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ABSTRACT
Wediscuss efficient Bayesian estimation of dynamic covariancematrices inmultivariate time series through
a factor stochastic volatility model. In particular, we propose two interweaving strategies to substantially
accelerate convergence andmixing of standardMCMC approaches. Similar to marginal data augmentation
techniques, the proposed acceleration procedures exploit nonidentifiability issueswhich frequently arise in
factormodels. Our new interweaving strategies are easy to implement and come at almost no extra compu-
tational cost; nevertheless, they can boost estimation efficiency by several orders of magnitude as is shown
in extensive simulation studies. To conclude, the application of our algorithm to a 26-dimensional exchange
rate dataset illustrates the superior performance of the new approach for real-world data. Supplementary
materials for this article are available online.

1. Introduction

The analysis of multivariate time series has become a vivid
research area over the last decades, where both methodologi-
cal and computational advances have made it possible to esti-
mate more and more complex models. In parallel, real-world
applications with an ever-increasing amount of data call for
the joint modeling of many simultaneous and often co-varying
observations over time. However, already the number of pair-
wise co-movements increases quadratically with the number
of time series, let alone higher-dimensional dependency struc-
tures. This property, often referred to as the curse of dimensional-
ity, can often be mitigated in various ways by imposing a lower-
dimensional latent factor structure, thereby effectively reducing
the number of parameters to a feasible amount. In the article at
hand, we particularly focus on the case where these factors are
allowed to have time-varying variances which in turn drive the
multivariate dynamics. To the best of our knowledge, models of
this type have first been discussed by Jacquier, Polson, and Rossi
(1994); Shephard (1996); Kim, Shephard, and Chib (1998). We
particularly focus on themodel formulation brought forward by
Chib, Nardari, and Shephard (2006).

Applications of multivariate factor stochastic volatility mod-
els typically reside in the field of financial econometrics, most
prominently in areas that involve accurate quantification of
uncertainty and risk. Examples thereof are asset allocation (e.g.,
Aguilar and West 2000; Han 2006; Zhou, Nakajima, and West
2014) and asset pricing (e.g., Nardari and Scruggs 2007). These
models extend standard factor pricing models such as the arbi-
trage pricing theory (Ross 1976) and the capital asset pricing
model (Sharpe 1964; Lintner 1965) by relaxing the assumption
that the multivariate volatility dynamics are constant over time.

CONTACT Gregor Kastner gregor.kastner@wu.ac.at Department of Finance, Accounting and Statistics, WU Vienna University of Economics and Business, Austria.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JCGS.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

Statistical estimation of these models can be challenging,
and a variety of solutions such as quasi-maximum likelihood
(e.g., Harvey, Ruiz, and Shephard 1994) or simulated maximum
likelihood (e.g., Jungbacker and Koopman 2006; Liesenfeld
and Richard 2006) have been proposed. For medium- to high-
dimensional problems, Bayesian MCMC estimation (Pitt and
Shephard 1999; Aguilar and West 2000; Chib, Nardari, and
Shephard 2006; Han 2006; Omori et al. 2007) is probably the
most efficient estimation method, however, it is associated with
a considerable computational burden when the number of
assets is moderate to large.

The aim of this work is to outline a reliable method for
Bayesian inference that performs well for a wide range of
datasets while at the same time being easy to implement and
convenient to extend. Therefore, we combine an efficient
method for estimating univariate stochastic volatility models
introduced by Kastner and Frühwirth-Schnatter (2014) with
a standard Gibbs sampler for regression problems. To ensure
fast convergence and proper mixing of the MCMC chains, we
augment this simple procedure with interweaving strategies
brought forward by Yu and Meng (2011). Through extensive
simulation studies and a real-world example, we demonstrate
the effectiveness of our procedure which can boost sampling
efficiency by a factor of 100 and more.

The remainder of this article is structured as follows.
Section 2 establishes notation for the factor stochastic volatility
model framework and discusses questions about model specifi-
cation and identification. Section 3 gives an in-depth exposure
to the estimation algorithmand its implementation, whereby the
focus is placed on the novel interweaving strategies employed.
Section 4 presents measures of sampling efficiency for simulated
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datasets and compares the algorithms presented. Section 5 dis-
cusses a case study with 26 daily EUR exchange rates. Section 6
concludes.

2. TheMultivariate Factor Stochastic Volatility Model

In a multivariate framework, the quadratic growth of the num-
ber of covariances alongside their inherent time-variability calls
for a model which is sufficiently parsimoniously specified. At
the same time, the model needs to be flexible enough to have
the potential to capture typical features of financial and eco-
nomic time series such as volatility clustering and volatility co-
movement. On top of that, common irregularities in the data
require the model to be robust with respect to idiosyncratic
shocks.

The multivariate factor stochastic volatility (SV) model
(Chib, Nardari, and Shephard 2006) aims at uniting simplicity
with flexibility and robustness. It is simple in the sense that the
potentially high-dimensional observation space is reduced to a
lower-dimensional orthogonal latent factor space, just like in the
case of the classic factor model. It is flexible in the sense that
these factors are allowed to exhibit volatility clustering, and it is
robust in the sense that idiosyncratic deviations are themselves
stochastic volatility processes, thereby allowing for the degree of
volatility co-movement to be time-varying.

2.1. Model Specification

For each point in time t = 1, . . . ,T , let yt = (y1t , . . . , ymt )
′

be a zero-mean vector of m observed returns and let f t =
( f1t , . . . , frt )

′ be a vector of r unobserved latent factors. In anal-
ogy to the static factor model, the observations are assumed to
be driven by the latent factors and the idiosyncratic innovations.
In the case of the factor stochastic volatility model, however,
both the idiosyncratic innovations as well as the latent factors
are allowed to have time-varying variances, depending on m +
r latent volatilities ht = (hUt , hVt ), where hUt = (h1t , . . . , hmt )

′

and hVt = (hm+1,t , . . . , hm+r,t )
′ . In short, we have

yt = � f t +U t
(
hUt
)1/2

εt , f t = V t
(
hVt
)1/2

ζt , (1)

where� is an unknownm × r factor loadingsmatrix,U t (hUt ) =
diag (exp(h1t ), . . . , exp(hmt )) is a diagonal m × m matrix
containing the idiosyncratic (series-specific) variances, and
V t (hVt ) = diag (exp(hm+1,t ), . . . , exp(hm+r,t )) is a diagonal r ×
r matrix containing the factor variances. These variances are
themselves modeled as latent variables whose logarithms follow
independent autoregressive processes of order one, that is, for
i = 1, . . . ,m + r:

hit = μi + φi(hi,t−1 − μi) + σiηit , (2)

with unknown initial value hi0.
All innovations are assumed to follow independent standard

normal distributions, that is, εt ∼ Nm (0, Im), ζt ∼ Nr (0, Ir),
and ηt ∼ Nm+r (0, Im+r), where ηt = (η1t , . . . , ηm+r,t )

′. This
implies the following structure:

yt = � f t + εt , f t |ht ∼ Nr
(
0,V t

(
hVt
))

, (3)

with εt |ht ∼ Nm (0,U t (ht )). One of the main reasons for esti-
mating a factor SV model is to reliably estimate the poten-
tially time-varying conditional covariance matrix of yt which,
for the model at hand, is given by cov(yt |ht ) = �t (ht ) =
�V t (hVt )�′ +U t (hUt ). Note that because U t (hUt ) is diagonal,
all covariances between the component series are governed by
the latent factors. Marginally with respect to ht , yt is a process
with a non-Gaussian stationary distribution.

2.2. Identification Issues

Whenever certain combinations of parameter values result in
(almost) identicalmaxima in the likelihood function, estimation
of the corresponding parameter values from data can become
impossible. Consequently, observationally equivalent parame-
ter constellations must be ruled out for reliable statistical infer-
ence and a large body of literature dealing with this issue has
arisen. In particular, Frühwirth-Schnatter andLopes (2017) gave
an overview of recent advances in the context of static Bayesian
factor models, and Sentana and Fiorentini (2001) specifically
discussed identification for models where the factors exhibit
conditional heteroscedasticity (but innovations are assumed to
be homoscedastic). If not dealt with properly, usually through
certain restrictions on the parameter space, sensible interpreta-
tion of the posterior distribution is not possible (“nonidentifia-
bility”). In less severe cases (“near-nonidentifiability”), MCMC
algorithms and other estimation procedures often lack conver-
gence and thus provide unreliable results. For themodel at hand,
we face several issues related to this problem.

First, to prevent factor rotation and column switching, one
option is to follow the usual convention and set the upper trian-
gular part of � to zero and diag (�) nonzero (e.g., Geweke and
Zhou 1996). Doing so, however, imposes an—often unwanted—
order dependence. We therefore also discuss the possibility to
leave the factor loadings matrix unrestricted and deal with col-
umn switching through post-processing of the MCMC draws.

Second, without identifying the scaling of either the jth
column of � or the variance of f jt , the model is not identified.
The usual remedy (e.g., Aguilar and West 2000; Chib, Nardari,
and Shephard 2006; Han 2006; Lopes and Carvalho 2007;
Nakajima and West 2013; Zhou, Nakajima, and West 2014) is
that the diagonal loading elements in model (3) are fixed to one,
that is, �jj = 1, for j = 1, . . . , r, while the level μm+ j of the
factor volatilities hm+ j,t in model (2) (which corresponds to the
scaling of f jt ) is modeled to be unknown. This approach implies
that the first r variables are leading the factors and thus makes
variable ordering an even more important modeling decision.
To alleviate this issue, we leave the diagonal elements �jj in
model (3) unrestricted, an intuitive interpretation being that
“leadership” of a factor can be shared by several series. Instead,
we fix the level μm+ j of the factor volatilities hm+ j,t at zero:

hit = (1 − φi)μi + φihi,t−1 + σiηit , i = 1, . . . ,m,

hm+ j,t = φm+ jhm+ j,t−1 + σm+ jηm+ j,t , j = 1, . . . , r. (4)

This assumption, alongside the prior distribution on the load-
ings introduced in Section 3.1, identifies the factor variance.

Finally, each column of � is only identified up to a possible
sign switch. We deal with this (lightweight) identification issue
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a posteriori, meaning that we run our MCMC sampler in the
unrestrictedmodel and identify signs afterward, see Section A.4
in Appendix A for details.

Factor model (3) together with the m + r SV models (4)
defines our baseline parameterization, however alternative
parameterizations will be exploited in Section 3.3 in the context
of efficient MCMC estimation of the factor SV model.

3. Bayesian Inference

We perform Bayesian inference based on a set of carefully
selected proper priors which are introduced in Section 3.1 and
develop efficient schemes for full conditional MCMC sampling
in the remaining subsections.

3.1. Prior Distributions

Independently for each i ∈ {1, . . . ,m + r}, priors for the uni-
variate SV processes are chosen as in Kastner and Frühwirth-
Schnatter (2014): p(μi, φi, σi) = p(μi)p(φi)p(σi), where
the level μi ∈ R is equipped with the usual normal prior
μi ∼ N(bμ,Bμ), the persistence parameter φi ∈ (−1, 1) is cho-
sen according to (φi + 1)/2 ∼ B (a0, b0) as in Kim, Shephard,
and Chib (1998), and the volatility of log variance σi ∈ R

+ is
implied by σ 2

i ∼ Bσ × χ2
1 = G ( 12 ,

1
2Bσ

). The initial state hi0
is distributed according to the stationary distribution of the
AR(1) process (2), that is, hi0|μi, φi, σi ∼ N(μi, σ

2
i /(1 − φ2

i )).
For every unrestricted element of the factor loadings matrix, we
choose independent zero-mean Gaussian distributions, that is,
�i j ∼ N(0,B�).

3.2. Full Conditional MCMC Estimation

Bayesian inference operates directly in the latent variable
model (3) and (4) and relies on data augmentation by intro-
ducing the latent volatilities h = {hi,•}, i = 1, . . . ,m + r,
where hi,• = (hi0, hi1, . . . , hiT )′, and the latent factors
f = { f j,•}, j = 1, . . . , r, where f j,• = ( f j1, . . . , f jT )′, as
latent data. This allows to set up a simple scheme for full con-
ditional MCMC sampling which is outlined in Algorithm 1 and
discussed in detail thereafter.

Algorithm 1. Choose appropriate starting values for μi, i ∈
{1, . . . ,m}, φi and σi, i ∈ {1, . . . ,m + r}, as well as �, h, and
f and repeat the following steps:

(a) Perform in total m + r univariate SV updates of the m
idiosyncratic variances hi,• as well as the parameters
(μi, φi, σi), independently for each i = 1, . . . ,m, and of
the r factor variances hm+ j,• as well as the parameters
(φm+ j, σm+ j), independently for each j = 1, . . . , r.

(b) For i = 1, . . . ,m, sample each row �i,• of the factor
loading matrix from �i,•| f , yi,•, hi,•. This step consti-
tutesm independent r̃i-variate regression problems with
T observations, where r̃i denotes the number of unre-
stricted elements in �i,•.

(b∗) Redraw the diagonal elements of � through interweav-
ing into the state equation for the latent factors (shal-
low interweaving) or through interweaving into the state
equation for the latent volatilities (deep interweaving).

(c) For t = 1, . . . ,T , sample f t from f t |�, yt , ht , constitut-
ing T independent r-variate regression problems withm
observations.

For Step (a), observe that conditional on knowing the latent
factors f and the loadings �, we are dealing with m + r inde-
pendent, univariate SV models where the latent state equations
in (4) are combined with following observation equations:

log(yit − �i,• f t )
2 = hit + log ε2it , i = 1, . . . ,m, (5)

log f 2jt = hm+ j,t + log ζ 2
jt , j = 1, . . . , r. (6)

Hence, sampling the latent volatilities hi,• as well as the param-
eters (μi, φi, σi) for i = 1, . . . ,m + r (with μi = 0 for i > m)
in Step (a) amounts to m + r univariate SV updates. Con-
sequently, the substantial amount of research on this matter
which has emerged in the last two decades can directly be
applied. In particular, we follow recent findings in Kastner
and Frühwirth-Schnatter (2014), where an efficient sampling
scheme is proposed and evaluated, and simply use the imple-
mentation in the R package stochvol (Kastner 2016a) as
a “plug-in” for Step (a) of the factor SV sampler presented in
Algorithm 1; see Appendix A.1 for more details and additional
references on MCMC estimation for univariate SV models.

On the other hand, conditional on knowing the latent volatil-
ities h, we are dealing in (3) with a factor model with het-
eroscedastic errors. Nevertheless, given h, f and � may be
sampled conditionally on each other from the respective mul-
tivariate normal distributions in a similar manner as for a
standard factor model (Lopes and West 2004). This approach
is conceptually straightforward, see Appendix A.2 for details
how to sample in Step (b) each row �i,• of the factor loading
matrix from �i,•| f , yi,•, hi,•, where yi,• = (yi1, . . . , yiT )′, and
Appendix A.3 for details how to sample in Step (c) the factor
f t from f t |�, yt , ht for t = 1, . . . ,T .

After discarding a certain amount of initial draws (the burn-
in), the standard full conditional sampler iterates steps (a)–(c) of
Algorithm 1, but not (b*), and should, in principle, yield draws
from the joint posterior distribution. However, when estimating
factor SVmodels through such anMCMC scheme, slow conver-
gence and poormixing (i.e., high correlation of posterior draws)
can become a potentially prohibitive issue. This phenomenon
substantiates in enormous autocorrelation of posterior draws—
even after thinning—and can render MCMC output practically
useless. For certain datasets, the burn-in phase may take
extremely long and a huge amount of samples has to be dis-
carded before the draws can be considered to emerge from the
posterior distribution. Additionally, even after burn-in, these
draws often show extraordinarily high autocorrelation and thus
only explore the target distribution painstakingly slowly. These
so-called badly mixing samplers do not only prolong computa-
tion time, they also frequently lead to unreliable estimates and
misleading results. The simulation study in Section 4 illustrates
that this can happen for the standard full conditional sampler
even with data simulated from the true model, see, for example,
the top of the two panels in Figure 1. Consequently, a carefully
crafted posterior simulator is of utmost importance.

To overcome this problem, Chib, Nardari, and Shephard
(2006) proposed to sample the factor loading matrix � from
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Figure . Trace plots of , draws from p(�11|y) (left-hand side) and empirical autocorrelation functions of all draws (right-hand side) obtained via the standard
sampler (top), shallow interweaving (middle), and deep interweaving (bottom).

the marginalized conditional posterior p(�|y, h), without con-
ditioning on the factors f . This distribution, however, is not
available in closed form, and to sample from it requires a
rather involvedMetropolis-Hastings update where the proposal
distribution is based on numerically maximizing the often
high-dimensional conditional likelihood function and approx-
imating its Hessian matrix at every MCMC iteration. To avoid
this potential bottleneck, we employ the simpler full conditional
procedure outlined in Algorithm 1 but enhance it in Step (b∗) by
employing two variants of an ancillarity-sufficiency interweav-
ing strategy (ASIS; Yu and Meng 2011), called shallow inter-
weaving and deep interweaving, which are explained in detail in
Section 3.3.

Applications to simulated data in Section 4 as well as to
exchange rate data in Section 5 illustrate how adding Step (b∗)
boosts MCMC dramatically, in particular for deep interweav-
ing; compare, for example, the top panel in Figure 1 to the
remaining panels. Appendix A.5 provides comments on prac-
tical implementation of the boosted Algorithm 1 using the R
package factorstochvol (Kastner 2016b).

3.3. Boosting Full Conditional MCMC Through
Interweaving

As discussed in Section 3.2, the standard full conditional sam-
pler outlined in Algorithm 1 is based on data augmentation in
the parameterization (3) and (4) of the factor SVmodel and suf-
fers from slow convergence like so many other MCMC schemes
which alternate between sampling from the full conditionals
of the latent states and the model parameters. A large litera-
ture has emerged discussing various techniques to improve such
algorithms, in particular reparameterization (Papaspiliopoulos,
Roberts, and Sköld 2007),marginal data augmentation (vanDyk
and Meng 2001), and interweaving strategies (Yu and Meng
2011).

Reparameterization relies on data augmentation in a differ-
ent parameterization of the model with alternative latent vari-
ables. In particular, so-called noncentered parameterizations,
where unknown model parameters are moved from the latent
state equation to the observation equation, proved to be useful,
see, for example, Frühwirth-Schnatter andWagner (2010) in the
context of state-spacemodeling of time series. However,MCMC
estimation based on different data augmentation schemes will
often be efficient in separate regions of the parameter space, as

demonstrated, for example, byKastner and Frühwirth-Schnatter
(2014) in the context of univariate SV models. This suggests
to combine different data augmentation schemes to obtain an
improved sampler.

Marginal data augmentation employs a randomly sampled
“working parameter” to transform the baseline parameteriza-
tion to an expanded, unidentified latent variablemodel in which
the model parameters are updated conditional on the (ran-
domly) transformed latent variables. This technique has been
applied to the basic factor model, using the undefined scaling of
the factors as a working parameter (Ghosh and Dunson 2009;
Frühwirth-Schnatter and Lopes 2017), however, it is not easily
extended to factor SV models, in particular if the latent volatili-
ties should be part of the acceleration scheme.

The ancillarity-sufficiency interweaving strategy (ASIS),
introduced by Yu and Meng (2011), provides another prin-
cipled way to interweave two different data augmentation
schemes by resampling certain parameters conditional on
the latent variables in an alternative parameterization of the
model, thereby combining “best of different worlds.” ASIS
has been successfully employed in a variety of contexts such
as univariate SV models (Kastner and Frühwirth-Schnatter
2014) and dynamic linear state-space models (Simpson 2015;
Simpson, Niemi, and Roy 2017). To boost Algorithm 1, we
apply ASIS to the factor SV model in the present article. Two
interweaving strategies—called shallow interweaving and deep
interweaving—are derived in Section 3.3.1, where the diagonal
elements �11, . . . , �rr of the factor loadings matrix are resam-
pled in Step (b*) in two alternative parameterizations of the
model.

As will become clear in the following sections, deep inter-
weaving typically yields the highest sampling efficiency gains
and is thus the generally recommended strategy. However, also
shallow interweaving has its merits. First, being condition-
ally conjugate, it is somewhat easier to implement. Second,
it can be applied also to static factor models which are by
construction not suited for deep interweaving (see also Bitto
and Frühwirth-Schnatter 2016).

... Shallow and Deep Interweaving
As discussed in Section 2.2, our baseline parameterization (3)
and (4) is just one of several alternative ways to handle the
scaling problem inherent in factor SV models and this identi-
fication issue is exploited by our schemes.
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The parameterization underlying shallow interweaving con-
strains the diagonal elements of the factor loadings matrix to
be equal to 1, whereas the variances of the factors depend on
r unknown scaling parameters D = diag (�11, . . . , �rr).

The latent volatility processes are modeled as in the baseline
parameterization (4), whereas the factor model takes a different
form:

yt = �	 f 	
t + εt , f 	

t |ht ,�11, . . . , �rr ∼ Nr
(
0,D2V t

(
hVt
))

,

(7)
with a lower triangular loading matrix �	 where �	

11 =
1, . . . , �	

rr = 1. The idiosyncratic errors εt are distributed as
in (3). Factor model (3) in the baseline parameterization can
be transformed into factor model (7) through a simple linear
transformation:

f 	
t = D f t , t = 1, . . . ,T, �	 = �D−1. (8)

Boosting through shallow interweaving consists of three parts.
First, transformation (8) is used to move the current posterior
draws of the latent factors f t and the factor loading matrix �

from the baseline parameterization to parameterization (7).
Second, the scale parameters �11, . . . , �rr, contained in D, are
resampled in parameterization (7), conditionally on the trans-
formed values f 	, from p(�11, . . . , �rr| f 	,�	, h). Finally,
the new values �new

11 , . . . , �new
rr are used in transformation (8)

to move f 	
t and �	 back to new draws f newt and �new in the

baseline parameterization.
It is evident from transformation (8) that shallow inter-

weaving only affects the factors and the factor loading matrix,
whereas the latent volatilities remain untouched. This is the fea-
ture that makes shallow interweaving also applicable to static
factor models. However, to achieve boosting also for the r fac-
tor volatilities, deep interweaving is based on an alternative SV
model for the factor volatilities, where the level is assumed to be
unknown. The parameterization underlying deep interweaving
relies on the factor model

yt=�	 f 	
t + εt , f 	

t |h	
m+ j,• ∼ Nr

(
0, diag (eh

	
m+1,t , . . . , eh

	
m+r,t )

)
,

(9)
where �	 has the same structure as in the factor model (7) for
shallow interweaving and the idiosyncratic errors εt are dis-
tributed as before, with the univariate SV models for the m
underlying volatilities following (4). However, the r latent factor
volatilities h	

m+ j,t follow alternative univariate SVmodels, where
the level is μm+ j = log�2

jj rather than zero:

h	
m+ j,t = μm+ j(1 − φm+ j) + φm+ jh	

m+ j,t−1 + σm+ jηm+ j,t .

(10)
This parameterization can be motivated by moving the param-
eters �11, . . . , �rr from factor model (7) into SV model (10),
since:

f 	
jt |�jj, hm+ j,t ∼ N

(
0,�2

jje
hm+ j,t

)
= N

(
0, elog�2

jj+hm+ j,t
)

= N
(
0, eh

	
m+ j,t

)
.

Hence, the baseline parameterization can be transformed into
parameterization (9) and (10) by applying transformation (8) to

the factors and the factor loadings, as well as the following trans-
formation to the factor volatilities:

h	
m+ j,t = hm+ j,t + log�2

jj, t = 0, . . . ,T, j = 1, . . . , r.
(11)

Boosting through deep interweaving also consists of three
parts. First, transformations (8) and (11) are used to move
from the current draws of f t , � and the factor log-variances
hm+ j,t from the baseline parameterization to parameteriza-
tion (9) and (10). Second, the scale parameters �11, . . . , �rr
are resampled in parameterization (10) conditionally on
the transformed values h	

m+ j,• = (h	
m+ j,0, . . . , h	

m+ j,T )′ from
p(�11, . . . , �rr|h	

m+1,•, · · · , h	
m+r,•,�

	). Third, based on the
new values �new

11 , . . . , �new
rr , transformations (8) and (11) are

inverted to move f 	
t , �

	, h	
m+ j,t back to new draws f newt , �new,

hnewm+ j,t in the baseline parameterization.
Both interweaving strategies are summarized in Algorithm 2.

Details on resampling �new
jj are provided in Section 3.3.2. It

is evident that deep interweaving affects the factors, the factor
loading matrix as well as the latent factor volatilities and for this
reason is more effective in boosting MCMC for factor SV mod-
els than shallow interweaving.

Algorithm 2 (Shallow and Deep Interweaving). Denote the orig-
inal posterior draws for �•, j , f j,•, and hm+ j,• in Algorithm 1
by �old

•, j , f
old
j,• , and holdm+ j,• and perform following steps indepen-

dently for each j = 1, . . . , r in Step (b*):
(b∗-1) Determine the vector�	

•, j , containing the k j free param-
eters �	

i j = �old
i j /�old

jj in the jth column of the trans-
formed factor loading matrix �	.

(b∗-2) For shallow interweaving, define f 	
j,• = �old

jj f oldj,• and
sample a new value �new

jj from p(�jj|�	
•, j, f

	
j,•, hm+ j,•).

For deep interweaving, define h	
m+ j,• = holdm+ j,• +

2 log |�old
jj | and sample �new

jj from p(�jj|�	
•, j,

h	
m+ j,•, φm+ j, σm+ j); see Section 3.3.2 for details.

(b∗-3) Update �•, j , f j,•, and, for deep interweaving, also
hm+ j,•:

�•, j = �new
jj

�old
jj

�old
•, j, f j,• = �old

jj

�new
jj

f oldj,•,

hm+ j,• = holdm+ j,• + 2 log

∣∣∣∣∣
�old

jj

�new
jj

∣∣∣∣∣ .

... Sampling the Scaling Parameters in the
Alternative Representations

To derive the full conditional posterior distribution of �jj, we
combine the appropriate full conditional likelihood function
with the Gaussian prior �jj ∼ N(0,B�). In addition, the prior
�	

•, j|�2
jj ∼ Nk j(0,B�/�2

jjIk j ) of the transformed factor loadings
in column j contributes to the posterior distribution of �2

jj
because its scale depends on �2

jj.
For shallow interweaving, we sample �2

jj and define �new
jj as

the square root of �2
jj. Combining the likelihood obtained from

factor model (7) with the implied prior �2
jj ∼ G (1/2, 1/(2B�))
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and p(�	
•, j|�2

jj) yields

p
(
�2

jj|�	
•, j, f

	
j,•, hm+ j,•

)
∝ p

(
f 	
j,•|hm+ j,•,�2

jj

)
p
(
�	

•, j|�2
jj

)
p
(
�2

jj

)
,

which is the product of T univariate Gaussian densities with�2
jj

appearing as part of the variance, k j univariate Gaussian densi-
ties with�2

jj appearing as part of the precision, and one Gamma
density with�2

jj appearing as argument. Thus, the resulting pos-
terior distribution of�2

jj is generalized inverseGaussian, that is,

�2
jj|�	

•, j, f
	
j,•, hm+ j,•

∼ GIG

(
1 + k j − T

2
,
1
B�

(
1 + (�	

•, j)
′�	

•, j

)
,

T∑
t=1

f ∗
jt
2

ehm+ j,t

)
,

(12)

where GIG (p, a, b) has a density proportional to xp−1

exp{− 1
2 (ax + b/x)}. Given an efficient method to draw from

the GIG such as the adaptive rejection sampling algorithm
provided by Hörmann and Leydold (2013), sampling from (12)
is straightforward. For practical implementation, we use the R
packageGIGrvg (Leydold andHörmann 2015) which provides
a C/C++ interface to avoid the cost of interpreting code at every
MCMC iteration, thereby rendering the reupdating negligible
in terms of overall computation time.

For deep interweaving, we sample �jj indirectly through
μm+ j = log�2

jj. Combining the implied prior
p(μm+ j) ∝ exp{μm+ j/2 − eμm+ j/(2B�)} with the like-
lihood obtained from SV model (10) and the priors
h	
m+ j,0|μm+ j, φm+ j, σ

2
m+ j ∼ N(μm+ j, σ

2
m+ j/(1 − φ2

m+ j)) and
�	

•, j|μm+ j ∼ Nk j(0,B�e−μm+ j Ik j ) yields the posterior

p
(
μm+ j|�	

•, j, h
	
m+ j,•, φm+ j, σ

2
m+ j

)
∝ p

(
h	
m+ j,•|μm+ j, φm+ j, σ

2
m+ j

)
p
(
�	

•, j|μm+ j

)
p(μm+ j),

which has a nonstandard form. To generate draws from this
density, we consider an independence Metropolis-Hastings
update in the spirit of Kastner and Frühwirth-Schnatter
(2014). Since the likelihood p(h	

m+ j,1, . . . , h	
m+ j,T |h	

m+ j,0,

μm+ j, φm+ j, σ
2
m+ j) is the kernel of a Gaussian density in

μm+ j, it can be used to construct an auxiliary posterior
under a conjugate auxiliary prior paux(μm+ j|σ 2

m+ j, φm+ j) ∼
N(0,B0σ

2
m+ j/(1 − φm+ j)

2) with B0 large. Consequently, we
draw a proposal μprop

m+ j from theN(mμ
j , S

μ
j ) distribution with:

mμ
j =

∑T−1
t=1 h	

m+ j,t + (h	
m+ j,T − φm+ jh	

m+ j,0)/(1 − φm+ j)

T + 1/B0
,

Sμ
j = σ 2

m+ j/(1 − φm+ j)
2

T + 1/B0
.

Denoting the old value of μm+ j by μold
m+ j , this proposal gets

accepted with probability min(1,R), where

R =
p(�	

•, j|μprop
m+ j)p(h

	
m+ j,0|μprop

m+ j, φm+ j, σ
2
m+ j)p(μ

prop
m+ j)

p(�	
•, j|μold

m+ j)p(h	
m+ j,0|μold

m+ j, φm+ j, σ
2
m+ j)p(μ

old
m+ j)

× paux(μold
m+ j|σ 2

m+ j, φm+ j)

paux(μ
prop
m+ j|σ 2

m+ j, φm+ j)
.

In case of acceptance, set �new
jj = eμ

prop
m+ j/2; otherwise, let �new

jj =
�old

jj .
To conclude, we add two remarks. First, note that it is easy to

combine both interweaving schemes within theMCMC sampler
by daisy-chaining the corresponding steps. Second, note that
any nonzero element of the jth factor column �•, j can be used
to boost its mixing (not only the diagonal element �jj). This
is useful in particular when no loading matrix restrictions are
enforced as it cannot be guaranteed that the diagonal elements
are nonzero. Thus, in such situations, one could use a randomly
selected (nonzero) element of each loadings column instead.
Alternatively, one could also use the element whose absolute
value is maximal.

4. Simulation Study

To compare the different algorithms in terms of sampling effi-
ciency, a simple simulation experiment is conducted. We use
m = 10 (simulated) series and r = 2 (simulated) factors to
generate T = 1000 observations, thereby imposing the usual
lower triangular constraint. The data-generating parameter
values—listed in Table B.1 in Appendix B—are kept constant,
whereas the data-generating process as well as the estimation
procedure is repeated 100 times. Each time, the draws are ini-
tialized at the data-generating values; then, 5,100,000 draws are
obtained ofwhich 100,000 are discarded as burn-in. Prior hyper-
parameters are set as follows: B� = 1, bμ = 0, Bμ = 100, a0 =
20, b0 = 1.5, and Bσ = 1.

To gain insight about the mixing behavior of the different
sampling strategies, trace plots (i.e., time series plots of the
MCMC draws) for �11 are displayed in the left-hand panel of
Figure 1. Even though the plots depict only the first 100,00 iter-
ations after burn-in, it becomes very clear that the mixing of
the noninterwoven sampler is extremely slow. The algorithm
does not seem to explore the posterior distribution within a rea-
sonable amount of draws which renders this output practically
useless in terms of posterior inference. Moreover, the burn-in
period for this sampler would need to be chosen extremely long
to avoid strong dependence on the starting values. This situa-
tion is slightly mitigated when using shallow interweaving; nev-
ertheless, mixing is still poor and for reliable posterior inference
many draws are required. Turning toward the deeply interwoven
sampler, one can observe quick mixing and hardly any visible
autocorrelation.

Investigating autocorrelations of the draws via the empirical
autocorrelation function confirms this picture; the right-hand
panel of Figure 1 shows that the empirical autocorrelation func-
tion for draws from p(�11|y)decays very quickly for the sampler
using deep interweaving which is not the case for the other two
samplers, where visible autocorrelation remains even at large
lags.
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Figure . Left: boxplots of estimated inefficiency factors for posterior draws from p(�11|y[i]) where y[i], i ∈ {1, . . . , 100}, denote artificially generated datasets whose
underlying parameters are identical, see Table B. in Appendix B. Right: pairwise scatterplots thereof.

A convenient and common way of measuring sampling
(in)efficiency is by means of the inefficiency factor (IF), some-
times called the (integrated) autocorrelation time. It is defined as
the ratio of the numerical variance of a statistic which is esti-
mated from the Markov chain to the variance of that statistic
when estimated from independent draws, thereby quantifying
the relative loss of efficiency when inferring from correlated as
opposed to independent samples. In other words, to achieve
the same inferential accuracy about some posterior moment of
some parameter as with k independent samples, IF × kMCMC
draws are required. For the article at hand, we use the R package
coda (Plummer et al. 2006) to estimate the inefficiency factors.

Moreover, when investigating performance of MCMC sam-
plers through simulation studies, it is of great importance to
take sample variation into account; even when identical param-
eter values are used for the generation of latent variables and
data, sampling (in)efficiency may vary greatly. To illustrate this,
we show box plots of the inefficiency factors stemming from
repeated data-generating processes in the left panel of Figure 2.
Note the enormous range for the standard sampler; depending
on the data, IFs of 5000 ormore are not uncommon, while at the
same time IFs of around 100 can be observed. However, inde-
pendently of the actual data, interweaving attenuates this effect
drastically and increases efficiency uniformly. The right panel
of Figure 2 shows pairwise scatter plots of these IFs. Note that
shallow interweaving yields efficiency improvements which are
more or less independent of the actual data (around five-fold for
all datasets), whereas deep interweaving IFs appear less clearly
correlated.

To provide a more complete picture, we list the inefficiency
factors for all elements of� for the various algorithms in Table 1,
averaged over all 100 runs. Note that shallow interweaving per-
mits efficiency gains of around two- to eight-fold as opposed to
the standard sampler, whereas deep interweaving delivers gains
up to about 400-fold.

It comes as no surprise that sampling (in)efficiencies of
draws for the volatility parameters μi, i ∈ {1, . . . ,m} as well
as φi and σi, i ∈ {1, . . . ,m + r} are not affected substantially
by this interweaving strategy, thus they are not reported here.
It is however worth noting that the inefficiency of factor f j,•

and factor log-variance draws hm+ j,•, j ∈ {1, . . . , r} may be
influenced by bad mixing of�. For illustration, IFs are reported
for the final factors f1T and f2T and their log-variances hm+1,T
and hm+2,T in Table 2.

To conclude the simulation exercise, we investigate the
predictive performance of under- and overfitting models
through cumulative log predictive Bayes factors in Figure 3; see
Kastner (2017) for computational details. It stands out that the
biggest predictive gain over a model that ignores contempora-
neous correlations comes from introducing the first factor, that
is, allowing for co-volatility through one common factor. Then,
as expected, the second factor bumps the predictive score to
its maximum. After that, it remains (almost) constant for three
and more factors, irrespective of whether the lower triangular
restriction is enforced or not. This points out that underfitting
models are severly worse in terms of prediction while overfitting
models hardly suffer from the extra parameters introduced.

Note that, similar to a scree plot in principal component anal-
ysis, Figure 3 can also be used as a graphical tool for finding the

Table . Average IFs for factor loadings matrix�.

(a) No interweaving (b) Shallow interweaving (c) Deep interweaving

     

 .  .  .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .
 . .  . .  . .

Table . Average IFs for the final factors f jT and their log-variances hm+ j,T , j ∈
{1, 2}.

f1,1000 f2,1000 h11,1000 h12,1000

No interweaving . . . .
Shallow interweaving . . . .
Deep interweaving . . . .
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912 G. KASTNER, S. FRÜHWIRTH-SCHNATTER, AND H. F. LOPES

Figure . Log predictive Bayes factors in favor of the r-factor model over the no-factor model. The first  returns in the dataset are treated as prior information and log
one-day-aheadpredictive likelihoods are accumulatedover the following days. Circles connectedwith a solid line indicate values obtainedwith completely unrestricted
loadings matrices; triangles connected with dashed lines indicate values where the loadings matrix is restricted to be lower triangular.

appropriate number of factors. For this exercise, we clearly find
the true number of two factors.

5. Application to Exchange Rate Data

In this section, we analyze exchange rates with respect to EUR.
Data were obtained from the European Central Bank’s Statisti-
cal Data Warehouse and ranges from April 1, 2005 to August 6,
2015. It contains m = 26 (all which were available for this time
frame) daily exchange rates on 2650 days listed in Table 3. For
further analysis, we thus use T = 2649 demeaned log returns.
The data are displayed in Figure C.1 in Appendix C. Common
“stylized facts” of financial time series are clearly visible; note,
for example, the obvious volatility clustering during 2008 and
2009 and again throughout late 2014 and early 2015. To put the
robustness of our sampler to the test, we use the data as-is, that
is, without excluding series containing extreme outliers such as
the CHF spike on January 14, 2015 or the near collapse of RUB
around December 16, 2014.

5.1. Model Specification

For selecting the number of factors in this application, it is
important to keep in mind the primary purpose of the analysis.
Different sampling strategies are applied, depending on whether
identification of � is of no concern (e.g., for covariance matrix

prediction only), or whether identification is instrumental for
understanding the unobserved, underlying factors.

For the first case, we experimented with fitting unrestricted
models to the exchange rates data. This implies that the method
is completely invariant to series ordering and there are no
model-implied “leading factors” as is usually the case. With
respect to selecting the number of factors, we found that higher-
order models without any restriction on the factor loadings
matrix yield higher marginal likelihoods and are thus recom-
mended. Figure 4 illustrates this via log predictive Bayes factors.

If identification is warranted, an important step is the appro-
priate ordering of the variables, before the usual lower triangular
structure is imposed on the factor loadings matrix to guaran-
tee mathematical identifiability, as outlined in Section 2.2. This,
however, makes inference on the factor loadings matrix depen-
dent on the appropriate ordering of the variables. We exemplify
this by the predictive Bayes factors for models, where the com-
ponent series are ordered alphabetically and the lower triangu-
lar structure is imposed on the first three series appearing in
Table 3, namely AUD, CAD, and CHF. As shown in Figure 4,
for a given number of factors r, the log predictive Bayes factors
of the constrained models are consistently smaller than for the
unrestrictedmodels, indicating that a purelymathematical iden-
tifiability constraint may be in conflict with the data.

Also for the constrained models, the log predictive Bayes
factors are ever increasing for the exchange rate data. However,

Table . Currency abbreviations.

AUD Australia dollar CAD Canada dollar CHF Switzerland franc
CNY China yuan renminbi CZK Czech R. koruna DKK Denmark krone
GBP UK pound HKD Hong Kong dollar HRK Croatia kuna
HUF Hungary forint IDR Indonesia rupiah JPY Japan yen
KRW South Korea won MYR Malaysia ringgit NOK Norway krone
NZD New Zealand dollar PHP Philippines peso PLN Poland zloty
RON Romania fourth leu RUB Russia ruble SEK Sweden krona
SGD Singapore dollar THB Thailand baht TRY Turkey lira
USD US dollar ZAR South Africa rand
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Figure . Log predictive Bayes factors in favor of the r-factor model over the no-factor model. The first  returns in the dataset are treated as prior information and
log one-day-ahead predictive likelihoods are accumulated over the following  days. Circles connected with a solid line indicate values obtained with completely
unrestricted loadings matrices; triangles connected with dashed lines indicate values, where the loadings matrix is restricted to be lower triangular. The component series
are ordered alphabetically.

it stands out that the relative gain per additional factor are
highest for few factors, flattening out quickly. Furthermore,
draws of the factor loading matrix in these higher-order models
are difficult to identify, in particular, if the lower triangular con-
straint is in conflict with the data and spurious factors, that is,
factors which are significantly loaded on by only few series, are
present (see Frühwirth-Schnatter and Lopes 2017, for a detailed
discussion of this issue in the static factor context). Thus, to
keep presentation feasible and to avoid spurious factors, we
restrict ourselves to a model with r = 4 factors for the following
in-depth discussion.

One way to find constraints that are not in conflict with the
data is to post-process theMCMCdraws of an unrestricted sam-
pler with r = 4 factors, a method that has been applied in Conti
et al. (2014) and Aßmann, Boysen-Hogrefe, and Pape (2016).
Note that rather than reordering the variables before imposing
a lower triangular constraint, we can choose three (out of the
26) currencies, and impose the r(r − 1)/2 = 6 zero restrictions
on the corresponding factor loadings, see, for example, Dunn
(1973).While the choice of these currencies is not unique, infer-
ence is robust to specific choices, as long as the correspond-
ing currencies serve as “leaders” for specific factors. This is
exemplified by Figure C.3 which displays the posterior median
of the MCMC draws of the factor loadings obtained from an
unrestricted sampler with r = 4. To solve column switching,
the columns of � are rearranged by the size of their maximum
median loading. According to Figure C.3 in Appendix C,
USD is a definite candidate to lead factor one, PLN leads
a second factor, and AUD leads a third factor. Alterna-
tively, identification could be based on any other currency
strongly loading on factor 1 (such as HKD or CNY), in com-
bination with HUF (instead of PLN) and NZD (instead of
AUD).

Prior hyperparameters are the same as for the simulation
study in Section 4. A sensitivity analysis shows that none of the
hyperparameter choices turn out to be very influential in this
particular applicationwith the exception of the prior factor load-
ings variances B�. These, however, are only important for the

absolute scaling of the factors and do not notably influence the
relative loadings sizes or predictive Bayes factors. We run each
sampler for 550,000 iterations, discard the first 50,000 draws as
burn-in, leaving 500,000 which we use for posterior inference.
Even after this substantial amount of iterations, it is not clear
that the sampler without interweaving has properly converged;
we therefore omit its presentation. IFs from the interwoven sam-
plers are presented in Table C.1 in Appendix C.

Finally, we identify the signs of the loadings in the post-
processing phase by investigating the MCMC draws. For each
factor, the series whose posterior absolute loadings distribu-
tion is furthest away from zero is assigned a positive sign, the
other loadings are aligned thereafter, see also Section A.4 in
Appendix A.

5.2. Posterior Factor Volatilities and Their Loadings

We begin by discussing the log-variances of the latent factors,
visualized in Figure 5, alongside the corresponding factor load-
ings whose posterior distribution is depicted in Figure 6 and
whose posterior means are listed in Table 4.

The first factor can clearly be interpreted as the USD-driven
one, as the pegged triplet USD, CNY, andHKD loads very highly
on this factor, alongside many other currencies. Its volatility is
generally very smooth, rising in the aftermath of the 2008 finan-
cial crisis and going down again after 2009; a second increase
can be seen in the second half of 2014, possibly in connection
with the Greek government-debt crisis. Factor 2’s log-variance
appears slightly less persistent and more volatile, it is driven by
ZAR, the onlyAfrican currency in the sample, alongside Eastern
Europe’s/Southwestern Asia’s HUF, PLN and TRY. Interestingly,
JPY loads negatively on this factor.

The third factor shows a similar overall pattern as the first.
The highest loading series for this factor are AUD and NZD,
emphasizing the Trans–Tasman relations. Other commodity
currencies such as ZAR and CAD also load highly on this factor.

Factor 4 is clearly driven by the currencies of the Tiger Cub
economies such as MYR, KRW, PHP, and SGD.
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Figure . Marginal posteriors of the factor log-variances hm+ j,t , j = 1, . . . , 4 (mean ± 2 × sd).
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Figure . Marginal posterior distribution of the factor loadings, visualized through arbitrarily colored scatterplots of MCMC draws.

Table . Posterior means of p(�|y), in alphabetical order. Blank entries signify that the respective marginal distribution is not bound away from zero with at least %
posterior probability. Starred entries are those which have been set to zero a priori.

�•,1 �•,2 �•,3 �•,4 �•,1 �•,2 �•,3 �•,4

AUD . . . * MYR . . . .
CAD . . . NOK . .
CHF −. NZD . . .
CNY . . PHP . . . .
CZK − . . PLN − . . * *
DKK . RON − . .
GBP . . . RUB . . . .
HKD . . . SEK − . . .
HRK SGD . . . .
HUF − . . THB . . . .
IDR . . . . TRY . . . .
JPY . − . . . USD . * * *
KRW . . . . ZAR . . . .

5.3. Posterior Volatilities and Correlations

In order not to overload the graphical displays used to visual-
ize the results of the analysis, we display the results for a two-
year period only for the rest of this section. More specifically, we
look at the years 2008 and 2009, covering the most volatile span
during the financial crisis. Irrespectively of that, the full dataset
has been used for estimation and other time spans could be dis-
played analogously.

We start out by visualizing the marginal posterior means
of univariate volatilities for all 26 currencies in Figure 7
from the last day of 2007 until the last day of 2009. Series
such as DKK or HRK are (very) closely pegged to EUR
and unsurprisingly show very low volatility throughout
the crisis. Other European currencies (CHF1, RON, SEK,

 It is interesting to note that the Swiss franc stays comparably stable from a EUR
perspective throughout –. Very differently during Summer , where
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Figure . Posterior volatilities of exchange rate log returns with respect to EUR, from the last day of  until the last day of  (mean ± 2 × sd).

Figure . Posterior correlation matrices on the last trading days of , , and . For each element, the size of the outer/inner circle is determined by the posterior
mean plus/minus two posterior standard deviations, thereby indicating posterior uncertainty. Color and opacity are determined by the posteriormean. The remaining days
are visualized in a video to be found online at https://vimeo.com/.

CZK) follow suit. Tiger Cub economies such as PHP, HKD,
THB, and MYR align very closely with USD and CNY.
The most volatile currencies during this period are KRW,
ZAR, IDR, JPY, and also TRY, followed by NZD, AUD,
and CAD. Overall, it stands out that even though some

CHF shows atypical and very high volatility until the Swiss Central Bank sets the
minimum exchange rate at CHF . per EUR  on September .

series-specific ups and downs can be spotted, a common trend
is clearly visible.

Next, implied correlation matrices are displayed in Figure 8,
exemplified for the last day of 2007, 2008, and 2009. Addi-
tionally to displaying the mean posterior pairwise correlations
(at the given dates) via color and shading, these plots visu-
alize posterior uncertainty; the outer and inner circles’ sizes
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correspond to posterior mean ± 2 standard deviations, respec-
tively. The images were generated using the R package
corrplot (Wei 2016); its option hclust (hierarchical
clustering) was used for ordering the series to emphasize the
blocks of currencies.

To further illustrate variability over time, we determine the
posterior means of the pairwise time-varying correlations of
USD against the other currencies which are plotted in Figure C.2
in Appendix C. As was to be expected, correlations of CNY and
HKD with USD are almost always very close to one; IDR, THB,
SGD, MYR, and PHP show rather high correlation throughout.
The correlation between USD and RUB on the other hand falls
from around 0.9 in early 2008 to around 0.4 in late 2009, whereas
THB moves in the opposite direction; its correlation with USD
is around 0.5 at the beginning of the time window and increases
quickly to around 0.9. Eastern European non-euro currencies,
in particular PLN and HUF, appear to be slightly negatively cor-
relation with USD throughout the entire period.

6. Conclusion and Outlook

Estimating time-varying (dynamic) covariance and correlation
matrices of financial and economic time series constitutes a
current and active area of research. One of the main challenges
thereby is the curse of dimensionality, that is, the fact that the
number of elements of these matrices grows quadratically with
the number of observed series. We address this issue by impos-
ing a low-dimensional latent factor structure where the factors
are allowed to exhibit stochastic volatility and thereby govern
co-movement of volatility over time. To conduct reliable statis-
tical inference, we propose novel Bayesian MCMC algorithms
which exploit the model-inherent identifiability constraints. By
interweaving different (but mathematically equivalent) param-
eterizations, the proposed strategies substantially improve
mixing of draws obtained from the posterior distribution, in
particular for the factor loadings matrix. The method proposed
is fully automatic in the sense that the end-user is not required
to manually adjust any tuning parameters.

In an extensive case study discussing exchange rates with
respect to EUR we show that the algorithm plays well with
real-world data that exhibits a fair degree of outliers (e.g., CHF,
RUB) which are captured through the idiosyncratic stochastic
volatility components. The model structure allows for a covari-
ance decomposition in four interpretable factors (USD/CNY
driven, Eastern Europe, commodity currencies, Tiger Cub
economies). These, alongside the idiosyncratic volatilities, drive
the dynamics of the joint correlation structure. The pairwise
correlations with USD range from “almost perfect” (CNY,
HKD) over “hardly existent” (CHF, HRK) to “slightly nega-
tive” (PLN, HUF) with a varying and time-dependent degree of
variability.

Concerning extensions of the model, we point out that due
to the modular nature of MCMC, all the ideas of this article can
be straightforwardly generalized to models that independently
model the mean, be it through a simple nonzero mean vector,
a local level model, external regressors, or via (vector) autore-
gressive processes. For models where the level of the returns
explicitly depends on the (co-)volatilities (volatility-in-mean-
type-effects, see, for example, Chan 2017) or the returns are

assumed to be correlated with the (co-)volatilities (leverage-
type-effects, see, for example, Ishihara and Omori 2017), more
involved estimation methods are required; this unfortunately
places their discussion outside the scope of this article. Never-
theless, due to the growing number of successful applications
of interweaving methods in different contexts, there is good
reason to hope for similar effects when they are used for these
type of factor SV model extensions.

Supplementary Materials

WebAppendix containing (A) details of the various sampling steps of Algo-
rithm 1 and details concerning the R package factorstochvol,
(B) the data-generating parameter values for the simulation study in
Section 4, and (C) further results for the exchange rate data discussed
in Section 5. Available at https://arxiv.org/abs/1602.08154. (.pdf file)

Video displaying the time-varying conditional correlation matrix
distribution for the full dataset (see Figure 8). Available at
https://vimeo.com/212887492. (.avi file)

R-package factorstochvol, version 0.8.3, containing code to run
the samplers described in the article. Available at https://cran.r-
project.org/package=factorstochvol. (GNU zipped tar file)

Replication code for the results in the article, including the exchange rate
data. (GNU zipped tar file)
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