Classification:

Logistic regression \& discriminant analysis

Hedibert F. Lopes \& Paulo Marques
Insper Institute of Education and Research
São Paulo, Brazil

Outline

Logistic regression
Binary response
Generalized linear model
Maximum likelihood
default dataset
Bayesian logistic regression
spam dataset
Discriminant analysis
Discriminante rule
Bayes discriminante rule
Discriminant function
Admissibility
Decision theory and unequal costs
iris dataset
admission dataset

Outline

Logistic regression

Binary response
Generalized linear model
Maximum likelihood
default dataset
Bayesian logistic regression
spam dataset

Discriminant analysis
Discriminante rule
Bayes discriminante rule
Discriminant function
Admissibility
Decision theory and unequal costs
iris dataset
admission dataset

Binary response

We are still interested in learning about y via a set of predictors $x_{1}, x_{2}, \ldots, x_{p}$
Problem: y is a qualitative binary variable ($1 / 0$, yes/no, sucess/failure, etc).
The Default dataset (ISLR package) contains $n=10,000$ observations.

- (y) default: yes/no indicating whether the customer defaulted on their debt
- $\left(x_{1}\right)$ student: yes/no indicating whether the customer is a student
- $\left(x_{2}\right)$ balance: Average balance after making their monthly payment
- $\left(x_{3}\right)$ income: Income of customer

```
library(ISLR)
data(Default)
dim(Default)
Default[1:10,]
    default student balance income
1 No No 729.5265 44361.625
2 No Yes 817.1804 12106.135
3 No No 1073.5492 31767.139
4 No No 529.2506 35704.494
5 No No 785.6559 38463.496
6 No Yes 919.5885 7491.559
7 No No 825.5133 24905.227
8 No Yes 808.6675 17600.451
9 No No 1161.0579 37468.529
10 No No 0.0000 29275.268
```


Logistic regression

A sample of size n of responses y_{i} and characteristics $x_{i}=\left(1, x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)^{\prime}$, for $i=1, \ldots, n$, is collected in order to construct a classifier.

A logistic regression assumes that

$$
P\left(y_{i}=1 \mid x_{i}\right)=\frac{\exp \left\{\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}\right\}}{1+\exp \left\{\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}\right\}}=\frac{\exp \left\{x_{i}^{\prime} \beta\right\}}{1+\exp \left\{x_{i} \beta\right\}},
$$

where $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\prime}$.
It follows immediately that,

$$
\log \left(\frac{P\left(y_{i}=1 \mid x_{i}\right)}{P\left(y_{i}=0 \mid x_{i}\right)}\right)=x_{i}^{\prime} \beta
$$

since $P\left(y_{i}=0 \mid x_{i}\right)=1-P\left(y_{i}=1 \mid x_{i}\right)$.

Generalized linear model

The logistic regression belongs to the broad class of generalized linear models (GLM) where responses y_{i} are Gaussian, binomial, gamma, Poisson, etc.

In this case the responses (binary variables) are

$$
y_{i} \sim \operatorname{Bernoulli}\left(\pi_{i}\right)
$$

where the "sucess" probabilities are individual-specific and related to predictors as

$$
\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=x_{i}^{\prime} \beta
$$

Since, y_{i} is Bernoulli, it follows that

$$
\begin{aligned}
& E\left(y_{i} \mid x_{i}\right)=\pi_{i}=g\left(x_{i}^{\prime} \beta\right) \\
& V\left(y_{i} \mid x_{i}\right)=\pi_{i}\left(1-\pi_{i}\right)=g\left(x_{i}^{\prime} \beta\right)\left(1-g\left(x_{i}^{\prime} \beta\right)\right),
\end{aligned}
$$

where

$$
g(\mu)=\frac{e^{\mu}}{1+e^{\mu}} \quad \text { and } \quad g^{-1}(\pi)=\log \left(\frac{\pi}{1-\pi}\right) .
$$

Maximum likelihood estimation

It is easy to see that

$$
p\left(y_{1}, \ldots, y_{n} \mid \pi_{1}, \ldots, \pi_{n}\right)=\prod_{i=1}^{n} \pi_{i}^{y_{i}}\left(1-\pi_{i}\right)^{1-y_{i}}
$$

or

$$
p\left(y_{1: n} \mid x_{1: n}, \beta\right)=\prod_{i=1}^{n}\left[g\left(x_{i}^{\prime} \beta\right)\right]^{y_{i}}\left(1-g\left(x_{i}^{\prime} \beta\right)\right)^{1-y_{i}} .
$$

In general, the MLE of β is

$$
\hat{\beta}_{M L E}=\arg \max _{\beta} \prod_{i=1}^{n}\left[g\left(x_{i}^{\prime} \beta\right)\right]^{y_{i}}\left(1-g\left(x_{i}^{\prime} \beta\right)\right)^{1-y_{i}}
$$

or

$$
\begin{aligned}
\hat{\beta}_{M L E} & =\arg \max _{\beta} \sum_{i=1}^{n} y_{i} \log \left\{g\left(x_{i}^{\prime} \beta\right)\right\}+\sum_{i=1}^{n}\left(1-y_{i}\right) \log \left\{1-g\left(x_{i}^{\prime} \beta\right)\right\} \\
& =\arg \max _{\beta} \sum_{i: y_{i}=1}^{n} \log \left\{g\left(x_{i}^{\prime} \beta\right)\right\}+\sum_{i: y_{i}=0}^{n} \log \left\{1-g\left(x_{i}^{\prime} \beta\right)\right\}
\end{aligned}
$$

When $g(\mu)=\frac{e^{\mu}}{1+e^{\mu}}$

Score equations: In this case, to maximize the log-likelihood, we set its derivatives to zero

$$
\frac{\partial I(\beta)}{\partial \beta}=\sum_{i=1}^{n} x_{i}\left(y_{i}-g\left(x_{i}^{\prime} \beta\right)\right)=0
$$

which are $p+1$ equations nonlinear in β.

Newton-Raphson: The NR algorithm uses the matrix of 2nd derivatives (Hessian matrix) to find $\hat{\beta}_{M L E}$

$$
\frac{\partial^{2} I(\beta)}{\partial \beta \partial \beta^{\prime}}=-\sum_{i=1}^{n} x_{i} x_{i}^{\prime} g\left(x_{i}^{\prime} \beta\right)\left(1-g\left(x_{i}^{\prime} \beta\right)\right)
$$

Starting with $\beta^{\text {old }}$, a single Newton-Raphson update is

$$
\beta^{\text {new }}=\beta^{\mathrm{old}}-\left(\frac{\partial^{2} I(\beta)}{\partial \beta \partial \beta^{\prime}}\right)^{-1} \frac{\partial I(\beta)}{\partial \beta},
$$

where the derivatives are evaluated at $\beta^{\text {old }}$.

Iteratively reweighted least squares (IRLS)

Let

$$
X^{\prime}(y-g)=\frac{\partial I(\beta)}{\partial \beta} \quad \text { and } \quad-X^{\prime} W X=\frac{\partial^{2} I(\beta)}{\partial \beta \partial \beta^{\prime}} .
$$

The Newton-Raphson step is thus

$$
\begin{aligned}
\beta^{\text {new }} & =\beta^{\text {old }}+\left(X^{\prime} W X\right)^{-1} X^{\prime}(y-p) \\
& =\left(X^{\prime} W X\right)^{-1} X^{\prime} W\left(X \beta^{\text {old }}+W^{-1}(y-g)\right) \\
& =\left(X^{\prime} W X\right)^{-1} X^{\prime} W z
\end{aligned}
$$

which looks like weighted least squares with adjusted response

$$
z=X \beta^{\text {old }}+W^{-1}(y-g) .
$$

At each iteration we solve the weighted least squares problem:

$$
\beta^{\text {new }}=\arg \min _{\beta}(z-X \beta)^{\prime}(z-X \beta)
$$

Model diagnostics

Pearson's residuals

$$
r_{i}=\frac{y_{i}-\hat{\pi}_{i}}{\sqrt{\hat{\pi}_{i}\left(1-\hat{\pi}_{i}\right)}}
$$

Deviance residuals

$$
d_{i}=\operatorname{sign}\left(y_{i}-\hat{\pi}_{i}\right) \sqrt{2\left[y_{i} \log \left(\frac{y_{i}}{\hat{\pi}_{i}}\right)+\left(1-y_{i}\right) \log \left(\frac{1-y_{i}}{1-\hat{\pi}_{i}}\right)\right]}
$$

Under the null hypothesis that the model is correct, if follows that

$$
\chi^{2}=\sum_{i-1}^{n} r_{i} \sim \chi_{n-p}^{2} \quad \text { and } \quad D=\sum_{i=1}^{n} d_{i} \sim \chi_{n-p}^{2}
$$

Classifying a new individual

A new individual $i=n+1$ is classified as an "yes" individual or a "no" individual based on his characteristics $x_{n+1}=\left(x_{n+1,1}, \ldots, x_{n+1, p}\right)^{\prime}$ by comparing

$$
P\left(y_{n+1}=1 \mid x_{n+1}, y_{1: n}, x_{1: n}\right) \quad \text { and } \quad P\left(y_{n+1}=0 \mid x_{n+1}, y_{1: n}, x_{1: n}\right) \text {, }
$$

which are "estimated" by

$$
\widehat{P}\left(y_{n+1}=1 \mid x_{n+1}, y_{1: n}, x_{1: n}\right)=\frac{\exp \left\{x_{n+1}^{\prime} \hat{\beta}_{M L E}\right\}}{1+\exp \left\{x_{n+1}^{\prime} \hat{\beta}_{M L E}\right\}} .
$$

and by

$$
1-\widehat{P}\left(y_{n+1}=1 \mid x_{n+1}, y_{1: n}, x_{1: n}\right),
$$

respectively.

Default dataset

(y) default: yes/no indicating whether the customer defaulted on their debt (x) balance: Average balance after making their monthly payment

There are $9667 y_{i}=0$ and $333 y_{i}=1$

Linear and generalized linear models

```
Linear model (LM) via ordinary least squares (OLS)
\begin{tabular}{lrllrll} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & \(-7.519 \mathrm{e}-02\) & \(3.354 \mathrm{e}-03\) & -22.42 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
balance & \(1.299 \mathrm{e}-04\) & \(3.475 \mathrm{e}-06\) & 37.37 & \(<2 \mathrm{e}-16{ }^{* * *}\)
\end{tabular}
Residual standard error: 0.1681 on 9998 degrees of freedom
Multiple R-squared: 0.1226,Adjusted R-squared: 0.1225
F-statistic: }1397\mathrm{ on 1 and 9998 DF, p-value: < 2.2e-16
Generalized linear model (GLM) via iterative weighted least squares (IWLS)
\begin{tabular}{lrrrr} 
& Estimate & Std. Error z value & \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & \(-1.065 \mathrm{e}+01\) & \(3.612 \mathrm{e}-01\) & -29.49 & \(<2 \mathrm{e}-16 \quad * * *\) \\
balance & \(5.499 \mathrm{e}-03\) & \(2.204 \mathrm{e}-04\) & 24.95 & \(<2 \mathrm{e}-16 \quad * * *\)
\end{tabular}
Null deviance: 2920.6 on 9999 degrees of freedom
Residual deviance: 1596.5 on 9998 degrees of freedom
AIC: 1600.5
```


R code

```
install.packages("ISLR")
library(ISLR)
data(Default)
n = nrow(Default)
attach(Default)
default.binary = rep(0,n)
default.binary[default=="Yes"]=1
lm.fit = lm(default.binary~balance)
summary(lm.fit)
glm.fit = glm(default.binary~balance,family=binomial)
summary(glm.fit)
```


Classifying a new customer

For a new customer ($n+1$) with a balance of 1000 US dollars, it follows that

$$
\widehat{P}\left(y_{n+1}=1 \mid x=1000\right)=\frac{\exp \{-10.6513+0.0055(1000)\}}{1+\exp \{-10.6513+0.0055(1000)\}}=0.58 \%
$$

while for a new customer with a balance of 2000 US dollars, it follows that

$$
\widehat{P}\left(y_{n+1}=1 \mid x=1000\right)=\frac{\exp \{-10.6513+0.0055(2000)\}}{1+\exp \{-10.6513+0.0055(2000)\}}=58.6 \% .
$$

Fitted OLS and GLS fits

balance as classifier

If one wants to use a cut-off probability of 50% to classify a new customer as a YES for default, then this translates into checking whether balance is below or above 1936 US dollars.

Categorical predictor

Here we want to use the binary variable student as a predictor for the binary variable default

	student		Total
default	No	Yes	Total
No	6850	2817	9667
Yes	206	127	333
Total	7056	2944	10000

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$		
(Intercept)	-3.50413	0.07071	-49.55	$<2 \mathrm{e}-16 * * *$
student.binary	0.40489	0.11502	3.52	$0.000431 * * *$

Null deviance: 2920.6 on 9999 degrees of freedom Residual deviance: 2908.7 on 9998 degrees of freedom AIC: 2912.7

$$
\begin{aligned}
\widehat{P}\left(y_{n+1}=1 \mid \text { student }=\text { Yes }\right) & =0.43 \% \\
\widehat{P}\left(y_{n+1}=1 \mid \text { student=No }\right) & =0.29 \%
\end{aligned}
$$

Two predictors: balance and student

GLS fit and prediction

	Estimate	Std. Error z value $\operatorname{Pr}(>\|z\|)$			
(Intercept)	$-1.075 \mathrm{e}+01$	$3.692 \mathrm{e}-01$	-29.116	$<2 \mathrm{e}-16$	$* * *$
balance	$5.738 \mathrm{e}-03$	$2.318 \mathrm{e}-04$	24.750	$<2 \mathrm{e}-16$	$* * *$
student.binary	$-7.149 \mathrm{e}-01$	$1.475 \mathrm{e}-01$	-4.846	$1.26 \mathrm{e}-06$	$* * *$

Null deviance: 2920.6 on 9999 degrees of freedom Residual deviance: 1571.7 on 9997 degrees of freedom AIC: 1577.7

Therefore,

$$
\widehat{P}\left(y_{n+1}=1 \mid \text { balance }=1500, \text { student }=Y e s\right)=5.4 \%
$$

and

$$
\widehat{P}\left(y_{n+1}=1 \mid \text { balance }=1500, \text { student }=\mathrm{No}\right)=10.5 \%
$$

GLS fit

balance as classifier

If one wants to use a cut-off probability of 50% to classify a new customer as a YES for default, then this translates into checking whether balance is below or above 1873 (1998) US dollars for students (non-students).

Bayesian logistic regression

Like everything Bayesian, the probability of default of a new customer, y_{n+1}, conditionally on his/her characteristics x_{n+1}, is obtained by integrating out the unknown parameters β based on its most current information assessment, that is based on its posterior distribution $p\left(\beta \mid y_{1: n}, x_{1: n}\right)$:

$$
P\left(y_{n+1}=1 \mid x_{n+1}, y_{1: n}, x_{1: n}\right)=\int P\left(y_{n+1}=1 \mid x_{n+1}, \beta\right) p\left(\beta \mid y_{1: n}, x_{1: n}\right) d \beta
$$

Notice that the MLE basically puts 100% of its mass at $\hat{\beta}_{\text {MLE }}$ and the above probability would approximated by

$$
\widehat{P}\left(y_{n+1}=1 \mid x_{n+1}, y_{1: n}, x_{1: n}\right)=P\left(y_{n+1}=1 \mid x_{n+1}, \widehat{\beta}\right)
$$

Bayesian logistic regression

```
install.packages("BayesLogit")
library(BayesLogit)
X = cbind(1,balance,student.binary)
bayesfit = logit(default.binary,X)
P(yn+1}=1|\mathrm{ balance }=1500,\mathrm{ student }
```


Bayes fit

Regularized logistic regression

Recall that the classic Gaussian elasticnet estimates β as that

$$
\hat{\beta}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}+\lambda\left[(1-\alpha)\|\beta\|_{2}^{2}+\alpha\|\beta\|_{1}\right],
$$

with $\alpha=1$ being the lasso penalty, and $\alpha=0$ the ridge penalty.

It can be shown that the logistic elasticnet estimates β as

$$
\hat{\beta}=\arg \min _{\beta}-\sum_{i=1}^{n}\left(y_{i} x_{i}^{\prime} \beta-\log \left(1+\exp \left\{x_{i}^{\prime} \beta\right\}\right)\right)+\lambda\left[(1-\alpha)\|\beta\|_{2}^{2}+\alpha\|\beta\|_{1}\right]
$$

R package glmnet

Logistic LASSO:
glmnet($\mathrm{x}=\mathrm{X}, \mathrm{y}=\mathrm{Y}, \mathrm{family="binomial"}, \mathrm{alpha=1)}$
cv.glmnet (x=X, $\mathrm{y}=\mathrm{Y}, \mathrm{family="binomial"}, \mathrm{alpha=1)}$

Classifications/probabilities:
predict(out,X_0,s="lambda.min",type="class")
predict(out,X_0,s="lambda.min",type="response")

spam dataset ${ }^{1}$

A researcher labeled 4601 of his emails as either spam or ham, say

$$
y_{i}= \begin{cases}1 & \text { if email } i \text { is spam } \\ 0 & \text { if email } i \text { is ham }\end{cases}
$$

40% of the messages were spam.

57 predictors: most frequently used words/tokens.

The goal of the study is to predict whether future emails are spam or ham using these keywoords; that is to build a customized spam filter.

[^0]
Predictors

Predictors: $x_{i j}$ is the relative frequency of a keyword j in email i

1 make	16 free	31 telnet	46 edu
2 address	17 business	32857	47 table
3 all	18 email	33 data	48 conference
4 3d	19 you	34415	49 char;
5 our	20 credit	3585	50 char (
6 over	21 your	36 technology	51 char
7 remove	22 font	371999	52 char!
8 internet	23000	38 parts	53 char\$
9 order	24 money	39 pm	54 char\#
10 mail	25 hp	40 direct	55 cap.ave
11 receive	26 hpl	41 cs	56 cap.long
12 will	27 george	42 meeting	57 cap.tot
13 people	28650	43 original	
14 report	29 lab	44 project	
15 addresses	30 labs	45 re	

Observed predictors for the first 4 emails

make address all 3d our over remove internet order mail receive will people report addresses free business email

meeting original project re edu table conference char; char (char[char! char\$ char\# cap.ave cap.long cap.tot

$[1]$,	0	0.00	0	0.00	0.00	0	0	0.00	0.000	0	0.778	0.000	0.000	3.756	61	278
$[2]$,	0	0.00	0	0.00	0.00	0	0	0.00	0.132	0	0.372	0.180	0.048	5.114	101	1028
$[3]$,	0	0.12	0	0.06	0.06	0	0	0.01	0.143	0	0.276	0.184	0.010	9.821	485	2259
$[4]$,	0	0.00	0	0.00	0.00	0	0	0.00	0.137	0	0.137	0.000	0.000	3.537	40	191

Exploratory data analysis

Predictor's sample means

Exploratory data analysis

Predictor's coefficient of variations

Regularized logistic regression

Ridge, elasticnet and lasso

Regularized logistic regression

Choosing penalty parameter: Ridge, elasticnet and lasso Training size is 2300 (testing is 2301)

Estimation

Comparing estimated predictor's coefficients

Estimation

Shrinkage effect

Misclassification rates

Probability of SPAM - testing sample

Elasticnet

LASSO

Bayes

Misclassification rates

Probability of SPAM - testing sample

Classification tables

	$y=0$, yhat=0	$y=0$, yhat=1	$y=1$, yhat=0	$y=1$, yhat=1	error
glm	1325	80	93	803	7.52
ridge	1345	60	128	768	8.17
enet	1349	56	94	802	6.52
lasso	1347	58	95	801	6.65
bayes	1326	79	91	805	7.39

False negatives: Classifying a spam $(y=1)$ as a ham False positives: Classifying a ham $(y=0)$ as a spam False discoveries: False positives over positives.

	false.negative	false.positive false.discovery	
glm	10.38	5.69	8.20
ridge	14.29	4.27	6.28
enet	10.49	3.99	5.88
lasso	10.60	4.13	6.08
bayes	10.16	5.62	8.10

Outline

Logistic regression
Binary response
Generalized linear model
Maximum likelihood
default dataset
Bayesian logistic regression
spam dataset

Discriminant analysis
Discriminante rule
Bayes discriminante rule
Discriminant function
Admissibility
Decision theory and unequal costs
iris dataset
admission dataset

Discriminant analysis

Logistic regression (LR) models $P(y=k \mid x)$ directly.

Discriminant analysis (DA) models the predictors x within each class k of y and then uses Bayes' rule to estimate $P(y=k \mid x)$.

When the x s within each class of y are Gaussian, LR and DA are quite similar.

Why bother?

- LR are unstable when classes are well-separated
- LR are unstable when n is small
- LR is not too popular when $k>2$

Discriminant rule ${ }^{2}$

A discriminant rule d corresponds to a division of \mathbb{R}^{p} into disjoint regions $R_{1}, \ldots, R_{\kappa}$ such that $\cap_{k=1}^{\kappa}=\mathbb{R}^{p}$.

The rule d is defined by
allocate x to group k if $x \in R_{k}$,
for $k=1, \ldots, \kappa$.
${ }^{2}$ Based on Mardia, Kent and Bibby's Multivariate Analysis, Chapter 11.

Bayes discriminant rule

π_{k} : probability that an observation comes from class k, for $j=1, \ldots, \kappa$.
$p(x \mid y=k)$: probability density function of x from class k, for $k=1, \ldots, \kappa$.
$P(y=k \mid x)$: Bayes' theorem states that

$$
P(y=k \mid x)=\frac{\pi_{k} p(x \mid y=k)}{\sum_{j=1}^{\kappa} \pi_{j} p(x \mid y=j)}
$$

Bayes discriminant rule: Allocate observation x to the population k^{*} such that

$$
k^{*}=\arg \max _{k \in 1, \ldots, k} P(y=k \mid x)
$$

is maximized. Alternatively, via allocation functions

$$
\phi_{k}(x)= \begin{cases}1 & \text { if } \pi_{k} p(x \mid y=k)=\max _{j} \pi_{j} p(x \mid y=j) \\ 0 & \text { otherwise }\end{cases}
$$

Maximum likelihood discriminant rule: $\pi_{1}=\cdots=\pi_{\kappa}=1 / \kappa$.

Example: 0-1 predictor

Let x be a Bernoulli random variable, with

$$
\begin{aligned}
& x \mid y=1 \sim \operatorname{Bernoulli}(1 / 2) \\
& x \mid y=2 \sim \operatorname{Bernoulli}(3 / 4)
\end{aligned}
$$

The ML discriminant rule allocates x to class 1 when $x=0$ and allocates x to class 2 when $x=1$, since

$$
\begin{aligned}
& p(x=0 \mid y=1)=1 / 2>1 / 4=p(x=0 \mid y=2) \\
& p(x=1 \mid y=1)=1 / 2<3 / 4=p(x=1 \mid y=2)
\end{aligned}
$$

Example: Multinomial

Suppose x is a multinomial random variable, with

$$
\begin{aligned}
& x \mid y=1 \sim \text { Multinomial }\left(\alpha_{1}, \ldots, \alpha_{\kappa}\right) \\
& x \mid y=2 \sim \text { Multinomial }\left(\beta_{1}, \ldots, \beta_{\kappa}\right)
\end{aligned}
$$

where

$$
\sum_{k=1}^{\kappa} \alpha_{k}=\sum_{k=1}^{\kappa}=1 \quad \text { and } \quad \sum_{k=1}^{\kappa} x_{k}=n
$$

The likelihood functions are

$$
\begin{aligned}
& p(x \mid y=1)=\frac{n!}{x_{1}!\cdots x_{\kappa}!} \alpha_{1}^{x_{1}} \cdots \alpha_{\kappa}^{x_{\kappa}} \\
& p(x \mid y=2)=\frac{n!}{x_{1}!\cdots x_{\kappa}!} \beta_{1}^{x_{1}} \cdots \beta_{\kappa}^{x_{\kappa}}
\end{aligned}
$$

The ML discriminant rule allocates x to class 1 if

$$
\sum_{k=1}^{\kappa} x_{i} \log \frac{\alpha_{k}}{\beta_{k}}<0
$$

Univariate Gaussian models

Suppose x is a Gaussian random variable, with

$$
\begin{aligned}
& x \mid y=1 \sim N\left(\mu_{1}, \sigma_{1}^{2}\right) \\
& x \mid y=2 \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)
\end{aligned}
$$

where $\mu_{1}<\mu_{2}$ and $\sigma_{1}>\sigma_{2}$.
$p(x \mid y=1)>p(x \mid y=2)$ if

$$
\frac{\sigma_{2}}{\sigma_{1}} \exp \left\{-\frac{1}{2}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-\left(\frac{x-\mu_{2}}{\sigma_{2}}\right)^{2}\right]\right\}>1
$$

or

$$
x^{2}\left(\frac{1}{\sigma_{1}^{2}}-\frac{1}{\sigma_{2}^{2}}\right)-2 x\left(\frac{\mu_{1}}{\sigma_{1}^{2}}-\frac{\mu_{2}}{\sigma_{2}^{2}}\right)+\left(\frac{\mu_{1}^{2}}{\sigma_{1}^{2}}-\frac{\mu_{2}^{2}}{\sigma_{2}^{2}}\right)<2 \log \frac{\sigma_{2}}{\sigma_{1}}<0 .
$$

If $\sigma_{1}=\sigma_{2}$, then $p(x \mid y=1)>p(x \mid y=2)$ when

$$
\left|x-\mu_{2}\right|>\left|x-\mu_{1}\right|
$$

or when $x<\left(\mu_{1}+\mu_{2}\right) / 2$.

Example: $\mu_{1}=1, \mu_{2}=5, \sigma_{1}=6, \sigma_{2}=2.5$

Example: $\mu_{1}=1, \mu_{2}=5, \sigma_{1}=6, \sigma_{2}=6$

Gaussian populations with common variances

- Let $(x \mid y=k)$ be the $N_{p}\left(\mu_{k}, \Sigma\right)$, for $k=1, \ldots, \kappa$ and $\Sigma>0^{3}$.
- The ML discrimination rule allocates x to class k^{*} such that

$$
k^{*}=\arg \min _{k \in 1, \ldots, k}\left(x-\mu_{k}\right)^{\prime} \Sigma^{-1}\left(x-\mu_{k}\right),
$$

i.e., k^{*} minimzes the square of the Mahalanobis distance between x and μ_{k}.

- When $\kappa=2$, the rule allocates x to class $k=1$ if

$$
\alpha^{\prime}(x-\mu)>0,
$$

where $\alpha=\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)$ and $\mu=\left(\mu_{1}+\mu_{2}\right) / 2$.

- The discriminant function for two Gaussians with the same covariance matrix is linear. Quadratic Discriminant Analysis assumes distinct covariance matrices.
${ }^{3} \Sigma>0$ if $z^{\prime} \Sigma z>0, \forall z \neq 0$.

Discriminant function

When there are just $\kappa=2$ classes, the ML discriminant rule is defined in terms of the discriminant function

$$
h(x)=\log p(x \mid y=1)-\log p(x \mid y=2)
$$

and the ML rule takes the form

$$
\begin{aligned}
& \text { Allocate } x \text { to class } 1 \text { if } h(x)>0 \\
& \text { Allocate } x \text { to class } 2 \text { if } h(x)<0,
\end{aligned}
$$

while the Bayes discriminant rule takes the form of
Allocate x to class 1 if $h(x)>\log \pi_{2} / \pi_{1}$
Allocate x to class 2 if $h(x)<\log \pi_{2} / \pi_{1}$

Admissibility

The probability of allocating an individual to class i, when in fact she comes from class j, is given by

$$
p_{i j}=\int \phi_{i}(x) p(x \mid y=j) d x
$$

Say that one discriminant rule d with probabilities of correct allocation $\left\{p_{k k}\right\}$ is as good as another rule d^{\prime} with probabilities $\left\{p_{k k}^{\prime}\right\}$ if

$$
p_{k k} \geq p_{k k}^{\prime} \quad \text { for all } k=1, \ldots, \kappa
$$

Say that d is better than d^{\prime} if at least one of the inequalities is strict. If d is a rule for which there is no better rule, say that d is admissible.

Theorem: All Bayes discriminant rules (including the ML rule) are admissible.

Theorem: If populations $k=1, \ldots, \kappa$ have prior probabilities $\pi_{1}, \ldots, \pi_{\kappa}$, then no discriminant rule has a larger posterior probability of correct allocation than the Bayes rule with respect to this prior.

Decision theory and unequal costs

The discrimination problem can be seen as a decision problem. Let

$$
K(i, j)= \begin{cases}0, & i=j, \\ c_{i j} & i \neq j .\end{cases}
$$

be a loss function representing the cost or loss incurred when an observation is allocated to class i when in fact it comes from class j, assuming $c_{i j}>0 \forall i \neq j$.

If d is a rule with allocation function $\phi_{k}(x)$, then the risk function is defined by

$$
\begin{aligned}
R(d, k) & =E(K(d(x), k) \mid y=k) \\
& =\sum_{j=1}^{\kappa} K(j, k) \int \phi_{j}(x) p(x \mid y=k) d x=\operatorname{sum}_{j=1}^{\kappa} c_{j k} p_{j k}
\end{aligned}
$$

If prior probabilities exist then the Bayes risk can be defined by

$$
r(d, \pi)=\sum_{k=1}^{\kappa} \pi_{k} R(d, k)
$$

and represents the posterior expected loss.

Theorems

Theorem 1: All Bayes discrimination rules are admissible for the risk function R.

Theorem 2: If the classes $k=1, \ldots, \kappa$ have prior probabilities $\pi_{1}, \ldots, \pi_{\kappa}$, then no discriminant rule has smaller Bayes risk for the risk function R than the Bayes rule with respect to π.

The advantage of the decision theory approach is that it allows us to attach varying levels of importance to different sorts of errors.

For example, in medical diagnosis it might be regarded as more harmful to a patient's survival for polio to be misdiagnosed as flu than for flu to be misdiagnosed as polio.

iris dataset

This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and Species.

Anderson (1935) The irises of the Gaspe Peninsula Bulletin of the American Iris Society, 59, 2-5.

Fisher (1936) The use of multiple measurements in taxonomic problems Annals of Eugenics, 7, Part II, 179-188.

Summary statistics

```
data(iris)
iris[c(1,51,101),]
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
\begin{tabular}{llllll}
1 & 5.1 & 3.5 & 1.4 & 0.2 & setosa
\end{tabular}
\begin{tabular}{lllll}
51 & 7.0 & 3.2 & 4.7 & 1.4 versicolor
\end{tabular}
\begin{tabular}{lllll}
101 & 6.3 & 3.3 & 6.0 & 2.5
\end{tabular}
y = rep(0,nrow(iris))
y[iris[,5]=="setosa"]=1
y[iris[,5]=="versicolor"]=2
y[iris[,5]=="virginica"]=3
x = as.matrix(iris[,1:2])
n = nrow (x)
n1 = sum(y==1)
n2 = sum(y==2)
n3 = sum(y==3)
xbar1 = apply(x[y==1,],2,mean)
xbar2 = apply(x[y==2,],2,mean)
xbar3 = apply(x[y==3,],2,mean)
S1 = var (x[y==1,])*(n1-1)/n1
S2 = var (x[y==2,])*(n2-1)/n2
S3 = var (x[y==3,])*(n3-1)/n3
cbind(xbar1,xbar2,xbar3)
    xbar1 xbar2 xbar3
Sepal.Length 5.006 5.936 6.588
Sepal.Width 3.428 2.770 2.974
round(cbind(S1,S2,S3),3)
    Sepal.Length Sepal.Width Sepal.Length Sepal.Width Sepal.Length Sepal.Width
\begin{tabular}{lllllll} 
Sepal.Length & 0.122 & 0.097 & 0.261 & 0.083 & 0.396 & 0.092 \\
Sepal.Width & 0.097 & 0.141 & 0.083 & 0.096 & 0.092 & 0.102
\end{tabular}
```


Discrimination between three species of iris

Partition Plot

QDA

Partition Plot

admission dataset ${ }^{4}$

Admission data for applicants to graduate schools in business.
Objective: Predict likelihood of admission via GPA and GMAT scores.
Admission levels: admit, notadmit, and borderline

```
url <- "http://www.biz.uiowa.edu/faculty/jledolter/DataMining/admission.csv"
admit <- read.csv(url)
dim(admit)
adm=data.frame(admit)
par(mfrow=c(1,2))
boxplot(GPA~De,data=admit)
boxplot(GMAT ~De,data=admit)
par(mfrow=c(1,1))
plot(adm$GPA, adm$GMAT, col=adm$De)
```

[^1]
Boxplots

Analysis

Linear discriminant analysis

```
> m1=lda(De~}.,data=adm
> m1
Call:
lda(De ~ ., data = adm)
Prior probabilities of groups:
    admit border notadmit
0.3647059 0.3058824 0.3294118
Group means:
    GPA GMAT
admit 3.403871 561.2258
border 2.992692 446.2308
notadmit 2.482500 447.0714
Coefficients of linear discriminants:
    LD1 LD2
GPA 5.008766354 1.87668220
GMAT 0.008568593 -0.01445106
Proportion of trace:
    LD1 LD2
0.9673 0.0327
> predict(m1,newdata=data.frame(GPA=3.21,GMAT=497))
$class
[1] admit
Levels: admit border notadmit
$posterior
        admit border notadmit
1 0.5180421 0.4816015 0.0003563717
$x
    LD1 LD2
1 1.252409 0.318194
```


Quadratic discriminant analysis

```
> m2=qda(De~ ., adm)
> m2
Call:
qda(De ~ ., data = adm)
Prior probabilities of groups:
    admit border notadmit
0.3647059 0.3058824 0.3294118
Group means:
            GPA GMAT
admit 3.403871 561.2258
border 2.992692 446.2308
notadmit 2.482500 447.0714
> predict(m2,newdata=data.frame(GPA=3.21,GMAT=497))
$class
[1] admit
Levels: admit border notadmit
$posterior
    admit border notadmit
1 0.9226763 0.0768693 0.0004544468
```


Exploratory Graph for LDA or QDA

```
install.packages('klaR')
library(klaR)
partimat(De~.,data=adm,method="lda")
partimat(De~.,data=adm,method="qda")
```


LDA

Partition Plot

QDA

Partition Plot

[^0]: ${ }^{1}$ Text from Efron and Hastie (2016) Computer Age Statistical Inference: Algorithms, Evidence, and Data Science, pages 113-115.

[^1]: ${ }^{4}$ Example from Johannes Ledolter: https://www.biz.uiowa.edu/faculty/jledolter

