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Abstract

This paper designs a Sequential Monte Carlo (SMC) algorithm for estimation of

Bayesian semi-parametric Stochastic Volatility model for financial data. In partic-

ular, it makes use of one of the most recent particle filters called Particle Learning

(PL). SMC methods are especially well suited for state-space models and can be

seen as a cost-efficient alternative to Markov Chain Monte Carlo (MCMC), since

they allow for online type inference. The posterior distributions are updated as

new data is observed, which is exceedingly costly using MCMC. Also, PL allows

for consistent online model comparison using sequential predictive log Bayes fac-

tors. A simulated data is used in order to compare the posterior outputs for the PL

and MCMC schemes, which are shown to be almost identical. Finally, a short real

data application is included.
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1 Introduction

Understanding, modeling and predicting stylized features of financial returns has

been extensively researched for more than 30 years and interest in the subject is far

from decreasing. Meanwhile mean-variance framework has been of major interest, it

is justifiable only for Normally distributed returns. There is overwhelming evidence

in the literature that the distribution of the financial returns is far from Normal, in

the sense that it exhibits fat tails and occasional asymmetry, see Bollerslev (1987), He

and Teräsvirta (1999), Jensen and Maheu (2010), among many others. Therefore, apart

from the mean and variance modeling one also has to consider departures from Nor-

mality by allowing for skewness and excess kurtosis via more flexible distributional

assumptions for the innovations of the returns.

Modeling the conditional mean of the returns is a very challenging task, since they

are always very close to zero and exhibit very low levels of autocorrelation. The

volatility of the returns, on the other hand, usually exhibits slow decaying autocor-

relation function, i.e. high persistence, which can be modeled via auto-regressive pro-

cess. The two most popular approaches to modeling volatility are based on the Au-

toregressive Conditional Heteroscedasticity (ARCH) type models, first introduced by

Engle (1982), and the Stochastic volatility (SV) type models, first introduced by Taylor

(1982). There is evidence in the literature that SV models provide more flexibility than

Generalized ARCH (GARCH, Bollerslev, 1986) specifications, see e.g. Broto and Ruiz

(2004). Therefore, in this work we consider the SV model for the volatilities.

As for the distribution of the error term of the returns, the Normal distribution

was considered by Taylor (1986, 1994), Jacquier et al. (1994), Kim et al. (1998), among

many others. However, as mentioned above, financial returns depart from Normality

since they exhibit fat fails and occasional asymmetry. There has been a multitude of

papers considering all kinds of parametric non-Normal distributions. For example,

the Student-t distribution was employed by Harvey et al. (1994), Gallant et al. (1997),

Sandmann and Koopman (1998), Chib et al. (2002), Jacquier et al. (2004), Nakajima and

Omori (2009), the Normal-Inverse Gaussian by Barndorff-Nielsen (1997), the Mixture
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of Normals by Mahieu and Schotman (1998), and the Generalized error distribution

by Liesenfeld and Richard (2005), among many others.

Another alternative is to abandon parametric assumptions for the distribution of

the error term of the returns altogether and consider a semi-parametric SV model,

where the distribution of the returns is modeled non-parametrically, and, at the same

time, the parametric discrete representation of the SV model is preserved. The Bayesian

non-parametric approach for SV models is quite a new field of research, with growing

popularity due to its flexibility and superior performance, see Jensen (2004), Jensen

and Maheu (2010, 2014) and Delatola and Griffin (2011, 2013). In these works it is as-

sumed that the distribution of the returns follows an infinite mixture of Normals via

Dirichlet Process Mixture (DPM) models (see Ferguson, 1983 and Lo, 1984, among oth-

ers). The infinite mixture of Normals can model other distributions, frequently used

in financial time series context, see e.g. Tokdar (2006) and Mencı́a and Sentana (2009),

because of its universal approximation property (Titterington et al., 1985).

The Markov Chain Monte Carlo (MCMC) estimation approach for SV models is the

usual methodology since the seminal work by Jacquier et al. (1994), where Bayesian

inference for standard SV models was firstly developed. For a survey on Bayesian

estimation of time-varying volatility models see Virbickaitė et al. (2015b). However,

MCMC methods in general are computationally demanding for high-frequency data

and ’inherently non-sequential’ (Lopes and Polson, 2010). Alternatively, one can rely

on Sequential Monte Carlo (SMC) methods, also known as particle filters, that allow

for online type inference by updating the posterior distribution as the new data is

observed. Stochastic volatility (parametric or semi-parametric) models are state-space

models, naturally suggesting SMC scheme. Moreover, models considered in this paper

belongs to such a class, that have the availability of sufficient statistics of the parame-

ters. This naturally suggests using a filter that instead of tracking a high-dimensional

vector of the parameters tracks a low-dimensional set of sufficient statistics that can

be recursively updated. The use of sufficient statistics has been shown to increase the

efficiency of the algorithm by reducing the variance of sampling weights, see Carvalho
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et al. (2010a).

In general, particle filters provide a simulation based approach where a set of par-

ticles represent the posterior density. For instance, consider the following state-space

model, where xt are latent states and Θ are static parameters:

rt|xt, Θ ∼ p(rt|xt, Θ),

xt|xt−1, Θ ∼ p(xt|xt−1, Θ),

for t = 1, . . . , T, with initial probability density p(x0|Θ) and prior p(Θ). Each par-

ticle has an associated weight that is proportional to the predictive p(rt|xt, Θ). The

sequential state filtering and parameter learning problem is solved by a sequence of

joint posterior distributions p(xt, Θ|rt), where rt = (r1, . . . , rt). Assume for the time

being that Θ is known, which leaves us with a pure filtering problem. Gordon et al.

(1993) and Pitt and Shephard (1999) propose bootstrap and auxiliary particle filters,

respectively, which are among the most popular ones. However, when Θ is unknown

and also needs to be sequentially estimated, the problem becomes more difficult. The

approach of directly introducing and resampling Θ breaks down in a few steps, since

all the particles collapse into a single point. In order to delay particle degeneracy,

Gordon et al. (1993), and later Liu and West (2001), consider artificial evolution for

the parameters. On the other hand, Storvik (2002) and Carvalho et al. (2010a) rely on

a low-dimensional set of sufficient statistics, instead of the parameters, to be tracked

in time. For discussions and illustrations of some of the particle methods or reviews

of particle methods in general, see Johansen and Doucet (2008), Kantas et al. (2009),

Douc et al. (2009), Lopes and Tsay (2011), Lopes et al. (2011) together with Chopin

et al. (2011) for a lively discussion, Lopes and Carvalho (2013) and Rios and Lopes

(2013), among many others. Even if particle filters are known to suffer from a funda-

mental problem called particle degeneracy, i.e., an ever-decreasing set of atoms in the

particle approximation of the density of interest (see Section 2.5), the online property

of particle filters is definitively an advantage over MCMC.
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Among all available Sequential Monte Carlo methods, in this paper we make use

of the particle learning (PL) approach, which is a particle based method, firstly in-

troduced by Carvalho et al. (2010a). Surely, alternative particle filters are in order.

Nevertheless, comparison of SMC methods in this setting is out of the scope of this

paper. One can find extensive empirical results for comparisons of a variety compet-

ing filters in Carvalho et al. (2010a), Lopes and Tsay (2011) and Rios and Lopes (2013)

in more general settings. PL incorporates sequential parameter learning, state filtering

and smoothing, thus providing an online estimation alternative to MCMC/Forward

Filtering, Backward Sampling (FFBS) methods. For PL comparison with MCMC see

Carvalho et al. (2010a), Lopes and Polson (2010), among others. An essential feature of

PL is the presence of conditional sufficient statistics for the parameters to be tracked in

time. It also makes model comparison easy, since at each step we have the predictive

likelihood as a by-product.

The main contribution of the paper is that we design a PL algorithm for a SV model

with DPM innovations, referred to as a semi-parametric model (SPM), which is the

same as in Delatola and Griffin (2011). We estimate the simulated data via PL and

MCMC in order to illustrate that the produced posteriors are almost identical at any

given data point. PL method provides the advantage of easily incorporating the in-

formation from the new observation, while MCMC requires to re-run the algorithm

again. Additionally, PL produces predictive likelihoods for each data point without

any additional costs, which allows for sequential model comparison via log predictive

Bayes factors. Finally we estimate real data via PL using the SPM and fully paramet-

ric model with Normal innovations, referred to as PM (following the nomenclature

of Delatola and Griffin 2011), and perform sequential model comparison in order to

illustrate the attractiveness of SMC approach.

Important to notice, that the proposed efficient SMC scheme for this type of models

does not come without a cost. Apart from the limitations of particle filters in general,

which are outlined in Section 2.6, there is an important shortcoming of PL algorithm

for the specific class of models considered in this paper. In particular, in order to de-
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sign a fully-adapted PL algorithm, the returns have to be transformed by applying a

log-square transformation. This transformation masks possible skewness of the dis-

tribution of the returns.1 As acknowledged in Delatola and Griffin (2011), this is a

strong assumption, however, they refer to the work of Jensen and Maheu (2010) and

argue that the authors found little evidence of skewed returns and showed that a scale

mixture exhibits better out of sample performance as compared to the location-scale

mixture.

The paper is structured as follows. Section 2 presents the linearized SV model with

non-parametric errors and designs a PL algorithm for this model. It also includes

a discussion on the limitations of the particle methods in general. Then, Section 3

presents simulated data exercise and comparison with the MCMC estimation output.

Section 4 compares the performance of the parametric and semiparametric models

using real data. Finally, Section 5 concludes.

2 SV-DPM Model

In this section we briefly review a commonly used version of the standard stochastic

volatility model with Normal errors. We then drop the Normality hypothesis and in-

troduce a novel particle learning scheme to perform sequential Bayesian learning in

the class of semi-parametric SV models. The innovation distribution is assumed to

follow an infinite mixture of Gaussians via Dirichlet Process Mixture models, giving

rise to the SPM. We show the differences in the computational aspects between PL

and MCMC. Meanwhile MCMC is a gold standard in this type of models, PL has the

advantage of producing online inference and, as a by product, online model compari-

son/selection statistics.
1We would like to thank the Referee for pointing this out.

6



2.1 Normal errors

The standard SV model looks as follows:

yt = exp {h∗t /2} vt, (1)

h∗t = α + β(h∗t−1 − α) + τηt, t = 1, . . . , T, (2)

where |β| < 1 for the stationarity of the volatilities; vt and ηt are uncorrelated error

terms, such that ηt ∼ N (0, 1). The distribution of the vt with zero mean and unit

variance takes many different forms in the existing literature: from a standard Normal,

to heavy-tailed Student-t and others (see Kim et al., 1998, Chib et al., 2002, Mahieu and

Schotman, 1998, Liesenfeld and Richard, 2005, for example).

Kim et al. (1998) proposed a linearization of the standard SV model by defining

rt = log(y2
t + cO) and ε∗t = log v2

t , resulting into the following dynamic linear model:

rt = h∗t + ε∗t , where ε∗t ∼ F , (3)

h∗t = α + β(h∗t−1 − α) + τηt, where ηt ∼ N (0, 1). (4)

Observe that the distribution F is a log χ2
1 if vt is Normally distributed. Kim et al.

(1998) and Omori et al. (2007) use carefully tuned finite mixtures of Normals to ap-

proximate the log χ2
1 distribution and use a data augmentation argument to propose

fast MCMC schemes that jointly sample {h∗1 , . . . , h∗T} based on the well-known FFBS

algorithm of Carter and Kohn (1994) and Frühwirth-Schnatter (1994). Moreover, cO is

an offset parameter that is needed in order to avoid the logarithm to be undefined in

case zero returns. Delatola and Griffin (2011) have tried several different values for

cO and presented their real data application with cO = 10−4, meanwhile Jensen (2004)

has used the value of cO = 0.0005. Therefore, in this paper we fix cO = 0.0003 for all

simulated and real data applications.

However, the recent literature is abundant in showing that the distribution of vt

has heavier tails than the Normal distribution, rendering the above approximations
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limited. Below we introduce the simple linearized SV model with non-parametric

errors to model the unknown return distribution.

Another important issue concerns the moments of the distribution of ε∗t . Even

though the original errors vt are generated by a process with zero mean and unit vari-

ance, the resulting moments of ε∗t can vary greatly, depending on the distribution of

vt. For example, if vt ∼ N (0, 1), then E[ε∗t ] = −1.272, V[ε∗t ] = 4.946, S[ε∗t ] = −1.539

and K[ε∗t ] = 7.015, where E[·], V[·], S[·] and K[·] denote mean, variance, skewness

and kurtosis, respectively. On the other hand, if vt ∼ ST (7), scaled in such a way

that E[vt] = 0 and V[vt] = 1, then E[ε∗t ] = −1.428, V[ε∗t ] = 5.218, S[ε∗t ] = −1.404

and K[ε∗t ] = 6.583. However, Student-t and Normal are not the only possible distri-

butions for the errors. There is an infinite number of possibilities for the distribution

of the error term, whose moments are impossible to ’map’ backwards in order to re-

cover the true error distribution. Nonetheless, Delatola and Griffin (2011) propose an

approximate procedure in order to recover the underlying true distribution.

2.2 Non-Normal errors

We do not specify a parametric model for the error density, but instead, we assume

a Dirichlet Process Mixture prior, firstly introduced by Lo (1984). DPM models have

been widely used for modeling time-varying volatilities, see Jensen (2004), Jensen and

Maheu (2010, 2013, 2014), Delatola and Griffin (2011, 2013), Kalli et al. (2013), Ausı́n

et al. (2014) and Virbickaitė et al. (2015a). This type of approach is known as time-

invariant (independent) DPM.

Delatola and Griffin (2011, 2013), for example, propose to approximate the log-

square of the unknown return distribution F as an infinite mixture of Normals by

relying on DPM models. The SPM presented in this section is of the same spirit as

the model in Delatola and Griffin (2011). As noted by the authors, since the mean of

the disturbance ε∗t is not fixed and is not known, there might arise some identification

issues. Therefore, the mean of the volatility process in (4) can be subsumed into ε∗t ,
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leading to the following reparametrized model:

rt = ht + εt, where εt ∼ F , (5)

ht = β(ht−1) + τηt, where ηt ∼ N (0, 1), (6)

such that ht = h∗t − α and εt = ε∗t + α. Here the log volatility process has the uncon-

ditional mean equal to zero. As seen in Escobar and West (1995), the DPM model has

the following density function:

f (εt; G) =
∫

k(εt; θt)dG(θt),

where k is some density kernel with parameters θt and the mixing distribution G has

a DP prior, denoted here by G ∼ DP(c, G0(θ; $)). Each observation εt comes from

a kernel density with some parameters θt, following the mixing distribution G. The

parameter c is called the concentration parameter and G0(θ; $) is called the base dis-

tribution that depends on certain hyperparameters $. The concentration parameter

c can be interpreted as the prior belief about the number of clusters in the mixture.

Small values of c assume a priori an infinite mixture model with a small number of

components with large weights. On the contrary, large values of c assume a priori an

infinite mixture model with all the weights being very small. c is also called a preci-

sion parameter and indicates how close G is to the base distribution G0, where larger

c indicates that G is closer to G0.

Gaussian kernel and conjugate base prior. A rather standard approach is to con-

sider a Gaussian kernel density, εt|µt, σ2
t ∼ N (µt, σ2

t ), and follow the procedure out-

lined in Escobar and West (1995) and put a prior on the mixing mean and the variance.

Alternatively, we rely on an approach proposed by Griffin (2010) and Delatola and
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Griffin (2011):

εt|µt ∼ N (µt, ασ2), t = 1, . . . , T,

µt|G ∼ G,

G|G0 ∼ DP(c, G0),

G0 ≡ N (µ0, (1− α)σ2).

Here µ0 is the overall location parameter and mixing is done over µt, where µt is the

location of the tth component. Also, σ2 is the overall scale and is constant. Moreover,

the uncertainty associated with µt can be integrated out and the prior predictive for

εt is just a single Normal N (µ0, σ2). In real data applications the observations clus-

ter, therefore, some of the εt come from a component with the same µt, and the total

number of components is smaller than the number of observations. In the rest of the

manuscript instead of t we will use the subscript j to identify a component. Param-

eter α is a smoothness parameter and is fixed to 0.05 throughout the paper. Delatola

and Griffin (2011) have also considered a different value of α = 0.01; alternatively, α

can also be estimated with the rest of the model parameters, see Griffin (2010) for de-

tails. The concentration parameter c is set to be equal to one, as seen in Carvalho et al.

(2010b), however, it can be estimated together with the rest of model parameters. One

can specify some informative priors for µ0 and σ2, however, following Delatola and

Griffin (2011), we allow for completely uninformative priors.

Define Φ =
(

β, τ2) as the set of parameters associated with the parametric part

of the model, Ω = {(µ0, µ1, . . . , σ2)} as a set of parameters associated with the distri-

bution of the error term, and Θ = (Φ, Ω) as a complete set of all model parameters.

Therefore, using a Polya urn representation of DPM, see Escobar and West (1995), the
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model in (5) and (6) can be rewritten as follows:

rt|ht, Θ ∼ c
c + t− 1

N (rt; µ0 + ht, σ2) +
1

c + t− 1

L?
t−1

∑
j=1

nt−1,jN (rt; µj + ht, ασ2), (7)

ht|ht−1, Θ ∼ N (ht; βht−1, τ2), (8)

where nt,j is a number of observations assigned to jth component at time t and L?
t

is a number of non-empty components in the mixture at time t, i.e. L?
t is not fixed a

priori and grows if new components are observed. Given this missing information, the

mixture becomes finite, where the maximum number of components theoretically is

limited by the number of observations. In practice, data tends to cluster, meaning that

some observations come from the same component, therefore L?
t � t.

2.3 MCMC for SPM

The standard Bayesian estimation of SV models, parametric or semi-parametric, relies

on MCMC methods, which, however, can be costly, because, additionally to the pa-

rameter estimation, they have to consider a sampler for latent volatilities. One notable

exception is a work by Jensen (2004), who proposes a highly efficient MCMC sampler

for a long memory semiparametric SV model by making use of the SV model’s wavelet

representation and near-independence of the wavelet coefficients.

Jensen and Maheu (2010) construct an MCMC scheme for their proposed SV-DPM

model, where latent volatilities are sampled via random length block sampler, which

helps to reduce correlation between draws. The authors found that the semi-parametric

SV model is more robust to non-Normal data and provides better forecasts. In another

paper, Jensen and Maheu (2014) consider an asymmetric SV-DPM model. The authors

extend their previous semi-parametric sampler to a bivariate setting, where the inno-

vations of the returns and volatilities are modeled jointly via infinite scale mixture of

bivariate Normals.

Meanwhile, Delatola and Griffin (2011) use a linearized version of the SV model.

Conditional on knowing which mixture component the data belongs to, the linearized

11



SV model is just a Normal Dynamic Linear Model (NDLM) and the latent volatilities

are updated by FFBS (see the discussion at the end of Section 2.1). The remainder of

the model parameters are sampled via an extension of Gibbs sampler, called hybrid

Gibbs sampler. In their subsequent paper, Delatola and Griffin (2013) consider an

asymmetric SV model. Same as before, they make use of the linearization and update

the latent log volatilities via FFBS and the other parameters via Metropolis-Hastings.

All above MCMC schemes are costly in the context of SV models for high-frequency

data for at least three reasons: (1) the MCMC sampler has to include a filter for latent

volatilities, (2) the sampler has to be re-run each time a new observation arrives, and

(3) sequential consistent model comparison is nearly impossible due to computational

burden.

2.4 PL for the SPM

In this section we present the algorithm to perform PL estimation for a SV model

with non-parametric errors. PL, as mentioned before, is one of several particle filters

that consider sequential state filtering and parameter learning. PL, which was firstly

introduced by Carvalho et al. (2010a), allows for sequential filtering, smoothing and

parameter learning by including state-sufficient statistics in a set of particles. The

Online Appendix includes a brief description of the main idea behind PL. For a more

detailed explanation of PL with illustrations refer to Carvalho et al. (2010a) and Lopes

et al. (2011), among others.

The priors for model parameters are chosen to be conditionally conjugate: h0 ∼

N (c0, C0), τ2 ∼ IG(b0/2, b0τ2
0 /2) and β ∼ T N (−1,1)(mβ, Vβ). Here T N (a,b) repre-

sents Normal distribution, truncated at a and b, while c0, C0, b0, b0τ2
0 , mβ, and Vβ are

hyper-parameters. Then, a set of sufficient statistics St contains all updated hyper-

parameters, necessary for the parameter simulation, as well as filtered state variables,

which are of two kinds: the latent log volatilities ht and the indicator variable kt, which

tells us to which mixture component the error data point belongs to. The object we call

particle at time t thus will contain St and corresponding parameters, simulated from
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the hyper-parameters in St. At each time t we have a collection of N particles. When

this set of N particles passes from t to t + 1, some of the particles disappear, some are

repeated (sampling with replacement, corresponds to the Resampling step defined be-

low) and then modified (Sampling and Propagating steps).

In order to initiate the algorithm, we need to have the initial set of sufficient statis-

tics S0 and initial parameter values. The set S0 consists of: initial {h(i)0 }N
i=1, that has

been simulated from its prior, initial overall location {µ(i)
0 }N

i=1, which is set to -1.272

for all particles, {σ2(i)}N
i=1, which is set to 4.946. These specific values correspond to

the first two moments of the log χ2 distribution, which would correspond to Normally

distributed returns. We have performed a simulation study included in the Online Ap-

pendix and found that for reasonable sample sizes the sampler is robust to the choice

of the initial values of µ0. The rest of the initial hyper-parameters {b(i)0 }N
i=1, {b0τ

2(i)
0 }N

i=1, . . .

are all the same across all particles at t = 0.

For t = 1 . . . , T and for each particle (i) the algorithm iterates through three steps

(the derivations of the posterior distributions are rather straightforward and very sim-

ilar to the ones available in Griffin (2010) and Delatola and Griffin (2011)):

1. Resampling.

Resample the particles from the previous period t− 1 with weights

w ∝
c

c + t− 1
fN(rt; βht−1 +µ0, τ2 +σ2)+

1
c + t− 1

L?
t−1

∑
j=1

nj fN(rt; βht−1 +µj, τ2 + ασ2),

that are proportional to the predictive density of the returns. The components of

Θ = (β, τ2, µ1, . . . , µL?
t−1

, µ0, σ2) have been simulated at the end of the previous

period. The resampled particles are denoted by a tilde above the particle, as in

Θ̃.

2. Sampling.
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(a) Sample new log volatilities ht from

ht|h̃t−1, Θ̃, rt ∼ N (ht; mh, Vh),

where, Vh = Aσ̃2, mh = A(rt − µ̃0) + (1− A)β̃h̃t−1, and A = τ̃2/(τ̃2 + σ̃2).

(b) Sample new indicators kt from {1, . . . , L?
t−1 + 1}, with weights proportional

to

ñj fN(rt; β̃h̃t−1 + µ̃j, τ̃2 + ασ̃2
j ), j = 1, . . . , L?

t−1 + 1,

where ñL?
t−1+1 = c, σ̃2

j = σ̃2 ∀j ≤ L?
t−1 and σ2

L?
t−1+1 = σ2/α. If kt ≤ L?

t−1,

nkt = ñkt + 1 and L?
t = L?

t−1, otherwise, L?
t = L?

t−1 + 1 and nkt = 1.

3. Propagating sufficient statistics and learning Θ.

(c.1) Sample τ2 from IG(τ2; b?0/2, b?0τ2?
0 /2), where

b?0 = b̃0 + 1 and b?0τ2?
0 = b̃0τ̃2

0 + (ht − β̃h̃t−1)
2.

(c.2) Sample β from T N (−1,1)(β; m?
β, V?

β ), where

m?
β =

m̃βτ2 + Ṽβh̃t−1ht

1 + Ṽβh̃2
t−1

and V?
β =

Ṽβτ2

τ2 + Ṽβh̃2
t−1

.

(c.3) Sample µkt from N (µkt ; m, Vσ̃2), where

m = V
(

µ̃0

(1− α)
+

skt

α

)
and V =

α(1− α)

α + (1− α) · t ,

such that skt = s̃j=kt + (rt − ht).

(c.4) Sample µ0 from N (µ0; m, V), where

m =
L?

t

∑
j=1

µj and V =
σ̃2(1− α)

L?
t

.
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(c.5) Sample σ2 from IG(σ2; a, b), where

a =
t + L?

t
2

and b =
lkt

2α
+

∑
L?

t
j=1(µj − µ0)

2

2(1− α)
,

such that lkt = l̃j=kt(rt − ht − µkt)
2.

2.5 Limitations of particle filters

Particle filters, PL included, are known to suffer from a problem called particle degen-

eracy: an ever-decreasing set of atoms in the particle approximation of the density of

interest. As noted by Chopin et al. (2011), increasing the number of observations will

lead to degenerating paths, unless the number of particles is being increased simul-

taneously. This has to be monitored carefully for the chosen filter and can be seen as

a trade-off between the sequential nature of the algorithm and stability of MCMC for

very large samples. Therefore, the a priori consideration of the sample size of interest

directly influences the choice of number of particles in order not to reach the stage

where particles start to degenerate.

Although the development of particle filters is not that new, it is a very active field

of research. The ever going quest to avoid or at least postpone particle degeneracy has

lead to Gordon et al. (1993) and Liu and West (2001) introducing artificial evolution

in the parameters. Another strategy is to use resample – propagate strategy rather than

propagate – resample, as seen in Carvalho et al. (2010a), Lopes and Tsay (2011). Finally,

the use of sufficient statistics produces lower MC error than other filters (given the

same number of particles), which in turn implies that filters, making use of sufficient

statistics – such as PL or Storvik (2002), can reach the same accuracy with a smaller

number of particles as other filters. This leaves more room for increase in a number of

particles to accommodate desired time-horizon before the particles start vanishing.

Finally, if the interest is not online type inference, MCMC is still a gold standard

in the area. Recently other approaches, such as Particle MCMC, that combine MCMC

and particle filters, have been emerging, see Andrieu et al. (2010) and Pitt et al. (2012),
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among others.

3 Simulation exercise and comparison with MCMC

We perform a simulation exercise based on synthetic data to illustrate computational

aspects of MCMC and PL approaches. A data set of length T = 500 is simulated from

the model in (1)-(2) with α = 0, β = 0.97, τ2 = 0.0225, where vt is distributed as a

standard Normal. We estimate the SPM using the simulated data with PL and MCMC

schemes. The priors for the unknown parameters are the same for MCMC and PL and

are given by

β ∼ N (0.95, 0.1) and τ2 ∼ IG(10/2, 0.1/2).

Also, initial values for µ0 and σ2 are set the same for both algorithms to match

the first two moments of the log χ2 distribution. PL is run for 100k particles, mean-

while the MCMC is run for 100000 iterations, keeping every 10th. MCMC results

are obtained via Matlab code of Delatola and Griffin (2011), which is available on Jim

Griffin’s website2. We have modified the code accordingly, to exactly match our model

specification. In particular, the concentration parameter is set to be c = 1, the probabil-

ity of zero returns is always set to be equal to zero and we do not switch between two

alternative reparametrizations, as described in Delatola and Griffin (2011). Also, the

draws for parameter β are obtained via Gibbs rather than MH step, as in the original

code.

For illustrative purposes we also estimate a fully parametric model, where the error

term is assumed to be Normally distributed. The log χ2 distribution is approximated

via carefully tuned mixture of Normals, as seen in Kim et al. (1998). Such approxima-

tion allows us to implement the fully adapted filter and allows us to illustrate one of

the advantages of the PL algorithm: sequential predictive model performance. In this

case we know the underlying DGP, therefore, the sequential predictive Bayes factors

2http://www.kent.ac.uk/smsas/personal/jeg28/index.htm
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should prefer the fully parametric model purely due to much smaller parameter space.

We report estimation results at 5 points of the sample, in particular, at observations

t = 100, 200, 300, 400, 500. For PL, the algorithm has to be run only once, meanwhile

for MCMC it had to be run 5 times. We present the PL results for 4 independent

runs in order to get some idea about the Monte Carlo error (the codes were run on a

standard desktop computer with four cores, this way all four runs could be carried

out in parallel). The smaller the number of particles, the more variability is observed

across runs, see Carvalho et al. (2010a) for example.

Figure 1 plots the posterior distributions for the model parameters associated with

the non-parametric part - µ0 and σ2, and the parameters, governing the volatility pro-

cess - β and τ2 at time T = 100. The four grey lines correspond to the four independent

PL runs, meanwhile the dotted black line draws the MCMC produced posterior dis-

tributions. As seen, at time T = 100 all posterior distributions are nearly identical.

Similar plots can be drawn for each time point t. In order to save space, for the rest

of time points instead of drawing all posterior distributions, we plot the PL median,

2.5 and 97.5 percentile paths and the corresponding MCMC medians and 95% credible

intervals, see Figure 2. As seen from the plots, the posterior distributions seem very

similar for all data points. Instead of the medians and credible bounds for the MCMC

only at specific time points, one could also draw the exact paths for all ts, however,

this would mean that MCMC algorithm would have to be re-run 500 times.

Next, Figure 3 draws the posterior median, 2.5 and 97.5 percentile paths for PL

and corresponding MCMC medians with 95% credible intervals at the selected time

cuts for the filtered log volatilities. Although for the MCMC we have the entire path

of volatilities available, it is important to distinguish that these are smoothed paths,

therefore, are not comparable with the only filtered PL paths. If one wishes to obtained

smoothed paths in PL setting, it is possible to perform the backwards smoothing after

the algorithm has been run, see Carvalho et al. (2010a) for details on smoothing. As

seen, the filtered median log volatilities and 95% credible intervals are almost identical

for both algorithms.
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Figure 1: Posterior distributions for the parameters for MCMC (black dotted line) and
four runs of PL (grey lines) at time T = 100.
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As mentioned in the Introduction, the predictive distribution of the returns (or their

log square transformation) is of major interest. Figure 4 draws posterior predictive

distributions for each of the time cuts for MCMC and PL. As seen from the plot, there is

very little MC variability among the PL runs and the posterior predictives are identical

to those produced by the MCMC. The figure presents such posteriors only for five

selected time cuts, however, for PL there are 500 such posterior predictive distributions

readily available. On the other hand, as mentioned before, the MCMC has to be re-run

each time a new observation arrives, resulting into prohitively large computational

burden if one wants to produce online type inference.

Model comparison. To compare the performance of the models, we use the sequen-

tial predictive log Bayes factor (BF). As pointed out in Koop (2003), Bayes factors per-
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Figure 2: Posterior median, 2.5 and 97.5 percentile paths for PL and corresponding
MCMC medians with 95% credible intervals at T = {100, 200, 300, 400, 500} for the
model parameters.
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mit consistent model comparison even for non-nested models. Also, it contains re-

wards for model fit, accounts for coherency between the prior and the information

arising from the data, as well as rewards parsimony. As seen in Kass and Raftery

(1995), Bayes factor between two competing models is defined as

BF12 =
p(D|M1)

p(D|M2)
,

where p(D|Mr) is the marginal likelihood for data D given a modelMr. Then the log

predictive Bayes factor at time t− 1 for data point rt is defined as

log BF12,t =
t

∑
k=1

log p(rk|rk−1,M1)−
t

∑
k=1

log p(rk|rk−1,M2).
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Figure 3: Posterior median, 2.5 and 97.5 percentile paths for PL and corresponding
MCMC medians with 95% credible intervals at T = {100, 200, 300, 400, 500} for the
filtered log volatility process.
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The posterior predictive p(rt|rt−1,Mr) for modelMr is obtained as follows:

p(rt|rt−1,Mr) =
∫

p(rt|rt−1,Mr, Θr)π(Θr|rt−1,Mr)dΘr,

where Θr is a set of parameters associated with model Mr. The integral above is

not always analytically tractable and can be either approximated by using the MCMC

output, or is readily available as a by-product in PL scheme. In particular, for each

t = 1, . . . , T, the log predictive densities are calculated as

log p(rt|rt−1) =
1
N

N

∑
i=1

log p(rt|(Θ, ht, kt)
(i)). (9)

Finally, Figure 5 illustrates the attractiveness of PL: availability of sequential log

predictive likelihoods and Bayes factors, which allow for fast and consistent model

comparison. The top panel draws the simulated zero mean return process with Nor-

mal errors meanwhile the bottom panel draws the sequential predictive log Bayes fac-

tors. The sequential predictive log Bayes Factors are drawn for four independent runs
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Figure 4: Posterior predictive distribution of the squared log returns at T =
{100, 200, 300, 400, 500} for PL (grey lines) and MCMC (black dotted line).
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for SPM and PM. Therefore, as a result of Monte Carlo error, multiple lines are visible

in the bottom plot. The lager the number of particles, the less variability would be

observed across the runs, see Carvalho et al. (2010a). Since the true data generating

process is Normal, as expected, the Bayes factors are negative, showing strong support

for the PM. Even though SPM includes PM as a special case, it has much more param-

eters to estimate, therefore, Bayes factors are negative since they reward parsimony.

This simulation study demonstrates that the posterior distributions for the param-

eters, filtered volatilities and posterior predictive distribution for the one step ahead

squared log returns are identical for both estimation schemes. Moreover, PL allows

for sequential consistent model comparison, which is prohibitively costly in MCMC

setting.

We have also performed a similar simulation study, only for non-Normally dis-

tributed data. In this case, the Bayes Factors provide strong support for the SPM. The

detailed results of the simulation study are included in the Online Appendix.

4 Real Data Application

In this section we present a real data application using return time series for two finan-

cial assets, which are the same as in Delatola and Griffin (2011). In particular, we con-

sider the Microsoft company and the SP500 index. The daily prices from Jan/01/2007
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Figure 5: Simulated data (top panel) and sequential predictive log Bayes factor for
SPM vs PM (bottom panel).
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till Oct/31/2016 for both assets are obtained from Datastream. The median, standard

deviation, skewness and kurtosis for the de-meaned log returns (in %) for Microsoft

are -0.0271, 1.7581, 0.1926 and 12.7410, respectively, and 0.0129 , 1.3051, -0.3273 and

13.2423 for the SP500 index.

In order to closer illustrate the ability of the SPM to capture different distribu-

tions of the squared log returns, we split the data into two disjoint periods: a volatile

one that includes the financial crisis (Jan/01/2007 - Nov/01/2010) and a calm one

(Jan/01/2013 - Oct/31/2016), both containing 1000 observations. Figure 6 draws the

daily prices (panels (a) and (b)), the log returns in (%) for the entire period, where the

two sub-periods of interest are in black (panels (c) and (d)) and the densities for the

squared log returns for the two different sub-periods (panels (e) and (f)). The SPM

can capture such different shapes via the infinite mixture of Normals, meanwhile the

purely parametric model will be fitting the exact same distribution in all four cases.
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Next, we estimate the data using the SPM and PM specifications. The hyper- pa-

rameters for the priors are the same as in the simulation study, the offset parameter

value is set to cO = 0.0003. The codes were run for 500k particles each. Figures 7 and

8 present the estimation results for the Microsoft data set. The figures draw sequential

predictive Bayes factors as compared to the PM specification and the estimated predic-

tive densities at time T + 1 for the two sub-periods. The PM density corresponds to the

mixture of 7 Normals, as an approximation of log χ2
1. Only by looking at the plots, it is

obvious that SPM estimates different densities than the one provided by the fully para-

metric model. The sequential predictive log Bayes factors confirm the non-Normally

distributed returns, i.e. SPM is strongly preferred to PM for both sub-periods.

Figures 9 and 10 present estimation results for the the two sub-periods of the SP500

data set. Same as for the Microsoft data, the SPM is strongly preferred to PM for

both sub-periods. Also, the shapes of the predictive distributions for the log squared

returns differ dramatically from the ones produced by Normally distributed errors.

To conclude, there is strong evidence that SPM outperforms PM for the selected

data sets, confirming the finding present in previous empirical studies. Consistent

sequential model comparison is possible via the use of the proposed PL algorithm for

semi-parametric SV models.

5 Discussion

This paper designs a sequential estimation procedure, based on PL, for a semi-parametric

SV model. PL is comparable to MCMC and allows for sequential inference, which is

important in high-frequency data context. SMC also produces the picture of the evolu-

tion of parameter learning and provides the predictive likelihoods at each data point

as a by-product. The availability of predictive likelihoods at each time point enables

to perform fast online model comparison using sequential predictive log Bayes fac-

tors. Finally, we present a real data application using two financial time series of the

returns for one index - SP500 and one company - Microsoft. As already confirmed
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in prior empirical semi-parametric SV studies, non-parametric errors provide a better

model fit for both, volatile and calm periods.

As noted in the introduction, we use PL to perform sequential Monte Carlo for

non-parametric SV models. Nevertheless, other particle filter alternatives are in order.

Comparison of these methodologies for the particular models considered in this paper

is of interest and we believe it deserves its own space.
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Figure 6: Daily prices, log-returns (in %) and densities for the log-squared returns for
two sub-periods (Jan/01/2007 - Nov/01/2010 and Jan/01/2013 - Oct/31/2016) for
Microsoft & SP500 data.
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Figure 7: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for Microsoft data for the first
period.
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Figure 8: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for Microsoft data for the second
period.
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Figure 9: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for SP500 data for the first period.
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Figure 10: Sequential log predictive Bayes factors and estimated densities for the log-
squared error term for SPM, as compared to the PM for SP500 data for the second
period.
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