Polynomial regression

mcyle dataset from MASS

Fitted models
In-sample adjusted R^{2} and BIC

Cross-validation: training and testing

Cross-validation: leave-one-out

Cross-validation: 10-fold

Bootstrap

mcyle dataset from MASS

A data frame giving a series of measurements of head acceleration in a simulated motorcycle accident, used to test crash helmets.
x : time in miliseconds after impact
y : head accelaration (in g)
Silverman (1985) Some aspects of the spline smoothing approach to non-parametric curve fitting. JRSS-B, 47, 1-52.

```
library(MASS)
```

$\mathrm{n}=$ nrow (mcycle)
$\mathrm{x}=\mathrm{mcycle}$ times
$y=$ mcycle\$accel
$\mathrm{x}=\mathrm{x} / \max (\mathrm{x})$
$y=y / \max (y)$
$\mathrm{x}=-1+2 * \mathrm{x}$
$\mathrm{xt}=\mathrm{x}$
$y t=y$
$\mathrm{xt}=\mathrm{x}[1: 132]$
$y t=y[1: 132]$
$\mathrm{n}=$ length (xt)
$x t=(x t-\operatorname{mean}(x t)) / \operatorname{sqrt}(\operatorname{var}(x t))$
$y t=(y t-\operatorname{mean}(y t)) / \operatorname{sqrt}(\operatorname{var}(y t))$

The data

Polynomial regressions

In-sample adjusted R^{2} and BIC

Cross-validation: training and testing

Cross validation (80\%-20\%)

Cross-validation: training and testing - 100 replications

Cross validation (80\%-20\%)
$\mathrm{S}=100$ replications

Cross-validation: leave-one-out

Leave-one-out cross validation

Cross-validation: 10-fold

10-fold cross validation

Cross-validation: 10-fold - 100 replications

10-fold cross validation
$\mathrm{S}=100$ replications

"Best" fitted model (and bootstrap replications)

Polynomial regression of order 12

