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Abstract of the BART paper

We develop a Bayesian “sum-of-trees” model where each tree is constrained by a
regularization prior to be a weak learner, and fitting and inference are
accomplished via an iterative Bayesian backfitting MCMC algorithm that
generates samples from a posterior.

Effectively, BART is a nonparametric Bayesian regression approach which uses
dimensionally adaptive random basis elements.

Motivated by ensemble methods in general, and boosting algorithms in
particular, BART is defined by a statistical model: a prior and a likelihood.

By keeping track of predictor inclusion frequencies, BART can also be used for
model-free variable selection.
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Nonlinear regression

We want to “fit" the fundamental model:

Yi = ()Qy 0) + €j

BART is a Markov Monte Carlo Method! that draws from

g(x;0) 1 (xy)

We can then use the draws as our inference for g(x;0).

IMonte Carlo tools were crucial to popularize Bayesian estimation /inference/tools over the
last 30 or so years across a wide range of sciences and industry.
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Turning the Bayesian crank

To get the draws, we will have to:

» Put a prior on g(x;6).

» Specify a Markov chain whose stationary distribution is p (g(x; 8)| (x, y)).
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Example of nonlinear function

Simulate data from the model:

yi= X,-3 +€ €~ N(0,0’z) iid

n = 100

sigma = 0.1

g = function(x) {x"3}
set.seed(14)

x = sort(2*runif(n)-1)

y = g(x) + sigma*rnorm(n)
xtest = seq(-1,1,by=0.2)

xtest are out of sample x values at which we wish to infer g or make predictions.
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plot(x,y)
points(xtest,rep(0,length(xtest)),col="red",pch=16)

Red is xtest
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R package BayesTree

library(BayesTree)
rb = bart(x,y,xtest)
length(xtest)

(1] 11
dim(rb$yhat.test)

[1] 1000 11

The (i,j) element of yhat.test is

the it" draw of g evaluated at the j value of xtest.

1,000 draws of g, each of which is evaluated at 11 xtest values.
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Fitted model

plot(x,y)

lines(xtest,xtest~3,col=’blue’)
lines(xtest,apply(rb$yhat.test,2,mean),col="red’)

qm = apply(rb$yhat.test,2,quantile,probs=c(.05,.95))
lines(xtest,qm[1,],col="red’,1ty=2)
lines(xtest,qm[2,],col="red’,1ty=2)
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Let

us get serious: out of sample prediction

Out of sample predictive comparisons on 42 data sets (thanks to Wei-Yin
Loh!!)

p=3—065 n=100-7,000.
for each data set 20 random splits into 5/6 train and 1/6 test

use 5-fold cross-validation on train to pick hyperparameters (except
BART-default!)

gives 20x42 = 840 out-of-sample predictions, for each prediction, divide
rmse of different methods by the smallest
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Competitors

» Linear regression with L1 regularization - Efron et al. (2004)

» Gradient boosting - Friedman (2001)
Implemented as gbm in R by Ridgeway (2004)

» Random forests - Breiman (2001)
Implemented as randomforest in R

» Neural networks with one layer of hidden units
Implemented as nnet in R by Venables and Ripley (2002)

These competitors, like BART, are black box predictors.

Trees, Bayesian CART? and Bayesian treed regression® models were not
considered, since they tend to sacrifice predictive performance for interpretability.

With the exception of BART-default (which requires no tuning), the operational
parameters of every method were chosen via 5-fold cross-validation within each
training set.

2Chipman, George and McCulloch (1998)
3Chipman, George and McCulloch (2002)
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Comparison

+ Each boxplots represents 840 predictions for a method
+ 1.2 means you are 20% worse than the best

+ BART-cv best

+ BART-default (use default prior) does amazingly well!!
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Relative RMSE

TABLE 3
(50%, 75%) quantiles of relative RMSE values
for each method across the 840 test/train splits

Method (50%,75%)
Lasso (1.196, 1.762)
Boosting (1.068, 1.189)
Neural net (1.055, 1.195)
Random forest (1.053, 1.181)
BART-default (1.055,1.164)
BART-cv (1.037, 1.117)

Relative RMSE > 1.5

» Lasso: 29.5%
Random forests: 16.2%
Neural net: 9.0%
Boosting: 13.6%
BART-cv: 9.0%
BART-default: 11.8%

VVVYVY
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Ensemble methods

Various methods which combine a set of tree models, so called ensemble
methods, have attracted much attention, each of which use different techniques
to fit a linear combination of trees.

» Bagging (Breiman, 1996)

» Random forests (Breiman, 2001)

» Boosting (Friedman, 2001)

» Bayesian model averaging (Chipman, George and McCulloch, 1998)

Bagging and random forests use randomization to create a large number of
independent trees, and then reduce prediction variance by averaging predictions
across the trees.

Boosting fits a sequence of single trees, using each tree to fit data variation not
explained by earlier trees in the sequence.

Bayesian model averaging (BMA) applied to the posterior arising from a
Bayesian single-tree model.
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A regression tree model

Let T denote the Q

tree structure including
the decision rules. X5 < C X5 =C

Let M = {:U’la:U/Za s aIU/b}
denote the set of Q W=7
bottom node p's.

Let g(x;0), 0 = (T, M)

be a regression tree function
that assigns a u value to x.

X, <d X, =d

W =-2 Py =5

A single tree model:
yi = g(xi;0) +¢.
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A coordinate view of g(x; )

</ \2‘: X5
ws =7

A
C

</ \ u1=.2 u2=5

--2‘ n, = 5‘ d Xy

Easy to see that g(x;6) is just a step function.
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The BART model

Y =g(x;T{,My) + g(x;Ty,My) + ... + g(x;T,,M)) + 0z, z~N(0,1)

m = 200, 1000, ..., big, . ..
f(x|-) is the sum of all the corresponding p's at each bottom node.

Such a model combines additive and interaction effects.
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Complete the model with a regularization prior

The prior of the BART model can be written as

7T(9) = 7T((T1, Ml), (TQ, /\42)7 ey (Tm, Mm), O').

T wants:

» Each T small.
» Each p small.

> “nice” o (smaller than least squares estimate).
We refer to 7 as a regularization prior because it keeps the overall fit small.

In addition, it keeps the contribution of each g(x; T;, M;) model component
small.
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Consider the prior on p.
Let 0 denote all the parameters.

F(x|0) = p1+ p2+ - pm.

Let pj ~ N(0,0‘i), iid.

f(x|0) ~ N, mo?).
In practice we often, unabashadly, use the data by first centering and then
choosing o, so that

f(X‘ 9) € (}/mina}/max)
with high probability: 1

O'iO(*.
m
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BART MCMC

The model/prior is described by

Y=9(xT{My)+...+gxT M) +0z
plus

First, it is a “simple” Gibbs sampler:

(7-i7Mi) | (TlaMla"'a-,-ifl?Mifla7-I'+1)Mi+17-"7Tm7Mm)U)
g | ( 7-1, /b41, ey ey 7Fn7, /bqnq)

To draw (T;, M;) |- we subract the contributions of the other trees from both
sides to get a simple one-tree model.

We integrate out M to draw T and then draw M| T.
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Birth-death moves

To draw T we use a Metropolis-Hastings with Gibbs step.
We use various moves, but the key is a “birth-death” step.

@)
PN SN
] @) O O
N ? N\
/O\ 0 /O\ L propose a more complex tree
]
O O /O\
] ]
@)
PN ? o
= /O\ = TN propose a simpler tree
- ]
U N
] ] ] —J
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Tree moves®

4http://www.matthewpratola.com/wp-content/uploads/2017/11/stat8810-slides13.pdf
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Connections to other modeling ideas

Y =g(TMy) + .+ g(x: T M) + 0 2
plus
(T4, My, (T M), 0)

Bayesian nonparametrics:
- Lots of parameters to make model flexible.
- A strong prior to shrink towards a simple structure.
- BART shrinks towards additive models with some interaction.

Dynamic random basis:
- g(x; Ty, My), g(x; Toy, Mp), ..., g(x; Tm, M) are dimensionally adaptive.

Gradient boosting:
- Overall fit becomes the cumulative effort of many weak learners.
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Some Distinguishing Feastures of BART

Y =g(x;T,My) + .. +g(x T, M) +oz
plus
ﬂ:((T’IaM1) ----- (Tm'Mm)’G)

v

BART is NOT Bayesian model averaging of single tree model.

v

Unlike boosting and random forests, BART updates a set of m trees over
and over, stochastic search.

v

Choose m large for flexible estimation and prediction.

Choose m smaller for variable selection
- fewer trees forces the x's to compete for entry.

v
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Example: Friedman simulated exercise

Fori=1,...,n=100,
yi = g(xi) +e€i, €~ N(0,1),

where
g(X,') =10 Sin(7TX,'1X,'2) + 20(X,'3 - 05)2 + 10x;4 + 5x;5

Add 5 irrelevant xg, . .., xi10 (p = 10).
xjj ~ uniform(0, 1).

&(x) is the posterior mean.
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Root MSE

Compute out of sample RMSE using 1,000 simulated x € R,

Method average RMSE  se(RMSE)
Random Forests 2.655 0.025
Linear Regression 2.618 0.016
Neural Nets 2.156 0.025
Boosting 2.013 0.024
MARS 2.003 0.060
BART-cv 1.787 0.021
BART-default 1.759 0.019
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Details about competing schemes

Method | Parameter Values considered
Boosting | # boosting iterations n.trees=1,2,..., 2000
Shrinkage (multiplier of each tree added) shrinkage= 0.01, 0.05, 0.10, 0.25
Max depth permitted for each tree interaction.depth= 12,34
Neural # hidden units size= 10, 15, 20, 25, 30
Nets Decay (penalty coef on sum-squared weights) decay= 0.50, 1, 1.5, 2, 2.5
(Max # optimizer iterations, # restarts) fixed at maxit= 1000 and 5
Random | # of trees ntree= 200, 500, 1000
Forests | # variables sampled to grow each node mtry= 3, 5,7, 10
MARS GCV penalty coefficient gev=1,2, ..., 8
BART Sigma prior: (v, q) combinations (3,0.90), (3,0.99), (10,0.75)
-cv t Prior: k value for o, 1,1.5,2,25,3
(# trees m, iterations used, burn-in iterations) fixed at (200, 1000,500)
BART Sigma prior: (v, q) combinations fixed at (3,0.90)
-default |y Prior: & value for g, fixed at 2
(# trees m, iterations used, burn-in iterations) fixed at (200, 1000,500)

Table 1: Operational parameters for the various competing models. Names in last column

indicate parameter names in R.
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Results for one draw

95% posterior intervals vs true f(x) o draws
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Frequentist coverage rates of 90% posterior intervals:
in sample: 87%
out of sample: 93 %.
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Adding many useless predictors

Added many
useless x's to
Friedman’s
example

With only

100 observations
ony and 1000 x's,
BART yielded ~.
"reasonable”

results !
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Big p, small n

n = 100.
Compare BART-default,BART-cv,boosting, random forests.
Out of sample RMSE.

p=10 p =100 p = 1000

L
i H}-+-
+1ﬂ+

o BART-def

Boost  BART-c
1
—_
.
s Bost  BART-cv  BART-del
1
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i
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1
-
- o
1
-
'
_
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Partial Dependence plot

Vary one x and average out the others.
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Variable selection

Frequency with which a variable is used.

percent used
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Example: Drug Discovery

Goal: To predict the “activity” of a compound against a biological target.

That is: y = 1 means drug worked (compound active), 0 means it does not.
Easy to extend BART to binary y using Albert & Chib.

n=29,3744 — 14,687 train, 14,687 test.

p = 266 characterizations of the compound’s molecular structure.

Again, out-of-sample prediction competitive with other methods, compared to
neural-nets, boosting, random forests, support vector machines.

36/45



Pr(Y=1)

20 compounds with highest Pr(Y = 1| x) estimate.
90% posterior intervals for Pr(Y = 1| x).

In-sample Out-of-Sample
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Variable selection

All 266 X’s Top 25 X’s
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motorcycle dataset (revisited)
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Smooth spline

The goal is to find g(-) that minimizes

n

> (i —g(xi))* + A/g”(t)2dt

i=1

for tuning parameter A > 0.

The basis functions for a global cubic polynomial are B;(x) = x~1 for
i=1,2,3,4, so
4
g(x)=>_ BiBi(x)
j=1
Splines are piecewise cubic polynomials: Bi(x) =1, By(x) = x and

(= x)t = (k=) (x—xm1)d = (= xo)?
Xn — Xi Xn — Xp—1

Byii(x) =
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R code

install.packages ("BART")

library (MASS)

library (BART)

xt = mcycle$times[1:132]

yt = mcycle$accel[1:132]

xt = (xt-mean(xt))/sqrt(var(xt))
yt = (yt-mean(yt))/sqrt(var(yt))

d=12
xx = NULL
for (i in 1:d)
xx = as.matrix(cbind(xx,xt"i))
xx = (xx - matrix(apply(xx,2,mean),n,d,byrow=TRUE))%*)diag(sqrt(1/apply(xx,2,var)))

# OLS, smooth spline and BART fits

linear.fit = lm(yt~xx-1)

fit = smooth.spline(xt,yt)

bart.fit = wbart(xt,yt)

bart.q = t(apply(bart.fit$yhat.train,2,quantile,c(0.05,0.5,0.95)))

plot(fit,xlab="Time in miliseconds after impact (standardized)",
ylab="Head accelaration (standardized)",type="1",1lwd=2,col=2,
xlim=range (xt) ,ylim=range(yt))

points(xt,yt)

lines(xt,linear.fit$fit,col=3,1lwd=2)

lines(xt,bart.ql,2],col=4,1wd=2)

lines(xt,bart.q[,1],col=4,1wd=2,1ty=2)

lines(xt,bart.ql,3],col=4,1wd=2,1ty=2)

legend("topleft",legend=c("0OLS polymonial-12 fit","Smooth-spline fit","BART fit"),

col=c(3,2,4),1wd=2,1ty=1) 41/45



1m, smooth.spline and wbart in action

Head accelaration (standardized)

-2

—— OLS polymonial-12 fit ° %

—— Smooth-spline fit

— BARTfit o s .
/7,

Time in miliseconds after impact (standardized)
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BayesTree versus bartMachine

Feature bartMachine BayesTree
Implementation language Java C++
External predict function Yes No

Model persistence across sessions Yes No
Parallelization Yes No

Native missing data mechanism  Yes No

Built-in cross-validation Yes No

Variable importance Statistical tests Exploratory
Tree proposal types 3 types 4 types
Partial dependence plots Yes Yes
Convergence plots Assess trees and 02 Assess o2
Model diagnostics Yes No
Incorporation into larger model No Through dbarts

Table 1: Comparison of features between bartMachine and BayesTree.
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BayesTree versus bartMachine

Minutes

Figure 1: Model creation times as a function of sample size for a number of settings of
bartMachine, BayesTree and randomForest. Simulations were run on a quad-core 3.4GHz
Intel i5 desktop with 24GB of RAM running the Windows 7 64bit operating system.
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