix T charac-
terizes the evolution dynamics of the common factors, while £ and A are 

8* 
observational and evolutional variances, n j is a Ar-dimensional mean vector. 
The (l,k)-element of R<t>j is given by rik — - sk|), l,k = 1,...,N, 
for suitably defined correlation functions (•), j = 1 ,...,TO, for instance, 
exponential, power exponential or Matern. The parameters <pj$ are typically 
scalars or low dimensional vectors (for details, see Cressie, 1993 and Stein, 
1999). 

The univariate measurements from all observed locations, either areal or 
point-referenced, at any given time, are grouped together in what otherwise 
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would be the vector of attributes in standard factor analysis and the spa-
tial dependence is introduced by the columns of the factor loadings matrix. 
Therefore, common dynamic factors can be thought of as describing temporal 
similarities amongst the time series, such as common annual cycles or (sta-
tionary or nonstationary) trends, while the importance of common factors in 
describing the measurements in a given location is captured by the compo-
nents of the factor loadings matrix. More general time series models can be 
entertained, through the common factors, without imposing additional con-
straints to the current spatial characterization of the model, and vice-versa 
(Lopes et al., 2008). 

Lopes et al. (2008) model the spatial and temporal variations in the concen-
tration levels of sulfur dioxide, SO2, across 24 monitoring stations. Weekly 
measurements in jig/m3 are collected by the Clean Air Status and Trends 
Network (CASTNet), which is part of the Environmental Protection Agency 
(EPA) of the United States. Measurements span from the first week of 1998 to 
the 30th week of 2004, a total of 342 observations. Figure 5.6 shows the pos-
terior mean surface interpolation corresponding to the seasonal factor when 
fitting one of their SDFM. The loadings for the seasonal factor are smaller in 
the highly industrialized state of Ohio. 

Calder (2007) also used SO2 along with three other pollutants in a related 
dynamic factor model where the columns of the factor loadings matrix is model 
via deterministic smoothed kernels (see also Sanso et al., 2004). Several other 
models are particular cases of the our SDFM: principal kriging (Sahu and 
Mardia, 2005, and Lasinio, Sahu and Mardia, 2005), kriged Kalman filter 
(Mardia et al., 1998), and orthonormal basis loadings (Wikle and Cressie, 
1999). 

5.5 Additional Developments 

5.5.1 Prior and Posterior Robustness 

Lee and Press (1998) studies posterior robustness of the loadings, common 
factors and idiosyncratic covariance, while Lopes (2003) studies prior specifi-
cation and sensitivity in factor models via the expected posterior prior setup 
of Perez and Berger (2002). 

5.5.2 Mixture of Factor Analyzers 

Mixture of factor analyzers (MFA) is a nonlinear, more flexible extension of 
the linear factor analysis of Section 5.2. The basic structure of a MFA model 
is given by 

m 
(5.24) 

m 
( 1 / 1 / 3 , / . E J - ^ - J V f o ; & / ; £ ) , 

3 = 1 
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Figure 5.6: Spatial dynamic factor model. Posterior Bayesian interpolation 
for loadings factors or the northeast part of the U.S. (top frame). Posterior 
means (and 95% credibility intervals) of the seasonal common factors (bottom 
frame). These are taken from Figures 5 and 6 from Lopes et al. (2008). 

where m is the number of analyzers. Conditional on j, a standard normal lin-
ear factor model arises. Ghahramani and Beal (2000) introduce an algorithm 
that fits mixture of factor analyzers models via variational approximation to 
full Bayesian integration over model parameters. Utsugi and Kumagai (2001), 
Fokoue and Titterington (2003) and Fokoue (2004) propose MCMC-based pos-
terior inference for MFA models. McLachlan et al. (2007) and Andrews and 



120 MODERN NON-BAYESIAN FACTOR ANALYSIS 136 

McNicholas (2011) extend the MFA to the multivariate t family and uses the 
Expectation-Maximation (EM) algorithm for parameter estimation. 

5.5.3 Factor Analysis in Time Series Modeling 

Pena and Box (1987) introduce factor models with common, independent 
or dependent, factors following ARMA processes. Similarly, Engle (1987) 
proposes a multivariate ARCH with factor structures. Diebold and Nerlove 
(1989) model multivariate GARCH structures through a one-factor model to 
study the dynamics of exchange rate volatilities. Engle et al. (1990), who use 
Factor-ARCH to model a conditional covariance matrix of asset returns, while 
Ng and Rothschild (1992) relates dynamic and static factors to portfolio allo-
cation in financial markets. Lin (1992) compares four frequentist estimators 
for factor GARCH models: two-stage univariate GARCH, two-stage quasi-
maximum likelihood, quasi-maximum likelihood with known factor weights 
and quasi-maximum likelihood with unknown factor weights. Molenaar et al. 
(1992) employ nonstationary multivariate time series dynamic factor analy-
sis with lagged common factors to account for the persistence in time series 
trends. 

Bollerslev and Engle (1993) introduce a fc-factor GARCH model and study 
co-persistence in multivariate integrated GARCH models. Harvey et al. (1994) 
introduce one of the first factor stochastic volatility models (see Section 5.3.1). 
Escribano and Pena (1994) establish the relationship between cointegrated 
vectors and common factors via Pena and Box's (1987) dynamic factor mod-
els. Demos and Sentana (1998) introduces an EM algorithm for conditionally 
heterescedastic factor models, while Sentana (1998) investigates the similari-
ties and the differences of Engle's (1987) factor GARCH model and Diebold 
and Nerlove's (1989) latent factor ARCH model. See also Fiorentini et al. 
(2004). Vrontros et al. (2003) proposes a full-factor multivariate GARCH 
model (2003) and treats the order of variable via Bayesian model averaging. 
More recently, Sentana et al. (2008) derive indirect estimators of condition-
ally heteroskedastic factor models in which the volatilities of common and 
idiosyncratic factors depend on their past unobserved values. See also the 
recent paper by Zhou et al. (2012) that introduces correlated dynamic latent 
factor structures into a new class of latent threshold dynamic factor models 
for multivariate volatility analysis and forecasting of financial time series. 

5.5.4 Factor Analysis in Macroeconometrics 

Stock and Watson (2002b,2002a) implement principal components analysis 
project a large number of predictors (about 215 in their case) on a few prin-
cipal components, or diffusion indexes. Then, the diffusion indexes are used 
as explanatory variables when forecasting a macroeconomic time series vari-
able. More precisely, let zt+1 donate the macroeconomic time series and yt a 
p-dimensional vector with (possibly many highly correlated) predictors. They 
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assume that (zt+h,yt) admit a factor model representation with k common 
factors ft, whose simplest version is 

Roughly speaking, they propose a two-step estimation procedure. First, the 
diffusion indexes are estimated from Equation (5.25) by principal component 
analysis. Second, the estimated diffusion indexes are plugged in the forecast-
ing Equation (5.26). Their empirical applications aim at forecasting major 
monthly macroeconomic variables for the United States (1959:1 to 1998:12), 
such as total industrial production, real personal income less transfers, real 
manufacturing and trade sales, and number of employees on nonagricultural 
payrolls. The predictors represent main categories of macroeconomic time 
series, including real output and income, employment and hours, real retail, 
manufacturing, and trade sales and consumption, amongst many others. They 
showed empirically that only k = 6 factors account for much of the variance 
of our p = 215 time series. Bernanke et al. (2005) and Stock and Watson 
(2005) combined factor models with vector autoregressive models, commonly 
known as factor-augmented VAR (FAVAR) models, while Negro and Otrok 
(2008) and Korobilis (2013) extend these models, from a Bayesian viewpoint, 
to include time-varying coefficients. The review paper by Stock and Watson 
(2006) provides an important review to the area of forecasting with many 
predictors. 

The Bayesian approach to factor analysis applied to macroeconomic prob-
lems has grown considerably over the last decade. A few important contribu-
tions are the following. Koop and Potter (2004) revisits Stock and Watson 
(2002b) and implement Bayesian model averaging on the above dynamic factor 
structure. Otrok and Whiteman (1998) designs and implements a Bayesian 
dynamic latent factor and produce coincident and leading indicators for a 
local US economy based on the posterior mean of the latent factors. Kose 
et al. (2003) proposes a dynamic factor model for international business cy-
cles whose common factors are divided into world, region and country specific 
ones (see also Koop and Korobilis, 2009). Uhlig and Ahmadi (2012) pro-
poses a Bayesian factor-augmented VAR, or BFAVAR, to study the effects of 
monetary policy shocks. A recent overview of Bayesian macroeconometrics is 
provided by Del Negro and Schorfheide (2011). 

5.5.5 Term Structure Models 

The yield curve is defined as the relationship between r and r _ 1 l ogp t ( r ) , 
where pt(r) is the price, at time t, of a zero-coupon bond with payoff 1 at 
maturity t + r. See, for instance, Diebold and Li (2006) and Diebold et al. 
(2008) for further details. Diebold and Li (2006), for example, argue that two 
popular approaches to the term structure modeling are (i) no-arbitrage models 

Vt = Pft+£t, 
zt+h = 0'ft + ut+h. 

(5.25) 
(5.26) 
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and (ii) equilibrium models, with significant contributions to the former by 
Hull and White (1990) and Heath et al. (1992), and to the latter by Vasicek 
(1977), Cox et al. (1985) and Duffie and Kan (1996), amongst others. 

Diebold and Li (2006), however, use variations of the Nelson and Siegel 
(1987) exponential components framework to model the yield curve as a three-
factor model (level, slope and curvature) that evolves over time dynamically. 
Nelson-Siegel framework imposes a parsimonious structure on the factor load-
ings matrix: 

Vtir) = Pit + fot { l ~ x t r ' T ) + ~ ^ ) ' ( 5 ' 2 ? ) 

with At characterizing the decaying rate; small values of At produce slow decay 
and can better fit the curve at long maturities, while large values of At produce 
fast decay and can better fit the curve at short maturities. 

Chib and Ergashev (2009) presented a Bayesian approach for the fitting of 
affine yield curve models with macroeconomic factors that emphasizes the use 
of a prior on the parameters of the model which implies an upward-sloping 
yield curve. Chib and Kang (2012) extend the model to accommodate change-
points in affine term structure models. 

5.5.6 Sparse Factor Structures 

We finish the chapter by summarizing the current literature on Bayesian 
sparse factor analysis. We have already listed a few of these contributions, 
such as West (2003), Carvalho et al. (2008) and Friihwirth-Schnatter and 
Lopes (2009). Mayrink and Lucas (2013), for instance, study gene expression 
data by extending Carvalho et al. (2008) to entertain interactions between the 
common factors in their sparse factor model. Similarly, Conti et al. (2011) im-
plement Friihwirth-Schnatter and Lopes' (2009) parsimonious factor analysis 
strategy to examine the effect of early-life conditions and education on health 
but incorporating discrete attributes as well as limited dependent variable 
structures, commonly present when dealing with endogeneity in microecono-
metric studies. 

Additional references are Hahn et al. (2012), Pati et al. (2012), Cron and 
West (2012) and Hahn et al. (2013), who propose sparse factor probit mod-
eling, sparse factor analysis for massive covariance matrices, random sparse 
orthogonal matrices, and predictor-dependent shrinkage partial factor analy-
sis, respectively. See also Yoshida and West (2013) for sparse graphical fac-
tor models, and Knowles and Ghahramani (2011) for nonparametric Bayesian 
sparse factor models applied, once again, to gene expression modeling. Sparse 
dynamic factor models are proposed, for instance, by Kaufmann and Schu-
macher (2013) who introduce a new, order-independent identification strategy 
based on semi-orthogonal loadings. See also Zhang and Nesselroade (2007), 
Kaufmann and Schumacher (2012) and Cui and Dunson (2012). 
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5.6 Modern non-Bayesian factor analysis 

The literature on modern factor analysis is growing, as Table 5.1 suggested, 
as expected outside the realm of Bayes. For those more eager to explore more 
non-Bayesian factor analysis alternatives, the following paragraphs bring some 
of the recent papers by Bai and Ng's group and by Forni, Hallin, Lippi and 
Reichlin's groups. The list is narrow and limited, which reflects the author's 
own limitations. These few papers, as well as their reference lists, we believe, 
will provide the reader with a start-up for her own search. 

Bai (2003), Bai and Li (2012) and Li (2013) consider ML estimation of 
high-dimensional (static and dynamic) factor models when p is at least as 
large as n. Bai and Ng (2002) propose tools to select the number of common 
factor in the above large n and large p scenario. Bai and Ng (2008) survey the 
main theoretical results, including how to determine the number of factors, 
how to conduct inference factor-regression models (see also Bai and Ng, 2006, 
Amengual and Watson, 2007). Bai and Ng (2010) propose a class of factor 
instrumental variables in the context of data rich environment, where a large 
number of endogenous variables are driven by a small number of unobserv-
able exogenous common factors. Moench et al. (2011) propose a (inherently 
Bayesian) large dimensional hierarchical factor model that takes into account 
within- and between-block variability. See also Fan et al. (2008), Fan et al. 
(2011), Onatski (2009) and Onatski (2012). 

Forni et al. (2000), Forni and Lippi (2001), Forni et al. (2005), Forni and 
Lippi (2011) introduce generalized (dynamic) factor models and discuss ex-
tensively identifiability, estimation and forecasting, while Forni et al. (2009) 
talk structural factor model with large cross-sections. Hallin and Liska (2007) 
tackle the estimation of the number of common factors in the above gener-
alized dynamic factor model, while Hallin and Liska (2011) decompose large 
sets of macroeconomic variables into smaller, but still quite large, blocks. Ad-
ditional works tackling high dimensional (dynamic) factor models in econo-
metrics are Kapetanios and Marcellino (2009), Doz et al. (2011, 2012) and 
Hallin et al. (2011). 

5.7 Final Remarks 

We started reviewing the basic normal linear factor model, which is considered 
the spinal cord of all factor models presented later on in the chapter. The 
one hundred plus references listed at the end of the chapter represent a biased 
fraction of the existing literature. Factor models appear now in virtually all 
areas of sciences, despite its start in psychometric studies back in the 1900s 
with the seminal work of Spearman. Amongst its various extensions, we 
discussed and referenced several factor stochastic volatility models, dynamic 
factor models, spatial factor models and sparse factor models. 
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We believe the next several years will witness the multiplication of more 
complex and massively large factor structures and applications to study re-
lated objects other than neatly organized rectangle matrices of observations 
(rows) and attributes (columns). The interactions between statisticians, econo-
metricians, machine learners and data miners will lead to highly sophisticated 
and computationally efficient and fast factor-based modeling. 
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