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Abstract of the BART paper

We develop a Bayesian “sum-of-trees” model where each tree is constrained by a
regularization prior to be a weak learner, and fitting and inference are
accomplished via an iterative Bayesian backfitting MCMC algorithm that
generates samples from a posterior.

Effectively, BART is a nonparametric Bayesian regression approach which uses
dimensionally adaptive random basis elements.

Motivated by ensemble methods in general, and boosting algorithms in
particular, BART is defined by a statistical model: a prior and a likelihood.

By keeping track of predictor inclusion frequencies, BART can also be used for
model-free variable selection.
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Nonlinear regression

We want to “fit” the fundamental model:

yi = g(xi ; θ) + εi

BART is a Markov Monte Carlo Method1 that draws from

g(x ; θ) | (x , y)

We can then use the draws as our inference for g(x ; θ).

1Monte Carlo tools were crucial to popularize Bayesian estimation/inference/tools over the
last 30 or so years across a wide range of sciences and industry.
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Turning the Bayesian crank

To get the draws, we will have to:

I Put a prior on g(x ; θ).

I Specify a Markov chain whose stationary distribution is p (g(x ; θ) | (x , y)).
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Example of nonlinear function

Simulate data from the model:

yi = x3
i + εi εi ∼ N(0, σ2) iid

--------------------------------------------------

n = 100

sigma = 0.1

g = function(x) {x^3}

set.seed(14)

x = sort(2*runif(n)-1)

y = g(x) + sigma*rnorm(n)

xtest = seq(-1,1,by=0.2)

--------------------------------------------------

xtest are out of sample x values at which we wish to infer g or make predictions.
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plot(x,y)

points(xtest,rep(0,length(xtest)),col="red",pch=16)
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R package BayesTree

library(BayesTree)

rb = bart(x,y,xtest)

length(xtest)

[1] 11

dim(rb$yhat.test)

[1] 1000 11

The (i , j) element of yhat.test is

the i th draw of g evaluated at the j th value of xtest.

1,000 draws of g , each of which is evaluated at 11 xtest values.
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Fitted model
plot(x,y)
lines(xtest,xtest^3,col=’blue’)
lines(xtest,apply(rb$yhat.test,2,mean),col=’red’)
qm = apply(rb$yhat.test,2,quantile,probs=c(.05,.95))
lines(xtest,qm[1,],col=’red’,lty=2)
lines(xtest,qm[2,],col=’red’,lty=2)
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Let us get serious: out of sample prediction

I Out of sample predictive comparisons on 42 data sets (thanks to Wei-Yin
Loh!!)

I p = 3− 65, n = 100− 7, 000.

I for each data set 20 random splits into 5/6 train and 1/6 test

I use 5-fold cross-validation on train to pick hyperparameters (except
BART-default!)

I gives 20×42 = 840 out-of-sample predictions, for each prediction, divide
rmse of different methods by the smallest
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Competitors

I Linear regression with L1 regularization - Efron et al. (2004)

I Gradient boosting - Friedman (2001)
Implemented as gbm in R by Ridgeway (2004)

I Random forests - Breiman (2001)
Implemented as randomforest in R

I Neural networks with one layer of hidden units
Implemented as nnet in R by Venables and Ripley (2002)

These competitors, like BART, are black box predictors.

Trees, Bayesian CART2 and Bayesian treed regression3 models were not
considered, since they tend to sacrifice predictive performance for interpretability.

With the exception of BART-default (which requires no tuning), the operational
parameters of every method were chosen via 5-fold cross-validation within each
training set.

2Chipman, George and McCulloch (1998)
3Chipman, George and McCulloch (2002)
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Comparison
+ Each boxplots represents 840 predictions for a method

+ 1.2 means you are 20% worse than the best

+ BART-cv best

+ BART-default (use default prior) does amazingly well!!
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Relative RMSE

Relative RMSE > 1.5
I Lasso: 29.5%
I Random forests: 16.2%
I Neural net: 9.0%
I Boosting: 13.6%
I BART-cv: 9.0%
I BART-default: 11.8%
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Ensemble methods

Various methods which combine a set of tree models, so called ensemble
methods, have attracted much attention, each of which use different techniques
to fit a linear combination of trees.

I Bagging (Breiman, 1996)

I Random forests (Breiman, 2001)

I Boosting (Friedman, 2001)

I Bayesian model averaging (Chipman, George and McCulloch, 1998)

Bagging and random forests use randomization to create a large number of
independent trees, and then reduce prediction variance by averaging predictions
across the trees.

Boosting fits a sequence of single trees, using each tree to fit data variation not
explained by earlier trees in the sequence.

Bayesian model averaging (BMA) applied to the posterior arising from a
Bayesian single-tree model.
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A regression tree model

Let T denote the
tree structure including
the decision rules.

Let M = {µ1, µ2, . . . , µb}
denote the set of
bottom node µ’s.

Let g(x ; θ), θ = (T ,M)
be a regression tree function
that assigns a µ value to x .

A Single Regression Tree Model 

x2 < d x2 % d 

x5 < c x5 % c 

µ3 = 7 

µ1 = -2 µ2 = 5 

Let g(x;"), "  = (T, M) be a 
regression tree function that 
assigns a µ value to x 

Let T denote the tree structure 
including the decision rules 

Let M = {µ1, µ2, … µb} denote 
the set of bottom node µ's. 

A Single Tree Model:      Y = g(x;!) + ! 7 

A single tree model:
yi = g(xi ; θ) + εi .
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A coordinate view of g(x ; θ)

The Coordinate View of g(x;")  

x2 < d x2 % d 

x5 < c x5 % c 

µ3 = 7 

µ1 = -2 µ2 = 5 

Easy to see that g(x;") is just a step function 

µ1 = -2 µ2 = 5 

⇔ 
µ3 = 7 

c 

d x2 

x5 

8 

Easy to see that g(x ; θ) is just a step function.
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The BART modelLet  " = ((T1,M1), (T2,M2), …, (Tm,Mm)) identify a set of m trees and their µ’s. 

Y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + ! z,   z ~ N(0,1) 

The BART Ensemble Model 

E(Y | x, ") is the sum of all the corresponding µ’s at each tree bottom node. 

Such a model combines additive and interaction effects. 

µ1 

µ2 µ3 

µ4 

9 
Remark:  We here assume ! ~ N(0, !2) for simplicity, but will later see a successful 
extension to a general DP process model. 

m = 200, 1000, . . . , big, . . .

f (x | ·) is the sum of all the corresponding µ’s at each bottom node.

Such a model combines additive and interaction effects.
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Complete the model with a regularization prior

The prior of the BART model can be written as

π(θ) = π((T1,M1), (T2,M2), . . . , (Tm,Mm), σ).

π wants:

I Each T small.

I Each µ small.

I “nice” σ (smaller than least squares estimate).

We refer to π as a regularization prior because it keeps the overall fit small.

In addition, it keeps the contribution of each g(x ;Ti ,Mi ) model component
small.
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Consider the prior on µ.
Let θ denote all the parameters.

f (x | θ) = µ1 + µ2 + · · ·µm.

Let µi ∼ N(0, σ2
µ), iid.

f (x | θ) ∼ N(0,m σ2
µ).

In practice we often, unabashadly, use the data by first centering and then
choosing σµ so that

f (x | θ) ∈ (ymin, ymax)

with high probability:
σ2
µ ∝

1

m
.
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BART MCMC

The model/prior is described by

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

First, it is a “simple” Gibbs sampler:

(Ti ,Mi ) | (T1,M1, . . . ,Ti−1,Mi−1,Ti+1,Mi+1, . . . ,Tm,Mm, σ)

σ | (T1,M1, . . . , . . . ,Tm,Mm)

To draw (Ti ,Mi ) | · we subract the contributions of the other trees from both
sides to get a simple one-tree model.

We integrate out M to draw T and then draw M | T .
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Birth-death moves
To draw T we use a Metropolis-Hastings with Gibbs step.
We use various moves, but the key is a “birth-death” step.Because p(T | data) is available in closed form (up to a norming constant),  

we use a Metropolis-Hastings  algorithm. 

Our proposal moves around tree space by proposing local modifications  
such as 

=> 
? 

=> 
? 

propose a more complex tree 

propose a simpler tree 

Such modifications are accepted  according to their compatibility 
with p(T | data). 20 

Simulating p(T | data) with the Bayesian CART Algorithm   
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Tree moves4

4http://www.matthewpratola.com/wp-content/uploads/2017/11/stat8810-slides13.pdf
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Connections to other modeling ideas

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

Bayesian nonparametrics:
- Lots of parameters to make model flexible.
- A strong prior to shrink towards a simple structure.
- BART shrinks towards additive models with some interaction.

Dynamic random basis:
- g(x ;T1,M1), g(x ;T2,M2), . . . , g(x ;Tm,Mm) are dimensionally adaptive.

Gradient boosting:
- Overall fit becomes the cumulative effort of many weak learners.
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Some Distinguishing Feastures of BART

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

I BART is NOT Bayesian model averaging of single tree model.

I Unlike boosting and random forests, BART updates a set of m trees over
and over, stochastic search.

I Choose m large for flexible estimation and prediction.

I Choose m smaller for variable selection
- fewer trees forces the x ’s to compete for entry.
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Example: Friedman simulated exercise

For i = 1, . . . , n = 100,

yi = g(xi ) + εi , εi ∼ N(0, 1),

where
g(xi ) = 10 sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5

Add 5 irrelevant xi6, . . . , xi,10 (p = 10).

xij ∼ uniform(0, 1).

ĝ(x) is the posterior mean.
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Root MSE
Compute out of sample RMSE using 1,000 simulated x ∈ R10.

RMSE =

√√√√ 1

1000

1000∑
i=1

(g(xi )− ĝ(xi ))2

Performance measured on 1000 out-of-sample x’s by 

Comparison of BART with Other Methods 

28 
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Details about competing schemes
Cross Validation Domain for Comparisons  

29 
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Results for one drawApplying BART to the Friedman Example 

Red 
m = 1 
model 

Blue 
m = 100 
model 

We applied BART with m = 100 trees to n = 100 observations of the 
Friedman example. 

95% posterior intervals vs true f(x) & draws 

in-sample f(x)              out-of-sample f(x)             MCMC iteration 

30 Frequentist coverage rates of 90% posterior intervals:
in sample: 87%
out of sample: 93 %.
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Adding many useless predictors

With only 
100 observations 
on y  and 1000 x's, 
BART yielded  
"reasonable" 
results !!!! 

Added many 
useless x's to 
Friedman’s 
example 

In-sample 
post int vs f(x) 

20 x's 

100 x's 

1000 x's 

Detecting Low Dimensional Structure in High Dimensional Data 
Out-of-sample 
post int vs f(x) & draws 

31 
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Big p, small n

n = 100.

Compare BART-default,BART-cv,boosting, random forests.

Out of sample RMSE.

High Dimensional Out-of-Sample 
RMSE Performance Comparisons  

p = 10                              p = 100                           p = 1000 

n = 100 throughout! 

32 
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Partial Dependence plot

Vary one x and average out the others.

Partial Dependence Plots for the Friedman Example 
The Marginal Effects of x1 – x10 

41 
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Variable selection

Frequency with which a variable is used.Variable Selection via BART 

Variable usage frequencies as the number of trees m is reduced 

38 
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Example: Drug Discovery

Goal: To predict the “activity” of a compound against a biological target.

That is: y = 1 means drug worked (compound active), 0 means it does not.

Easy to extend BART to binary y using Albert & Chib.

n = 29, 3744→ 14, 687 train, 14, 687 test.
p = 266 characterizations of the compound’s molecular structure.

Again, out-of-sample prediction competitive with other methods, compared to
neural-nets, boosting, random forests, support vector machines.
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20 compounds with highest Pr(Y = 1 | x) estimate.
90% posterior intervals for Pr(Y = 1 | x).BART Posterior Intervals for  
20 Compounds with Highest Predicted Activity 

   In-sample                                  Out-of-Sample 

51 
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Variable selection
Variable Importance in Drug Discovery 

with m = 5, 10, 20 trees 

All 266 x’s                                         Top 25 x’s 

52 
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motorcycle dataset (revisited)
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Smooth spline

The goal is to find g(·) that minimizes

n∑
i=1

(yi − g(xi ))2 + λ

∫
g ′′(t)2dt

for tuning parameter λ > 0.

The basis functions for a global cubic polynomial are Bi (x) = x i−1 for
i = 1, 2, 3, 4, so

g(x) =
4∑

j=1

βjBj(x)

Splines are piecewise cubic polynomials: B1(x) = 1, B2(x) = x and

B2+i (x) =
(x − xi )

3
+ − (x − xn)3

+

xn − xi
−

(x − xn−1)3
+ − (x − xn)3

+

xn − xn−1
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R code
install.packages("BART")
library(MASS)
library(BART)
xt = mcycle$times[1:132]
yt = mcycle$accel[1:132]
xt = (xt-mean(xt))/sqrt(var(xt))
yt = (yt-mean(yt))/sqrt(var(yt))

d=12
xx = NULL
for (i in 1:d)

xx = as.matrix(cbind(xx,xt^i))
xx = (xx - matrix(apply(xx,2,mean),n,d,byrow=TRUE))%*%diag(sqrt(1/apply(xx,2,var)))

# OLS, smooth spline and BART fits
linear.fit = lm(yt~xx-1)
fit = smooth.spline(xt,yt)
bart.fit = wbart(xt,yt)
bart.q = t(apply(bart.fit$yhat.train,2,quantile,c(0.05,0.5,0.95)))

plot(fit,xlab="Time in miliseconds after impact (standardized)",
ylab="Head accelaration (standardized)",type="l",lwd=2,col=2,
xlim=range(xt),ylim=range(yt))

points(xt,yt)
lines(xt,linear.fit$fit,col=3,lwd=2)
lines(xt,bart.q[,2],col=4,lwd=2)
lines(xt,bart.q[,1],col=4,lwd=2,lty=2)
lines(xt,bart.q[,3],col=4,lwd=2,lty=2)
legend("topleft",legend=c("OLS polymonial-12 fit","Smooth-spline fit","BART fit"),

col=c(3,2,4),lwd=2,lty=1)
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lm, smooth.spline and wbart in action
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BayesTree versus bartMachine
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BayesTree versus bartMachine
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